skia2/gm/convexpaths.cpp
commit-bot@chromium.org a90c680386 Turn on quilt mode in DM.
- Rename TileGrid -> Quilt to avoid the name overload.
  - Tag all failing GMs with kSkipTiled_Flag.

You may be wondering, do any GMs pass?  Yes, some do!  And that trends towards all of them as we increase --quiltTile.

Two GMs only fail in --quilt mode in 565.  Otherwise all GMs which fail are skipped, and those which don't fail aren't. (The 8888 variants of those two GMs are skipped even though they pass.)

BUG=skia:2477
R=reed@google.com, mtklein@google.com

Author: mtklein@chromium.org

Review URL: https://codereview.chromium.org/256373002

git-svn-id: http://skia.googlecode.com/svn/trunk@14457 2bbb7eff-a529-9590-31e7-b0007b416f81
2014-04-30 13:20:45 +00:00

302 lines
12 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm.h"
#include "SkRandom.h"
#include "SkTArray.h"
class SkDoOnce : SkNoncopyable {
public:
SkDoOnce() { fDidOnce = false; }
bool needToDo() const { return !fDidOnce; }
bool alreadyDone() const { return fDidOnce; }
void accomplished() {
SkASSERT(!fDidOnce);
fDidOnce = true;
}
private:
bool fDidOnce;
};
namespace skiagm {
class ConvexPathsGM : public GM {
SkDoOnce fOnce;
public:
ConvexPathsGM() {
this->setBGColor(0xFF000000);
}
protected:
virtual uint32_t onGetFlags() const SK_OVERRIDE {
return kSkipTiled_Flag;
}
virtual SkString onShortName() {
return SkString("convexpaths");
}
virtual SkISize onISize() {
return make_isize(1200, 1100);
}
void makePaths() {
if (fOnce.alreadyDone()) {
return;
}
fOnce.accomplished();
fPaths.push_back().moveTo(0, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 100 * SK_Scalar1);
fPaths.back().lineTo(0, 0);
fPaths.push_back().moveTo(0, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 0,
100 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 50 * SK_Scalar1);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCW_Direction);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCCW_Direction);
fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
100 * SK_Scalar1,
5 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0,
SK_Scalar1 * 100,
SK_Scalar1 * 100),
40 * SK_Scalar1, 20 * SK_Scalar1,
SkPath::kCW_Direction);
// large number of points
enum {
kLength = 100,
kPtsPerSide = (1 << 12),
};
fPaths.push_back().moveTo(0, 0);
for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo.
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0);
}
for (int i = 0; i < kPtsPerSide; ++i) {
fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide);
}
// shallow diagonals
fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1);
fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1);
fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
25 * SK_Scalar1, 130 * SK_Scalar1, false);
// cubics
fPaths.push_back().cubicTo( 1 * SK_Scalar1, 1 * SK_Scalar1,
10 * SK_Scalar1, 90 * SK_Scalar1,
0 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(100 * SK_Scalar1, 50 * SK_Scalar1,
20 * SK_Scalar1, 100 * SK_Scalar1,
0 * SK_Scalar1, 0 * SK_Scalar1);
// path that has a cubic with a repeated first control point and
// a repeated last control point.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(40 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// path that has two cubics with repeated middle control points.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 0,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// cubic where last three points are almost a line
fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8);
fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8,
1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8,
1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8);
// flat cubic where the at end point tangents both point outward.
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is in, end tangent out
fPaths.push_back().moveTo(0, 0 * SK_Scalar1);
fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is out, end tangent in
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
20 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, 0);
// triangle where one edge is a degenerate quad
fPaths.push_back().moveTo(8.59375f, 45 * SK_Scalar1);
fPaths.back().quadTo(16.9921875f, 45 * SK_Scalar1,
31.25f, 45 * SK_Scalar1);
fPaths.back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(8.59375f, 45 * SK_Scalar1);
// triangle where one edge is a quad with a repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 2x repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a quad with a nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 3x nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 49.97f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where there is a point degenerate cubic at one corner
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point line
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
// point quad
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point cubic
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// moveTo only paths
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1);
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
// line degenerate
fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(0, 0,
0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1);
// small circle. This is listed last so that it has device coords far
// from the origin (small area relative to x,y values).
fPaths.push_back().addCircle(0, 0, 1.2f);
}
virtual void onDraw(SkCanvas* canvas) {
this->makePaths();
SkPaint paint;
paint.setAntiAlias(true);
SkLCGRandom rand;
canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1);
// As we've added more paths this has gotten pretty big. Scale the whole thing down.
canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3);
for (int i = 0; i < fPaths.count(); ++i) {
canvas->save();
// position the path, and make it at off-integer coords.
canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10,
SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10);
SkColor color = rand.nextU();
color |= 0xff000000;
paint.setColor(color);
#if 0 // This hitting on 32bit Linux builds for some paths. Temporarily disabling while it is
// debugged.
SkASSERT(fPaths[i].isConvex());
#endif
canvas->drawPath(fPaths[i], paint);
canvas->restore();
}
}
private:
typedef GM INHERITED;
SkTArray<SkPath> fPaths;
};
//////////////////////////////////////////////////////////////////////////////
static GM* MyFactory(void*) { return new ConvexPathsGM; }
static GMRegistry reg(MyFactory);
}