skia2/experimental/skottie/Skottie.cpp
Florin Malita ca4439f6fd [skottie] Discard orphaned geometry animators
TBR=
NOTRY=true
Change-Id: I8e4de99c8ebc3ec28509753b59a287d896e65aea
Reviewed-on: https://skia-review.googlesource.com/98705
Commit-Queue: Florin Malita <fmalita@chromium.org>
Reviewed-by: Florin Malita <fmalita@chromium.org>
2018-01-23 16:22:38 +00:00

1117 lines
38 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Skottie.h"
#include "SkCanvas.h"
#include "SkottieAnimator.h"
#include "SkottiePriv.h"
#include "SkottieProperties.h"
#include "SkData.h"
#include "SkImage.h"
#include "SkMakeUnique.h"
#include "SkOSPath.h"
#include "SkPaint.h"
#include "SkParse.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkSGColor.h"
#include "SkSGDraw.h"
#include "SkSGGeometryTransform.h"
#include "SkSGGradient.h"
#include "SkSGGroup.h"
#include "SkSGImage.h"
#include "SkSGInvalidationController.h"
#include "SkSGMaskEffect.h"
#include "SkSGMerge.h"
#include "SkSGOpacityEffect.h"
#include "SkSGPath.h"
#include "SkSGRect.h"
#include "SkSGScene.h"
#include "SkSGTransform.h"
#include "SkSGTrimEffect.h"
#include "SkStream.h"
#include "SkTArray.h"
#include "SkTHash.h"
#include <cmath>
#include <unordered_map>
#include <vector>
#include "stdlib.h"
namespace skottie {
namespace {
using AssetMap = SkTHashMap<SkString, const Json::Value*>;
struct AttachContext {
const ResourceProvider& fResources;
const AssetMap& fAssets;
sksg::Scene::AnimatorList& fAnimators;
};
bool LogFail(const Json::Value& json, const char* msg) {
const auto dump = json.toStyledString();
LOG("!! %s: %s", msg, dump.c_str());
return false;
}
// This is the workhorse for binding properties: depending on whether the property is animated,
// it will either apply immediately or instantiate and attach a keyframe animator.
template <typename ValT, typename NodeT>
bool BindProperty(const Json::Value& jprop, AttachContext* ctx, const sk_sp<NodeT>& node,
typename Animator<ValT, NodeT>::ApplyFuncT&& apply) {
if (!jprop.isObject())
return false;
const auto& jpropA = jprop["a"];
const auto& jpropK = jprop["k"];
// Older Json versions don't have an "a" animation marker.
// For those, we attempt to parse both ways.
if (jpropA.isNull() || !ParseBool(jpropA, "false")) {
ValT val;
if (ValueTraits<ValT>::Parse(jpropK, &val)) {
// Static property.
apply(node.get(), val);
return true;
}
if (!jpropA.isNull()) {
return LogFail(jprop, "Could not parse (explicit) static property");
}
}
// Keyframe property.
using AnimatorT = Animator<ValT, NodeT>;
auto animator = AnimatorT::Make(ParseFrames<ValT>(jpropK), node, std::move(apply));
if (!animator) {
return LogFail(jprop, "Could not parse keyframed property");
}
ctx->fAnimators.push_back(std::move(animator));
return true;
}
sk_sp<sksg::Matrix> AttachMatrix(const Json::Value& t, AttachContext* ctx,
sk_sp<sksg::Matrix> parentMatrix) {
if (!t.isObject())
return nullptr;
auto matrix = sksg::Matrix::Make(SkMatrix::I(), std::move(parentMatrix));
auto composite = sk_make_sp<CompositeTransform>(matrix);
auto anchor_attached = BindProperty<VectorValue>(t["a"], ctx, composite,
[](CompositeTransform* node, const VectorValue& a) {
node->setAnchorPoint(ValueTraits<VectorValue>::As<SkPoint>(a));
});
auto position_attached = BindProperty<VectorValue>(t["p"], ctx, composite,
[](CompositeTransform* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto scale_attached = BindProperty<VectorValue>(t["s"], ctx, composite,
[](CompositeTransform* node, const VectorValue& s) {
node->setScale(ValueTraits<VectorValue>::As<SkVector>(s));
});
auto rotation_attached = BindProperty<ScalarValue>(t["r"], ctx, composite,
[](CompositeTransform* node, const ScalarValue& r) {
node->setRotation(r);
});
auto skew_attached = BindProperty<ScalarValue>(t["sk"], ctx, composite,
[](CompositeTransform* node, const ScalarValue& sk) {
node->setSkew(sk);
});
auto skewaxis_attached = BindProperty<ScalarValue>(t["sa"], ctx, composite,
[](CompositeTransform* node, const ScalarValue& sa) {
node->setSkewAxis(sa);
});
if (!anchor_attached &&
!position_attached &&
!scale_attached &&
!rotation_attached &&
!skew_attached &&
!skewaxis_attached) {
LogFail(t, "Could not parse transform");
return nullptr;
}
return matrix;
}
sk_sp<sksg::RenderNode> AttachOpacity(const Json::Value& jtransform, AttachContext* ctx,
sk_sp<sksg::RenderNode> childNode) {
if (!jtransform.isObject() || !childNode)
return childNode;
// This is more peeky than other attachers, because we want to avoid redundant opacity
// nodes for the extremely common case of static opaciy == 100.
const auto& opacity = jtransform["o"];
if (opacity.isObject() &&
!ParseBool(opacity["a"], true) &&
ParseScalar(opacity["k"], -1) == 100) {
// Ignoring static full opacity.
return childNode;
}
auto opacityNode = sksg::OpacityEffect::Make(childNode);
BindProperty<ScalarValue>(opacity, ctx, opacityNode,
[](sksg::OpacityEffect* node, const ScalarValue& o) {
// BM opacity is [0..100]
node->setOpacity(o * 0.01f);
});
return opacityNode;
}
sk_sp<sksg::RenderNode> AttachComposition(const Json::Value&, AttachContext* ctx);
sk_sp<sksg::GeometryNode> AttachPathGeometry(const Json::Value& jpath, AttachContext* ctx) {
SkASSERT(jpath.isObject());
auto path_node = sksg::Path::Make();
auto path_attached = BindProperty<ShapeValue>(jpath["ks"], ctx, path_node,
[](sksg::Path* node, const ShapeValue& p) { node->setPath(p); });
if (path_attached)
LOG("** Attached path geometry - verbs: %d\n", path_node->getPath().countVerbs());
return path_attached ? path_node : nullptr;
}
sk_sp<sksg::GeometryNode> AttachRRectGeometry(const Json::Value& jrect, AttachContext* ctx) {
SkASSERT(jrect.isObject());
auto rect_node = sksg::RRect::Make();
auto composite = sk_make_sp<CompositeRRect>(rect_node);
auto p_attached = BindProperty<VectorValue>(jrect["p"], ctx, composite,
[](CompositeRRect* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto s_attached = BindProperty<VectorValue>(jrect["s"], ctx, composite,
[](CompositeRRect* node, const VectorValue& s) {
node->setSize(ValueTraits<VectorValue>::As<SkSize>(s));
});
auto r_attached = BindProperty<ScalarValue>(jrect["r"], ctx, composite,
[](CompositeRRect* node, const ScalarValue& r) {
node->setRadius(SkSize::Make(r, r));
});
if (!p_attached && !s_attached && !r_attached) {
return nullptr;
}
LOG("** Attached (r)rect geometry\n");
return rect_node;
}
sk_sp<sksg::GeometryNode> AttachEllipseGeometry(const Json::Value& jellipse, AttachContext* ctx) {
SkASSERT(jellipse.isObject());
auto rect_node = sksg::RRect::Make();
auto composite = sk_make_sp<CompositeRRect>(rect_node);
auto p_attached = BindProperty<VectorValue>(jellipse["p"], ctx, composite,
[](CompositeRRect* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto s_attached = BindProperty<VectorValue>(jellipse["s"], ctx, composite,
[](CompositeRRect* node, const VectorValue& s) {
const auto sz = ValueTraits<VectorValue>::As<SkSize>(s);
node->setSize(sz);
node->setRadius(SkSize::Make(sz.width() / 2, sz.height() / 2));
});
if (!p_attached && !s_attached) {
return nullptr;
}
LOG("** Attached ellipse geometry\n");
return rect_node;
}
sk_sp<sksg::GeometryNode> AttachPolystarGeometry(const Json::Value& jstar, AttachContext* ctx) {
SkASSERT(jstar.isObject());
static constexpr CompositePolyStar::Type gTypes[] = {
CompositePolyStar::Type::kStar, // "sy": 1
CompositePolyStar::Type::kPoly, // "sy": 2
};
const auto type = ParseInt(jstar["sy"], 0) - 1;
if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gTypes))) {
LogFail(jstar, "Unknown polystar type");
return nullptr;
}
auto path_node = sksg::Path::Make();
auto composite = sk_make_sp<CompositePolyStar>(path_node, gTypes[type]);
BindProperty<VectorValue>(jstar["p"], ctx, composite,
[](CompositePolyStar* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
BindProperty<ScalarValue>(jstar["pt"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& pt) {
node->setPointCount(pt);
});
BindProperty<ScalarValue>(jstar["ir"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& ir) {
node->setInnerRadius(ir);
});
BindProperty<ScalarValue>(jstar["or"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& otr) {
node->setOuterRadius(otr);
});
BindProperty<ScalarValue>(jstar["is"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& is) {
node->setInnerRoundness(is);
});
BindProperty<ScalarValue>(jstar["os"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& os) {
node->setOuterRoundness(os);
});
BindProperty<ScalarValue>(jstar["r"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& r) {
node->setRotation(r);
});
return path_node;
}
sk_sp<sksg::Color> AttachColor(const Json::Value& obj, AttachContext* ctx) {
SkASSERT(obj.isObject());
auto color_node = sksg::Color::Make(SK_ColorBLACK);
auto color_attached = BindProperty<VectorValue>(obj["c"], ctx, color_node,
[](sksg::Color* node, const VectorValue& c) {
node->setColor(ValueTraits<VectorValue>::As<SkColor>(c));
});
return color_attached ? color_node : nullptr;
}
sk_sp<sksg::Gradient> AttachGradient(const Json::Value& obj, AttachContext* ctx) {
SkASSERT(obj.isObject());
const auto& stops = obj["g"];
if (!stops.isObject())
return nullptr;
const auto stopCount = ParseInt(stops["p"], -1);
if (stopCount < 0)
return nullptr;
sk_sp<sksg::Gradient> gradient_node;
sk_sp<CompositeGradient> composite;
if (ParseInt(obj["t"], 1) == 1) {
auto linear_node = sksg::LinearGradient::Make();
composite = sk_make_sp<CompositeLinearGradient>(linear_node, stopCount);
gradient_node = std::move(linear_node);
} else {
auto radial_node = sksg::RadialGradient::Make();
composite = sk_make_sp<CompositeRadialGradient>(radial_node, stopCount);
// TODO: highlight, angle
gradient_node = std::move(radial_node);
}
BindProperty<VectorValue>(stops["k"], ctx, composite,
[](CompositeGradient* node, const VectorValue& stops) {
node->setColorStops(stops);
});
BindProperty<VectorValue>(obj["s"], ctx, composite,
[](CompositeGradient* node, const VectorValue& s) {
node->setStartPoint(ValueTraits<VectorValue>::As<SkPoint>(s));
});
BindProperty<VectorValue>(obj["e"], ctx, composite,
[](CompositeGradient* node, const VectorValue& e) {
node->setEndPoint(ValueTraits<VectorValue>::As<SkPoint>(e));
});
return gradient_node;
}
sk_sp<sksg::PaintNode> AttachPaint(const Json::Value& jpaint, AttachContext* ctx,
sk_sp<sksg::PaintNode> paint_node) {
if (paint_node) {
paint_node->setAntiAlias(true);
BindProperty<ScalarValue>(jpaint["o"], ctx, paint_node,
[](sksg::PaintNode* node, const ScalarValue& o) {
// BM opacity is [0..100]
node->setOpacity(o * 0.01f);
});
}
return paint_node;
}
sk_sp<sksg::PaintNode> AttachStroke(const Json::Value& jstroke, AttachContext* ctx,
sk_sp<sksg::PaintNode> stroke_node) {
SkASSERT(jstroke.isObject());
if (!stroke_node)
return nullptr;
stroke_node->setStyle(SkPaint::kStroke_Style);
auto width_attached = BindProperty<ScalarValue>(jstroke["w"], ctx, stroke_node,
[](sksg::PaintNode* node, const ScalarValue& w) {
node->setStrokeWidth(w);
});
if (!width_attached)
return nullptr;
stroke_node->setStrokeMiter(ParseScalar(jstroke["ml"], 4));
static constexpr SkPaint::Join gJoins[] = {
SkPaint::kMiter_Join,
SkPaint::kRound_Join,
SkPaint::kBevel_Join,
};
stroke_node->setStrokeJoin(gJoins[SkTPin<int>(ParseInt(jstroke["lj"], 1) - 1,
0, SK_ARRAY_COUNT(gJoins) - 1)]);
static constexpr SkPaint::Cap gCaps[] = {
SkPaint::kButt_Cap,
SkPaint::kRound_Cap,
SkPaint::kSquare_Cap,
};
stroke_node->setStrokeCap(gCaps[SkTPin<int>(ParseInt(jstroke["lc"], 1) - 1,
0, SK_ARRAY_COUNT(gCaps) - 1)]);
return stroke_node;
}
sk_sp<sksg::PaintNode> AttachColorFill(const Json::Value& jfill, AttachContext* ctx) {
SkASSERT(jfill.isObject());
return AttachPaint(jfill, ctx, AttachColor(jfill, ctx));
}
sk_sp<sksg::PaintNode> AttachGradientFill(const Json::Value& jfill, AttachContext* ctx) {
SkASSERT(jfill.isObject());
return AttachPaint(jfill, ctx, AttachGradient(jfill, ctx));
}
sk_sp<sksg::PaintNode> AttachColorStroke(const Json::Value& jstroke, AttachContext* ctx) {
SkASSERT(jstroke.isObject());
return AttachStroke(jstroke, ctx, AttachPaint(jstroke, ctx, AttachColor(jstroke, ctx)));
}
sk_sp<sksg::PaintNode> AttachGradientStroke(const Json::Value& jstroke, AttachContext* ctx) {
SkASSERT(jstroke.isObject());
return AttachStroke(jstroke, ctx, AttachPaint(jstroke, ctx, AttachGradient(jstroke, ctx)));
}
std::vector<sk_sp<sksg::GeometryNode>> AttachMergeGeometryEffect(
const Json::Value& jmerge, AttachContext* ctx, std::vector<sk_sp<sksg::GeometryNode>>&& geos) {
std::vector<sk_sp<sksg::GeometryNode>> merged;
static constexpr sksg::Merge::Mode gModes[] = {
sksg::Merge::Mode::kMerge, // "mm": 1
sksg::Merge::Mode::kUnion, // "mm": 2
sksg::Merge::Mode::kDifference, // "mm": 3
sksg::Merge::Mode::kIntersect, // "mm": 4
sksg::Merge::Mode::kXOR , // "mm": 5
};
const auto mode = gModes[SkTPin<int>(ParseInt(jmerge["mm"], 1) - 1,
0, SK_ARRAY_COUNT(gModes) - 1)];
merged.push_back(sksg::Merge::Make(std::move(geos), mode));
LOG("** Attached merge path effect, mode: %d\n", mode);
return merged;
}
std::vector<sk_sp<sksg::GeometryNode>> AttachTrimGeometryEffect(
const Json::Value& jtrim, AttachContext* ctx, std::vector<sk_sp<sksg::GeometryNode>>&& geos) {
enum class Mode {
kMerged, // "m": 1
kSeparate, // "m": 2
} gModes[] = { Mode::kMerged, Mode::kSeparate };
const auto mode = gModes[SkTPin<int>(ParseInt(jtrim["m"], 1) - 1,
0, SK_ARRAY_COUNT(gModes) - 1)];
std::vector<sk_sp<sksg::GeometryNode>> inputs;
if (mode == Mode::kMerged) {
inputs.push_back(sksg::Merge::Make(std::move(geos), sksg::Merge::Mode::kMerge));
} else {
inputs = std::move(geos);
}
std::vector<sk_sp<sksg::GeometryNode>> trimmed;
trimmed.reserve(inputs.size());
for (const auto& i : inputs) {
const auto trim = sksg::TrimEffect::Make(i);
trimmed.push_back(trim);
BindProperty<ScalarValue>(jtrim["s"], ctx, trim,
[](sksg::TrimEffect* node, const ScalarValue& s) {
node->setStart(s * 0.01f);
});
BindProperty<ScalarValue>(jtrim["e"], ctx, trim,
[](sksg::TrimEffect* node, const ScalarValue& e) {
node->setEnd(e * 0.01f);
});
BindProperty<ScalarValue>(jtrim["o"], ctx, trim,
[](sksg::TrimEffect* node, const ScalarValue& o) {
node->setOffset(o / 360);
});
}
return trimmed;
}
using GeometryAttacherT = sk_sp<sksg::GeometryNode> (*)(const Json::Value&, AttachContext*);
static constexpr GeometryAttacherT gGeometryAttachers[] = {
AttachPathGeometry,
AttachRRectGeometry,
AttachEllipseGeometry,
AttachPolystarGeometry,
};
using PaintAttacherT = sk_sp<sksg::PaintNode> (*)(const Json::Value&, AttachContext*);
static constexpr PaintAttacherT gPaintAttachers[] = {
AttachColorFill,
AttachColorStroke,
AttachGradientFill,
AttachGradientStroke,
};
using GeometryEffectAttacherT =
std::vector<sk_sp<sksg::GeometryNode>> (*)(const Json::Value&,
AttachContext*,
std::vector<sk_sp<sksg::GeometryNode>>&&);
static constexpr GeometryEffectAttacherT gGeometryEffectAttachers[] = {
AttachMergeGeometryEffect,
AttachTrimGeometryEffect,
};
enum class ShapeType {
kGeometry,
kGeometryEffect,
kPaint,
kGroup,
kTransform,
};
struct ShapeInfo {
const char* fTypeString;
ShapeType fShapeType;
uint32_t fAttacherIndex; // index into respective attacher tables
};
const ShapeInfo* FindShapeInfo(const Json::Value& shape) {
static constexpr ShapeInfo gShapeInfo[] = {
{ "el", ShapeType::kGeometry , 2 }, // ellipse -> AttachEllipseGeometry
{ "fl", ShapeType::kPaint , 0 }, // fill -> AttachColorFill
{ "gf", ShapeType::kPaint , 2 }, // gfill -> AttachGradientFill
{ "gr", ShapeType::kGroup , 0 }, // group -> Inline handler
{ "gs", ShapeType::kPaint , 3 }, // gstroke -> AttachGradientStroke
{ "mm", ShapeType::kGeometryEffect, 0 }, // merge -> AttachMergeGeometryEffect
{ "rc", ShapeType::kGeometry , 1 }, // rrect -> AttachRRectGeometry
{ "sh", ShapeType::kGeometry , 0 }, // shape -> AttachPathGeometry
{ "sr", ShapeType::kGeometry , 3 }, // polystar -> AttachPolyStarGeometry
{ "st", ShapeType::kPaint , 1 }, // stroke -> AttachColorStroke
{ "tm", ShapeType::kGeometryEffect, 1 }, // trim -> AttachTrimGeometryEffect
{ "tr", ShapeType::kTransform , 0 }, // transform -> Inline handler
};
if (!shape.isObject())
return nullptr;
const auto& type = shape["ty"];
if (!type.isString())
return nullptr;
const auto* info = bsearch(type.asCString(),
gShapeInfo,
SK_ARRAY_COUNT(gShapeInfo),
sizeof(ShapeInfo),
[](const void* key, const void* info) {
return strcmp(static_cast<const char*>(key),
static_cast<const ShapeInfo*>(info)->fTypeString);
});
return static_cast<const ShapeInfo*>(info);
}
struct GeometryEffectRec {
const Json::Value& fJson;
GeometryEffectAttacherT fAttach;
};
struct AttachShapeContext {
AttachShapeContext(AttachContext* ctx,
std::vector<sk_sp<sksg::GeometryNode>>* geos,
std::vector<GeometryEffectRec>* effects,
size_t committedAnimators)
: fCtx(ctx)
, fGeometryStack(geos)
, fGeometryEffectStack(effects)
, fCommittedAnimators(committedAnimators) {}
AttachContext* fCtx;
std::vector<sk_sp<sksg::GeometryNode>>* fGeometryStack;
std::vector<GeometryEffectRec>* fGeometryEffectStack;
size_t fCommittedAnimators;
};
sk_sp<sksg::RenderNode> AttachShape(const Json::Value& jshape, AttachShapeContext* shapeCtx) {
if (!jshape.isArray())
return nullptr;
SkDEBUGCODE(const auto initialGeometryEffects = shapeCtx->fGeometryEffectStack->size();)
sk_sp<sksg::Group> shape_group = sksg::Group::Make();
sk_sp<sksg::RenderNode> shape_wrapper = shape_group;
sk_sp<sksg::Matrix> shape_matrix;
struct ShapeRec {
const Json::Value& fJson;
const ShapeInfo& fInfo;
};
// First pass (bottom->top):
//
// * pick up the group transform and opacity
// * push local geometry effects onto the stack
// * store recs for next pass
//
std::vector<ShapeRec> recs;
for (Json::ArrayIndex i = 0; i < jshape.size(); ++i) {
const auto& s = jshape[jshape.size() - 1 - i];
const auto* info = FindShapeInfo(s);
if (!info) {
LogFail(s.isObject() ? s["ty"] : s, "Unknown shape");
continue;
}
recs.push_back({ s, *info });
switch (info->fShapeType) {
case ShapeType::kTransform:
if ((shape_matrix = AttachMatrix(s, shapeCtx->fCtx, nullptr))) {
shape_wrapper = sksg::Transform::Make(std::move(shape_wrapper), shape_matrix);
}
shape_wrapper = AttachOpacity(s, shapeCtx->fCtx, std::move(shape_wrapper));
break;
case ShapeType::kGeometryEffect:
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGeometryEffectAttachers));
shapeCtx->fGeometryEffectStack->push_back(
{ s, gGeometryEffectAttachers[info->fAttacherIndex] });
break;
default:
break;
}
}
// Second pass (top -> bottom, after 2x reverse):
//
// * track local geometry
// * emit local paints
//
std::vector<sk_sp<sksg::GeometryNode>> geos;
std::vector<sk_sp<sksg::RenderNode >> draws;
for (auto rec = recs.rbegin(); rec != recs.rend(); ++rec) {
switch (rec->fInfo.fShapeType) {
case ShapeType::kGeometry: {
SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gGeometryAttachers));
if (auto geo = gGeometryAttachers[rec->fInfo.fAttacherIndex](rec->fJson,
shapeCtx->fCtx)) {
geos.push_back(std::move(geo));
}
} break;
case ShapeType::kGeometryEffect: {
// Apply the current effect and pop from the stack.
SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gGeometryEffectAttachers));
if (!geos.empty()) {
geos = gGeometryEffectAttachers[rec->fInfo.fAttacherIndex](rec->fJson,
shapeCtx->fCtx,
std::move(geos));
}
SkASSERT(shapeCtx->fGeometryEffectStack->back().fJson == rec->fJson);
SkASSERT(shapeCtx->fGeometryEffectStack->back().fAttach ==
gGeometryEffectAttachers[rec->fInfo.fAttacherIndex]);
shapeCtx->fGeometryEffectStack->pop_back();
} break;
case ShapeType::kGroup: {
AttachShapeContext groupShapeCtx(shapeCtx->fCtx,
&geos,
shapeCtx->fGeometryEffectStack,
shapeCtx->fCommittedAnimators);
if (auto subgroup = AttachShape(rec->fJson["it"], &groupShapeCtx)) {
draws.push_back(std::move(subgroup));
SkASSERT(groupShapeCtx.fCommittedAnimators >= shapeCtx->fCommittedAnimators);
shapeCtx->fCommittedAnimators = groupShapeCtx.fCommittedAnimators;
}
} break;
case ShapeType::kPaint: {
SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gPaintAttachers));
auto paint = gPaintAttachers[rec->fInfo.fAttacherIndex](rec->fJson, shapeCtx->fCtx);
if (!paint || geos.empty())
break;
auto drawGeos = geos;
// Apply all pending effects from the stack.
for (auto it = shapeCtx->fGeometryEffectStack->rbegin();
it != shapeCtx->fGeometryEffectStack->rend(); ++it) {
drawGeos = it->fAttach(it->fJson, shapeCtx->fCtx, std::move(drawGeos));
}
// If we still have multiple geos, reduce using 'merge'.
auto geo = drawGeos.size() > 1
? sksg::Merge::Make(std::move(drawGeos), sksg::Merge::Mode::kMerge)
: drawGeos[0];
SkASSERT(geo);
draws.push_back(sksg::Draw::Make(std::move(geo), std::move(paint)));
shapeCtx->fCommittedAnimators = shapeCtx->fCtx->fAnimators.size();
} break;
default:
break;
}
}
// By now we should have popped all local geometry effects.
SkASSERT(shapeCtx->fGeometryEffectStack->size() == initialGeometryEffects);
// Push transformed local geometries to parent list, for subsequent paints.
for (const auto& geo : geos) {
shapeCtx->fGeometryStack->push_back(shape_matrix
? sksg::GeometryTransform::Make(std::move(geo), shape_matrix)
: std::move(geo));
}
// Emit local draws reversed (bottom->top, per spec).
for (auto it = draws.rbegin(); it != draws.rend(); ++it) {
shape_group->addChild(std::move(*it));
}
return draws.empty() ? nullptr : shape_wrapper;
}
sk_sp<sksg::RenderNode> AttachCompLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
auto refId = ParseString(layer["refId"], "");
if (refId.isEmpty()) {
LOG("!! Comp layer missing refId\n");
return nullptr;
}
const auto* comp = ctx->fAssets.find(refId);
if (!comp) {
LOG("!! Pre-comp not found: '%s'\n", refId.c_str());
return nullptr;
}
// TODO: cycle detection
return AttachComposition(**comp, ctx);
}
sk_sp<sksg::RenderNode> AttachSolidLayer(const Json::Value& jlayer, AttachContext*) {
SkASSERT(jlayer.isObject());
const auto size = SkSize::Make(ParseScalar(jlayer["sw"], -1),
ParseScalar(jlayer["sh"], -1));
const auto hex = ParseString(jlayer["sc"], "");
uint32_t c;
if (size.isEmpty() ||
!hex.startsWith("#") ||
!SkParse::FindHex(hex.c_str() + 1, &c)) {
LogFail(jlayer, "Could not parse solid layer");
return nullptr;
}
const SkColor color = 0xff000000 | c;
return sksg::Draw::Make(sksg::Rect::Make(SkRect::MakeSize(size)),
sksg::Color::Make(color));
}
sk_sp<sksg::RenderNode> AttachImageAsset(const Json::Value& jimage, AttachContext* ctx) {
SkASSERT(jimage.isObject());
const auto name = ParseString(jimage["p"], ""),
path = ParseString(jimage["u"], "");
if (name.isEmpty())
return nullptr;
// TODO: plumb resource paths explicitly to ResourceProvider?
const auto resName = path.isEmpty() ? name : SkOSPath::Join(path.c_str(), name.c_str());
const auto resStream = ctx->fResources.openStream(resName.c_str());
if (!resStream || !resStream->hasLength()) {
LOG("!! Could not load image resource: %s\n", resName.c_str());
return nullptr;
}
// TODO: non-intrisic image sizing
return sksg::Image::Make(
SkImage::MakeFromEncoded(SkData::MakeFromStream(resStream.get(), resStream->getLength())));
}
sk_sp<sksg::RenderNode> AttachImageLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
auto refId = ParseString(layer["refId"], "");
if (refId.isEmpty()) {
LOG("!! Image layer missing refId\n");
return nullptr;
}
const auto* jimage = ctx->fAssets.find(refId);
if (!jimage) {
LOG("!! Image asset not found: '%s'\n", refId.c_str());
return nullptr;
}
return AttachImageAsset(**jimage, ctx);
}
sk_sp<sksg::RenderNode> AttachNullLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
// Null layers are used solely to drive dependent transforms,
// but we use free-floating sksg::Matrices for that purpose.
return nullptr;
}
sk_sp<sksg::RenderNode> AttachShapeLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
LOG("** Attaching shape layer ind: %d\n", ParseInt(layer["ind"], 0));
std::vector<sk_sp<sksg::GeometryNode>> geometryStack;
std::vector<GeometryEffectRec> geometryEffectStack;
AttachShapeContext shapeCtx(ctx, &geometryStack, &geometryEffectStack, ctx->fAnimators.size());
auto shapeNode = AttachShape(layer["shapes"], &shapeCtx);
// Trim uncommitted animators: AttachShape consumes effects on the fly, and greedily attaches
// geometries => at the end, we can end up with unused geometries, which are nevertheless alive
// due to attached animators. To avoid this, we track committed animators and discard the
// orphans here.
SkASSERT(shapeCtx.fCommittedAnimators <= ctx->fAnimators.size());
ctx->fAnimators.resize(shapeCtx.fCommittedAnimators);
return shapeNode;
}
sk_sp<sksg::RenderNode> AttachTextLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
LOG("?? Text layer stub\n");
return nullptr;
}
struct AttachLayerContext {
AttachLayerContext(const Json::Value& jlayers, AttachContext* ctx)
: fLayerList(jlayers), fCtx(ctx) {}
const Json::Value& fLayerList;
AttachContext* fCtx;
std::unordered_map<const Json::Value*, sk_sp<sksg::Matrix>> fLayerMatrixCache;
std::unordered_map<int, const Json::Value*> fLayerIndexCache;
sk_sp<sksg::RenderNode> fCurrentMatte;
const Json::Value* findLayer(int index) {
SkASSERT(fLayerList.isArray());
if (index < 0) {
return nullptr;
}
const auto cached = fLayerIndexCache.find(index);
if (cached != fLayerIndexCache.end()) {
return cached->second;
}
for (const auto& l : fLayerList) {
if (!l.isObject()) {
continue;
}
if (ParseInt(l["ind"], -1) == index) {
fLayerIndexCache.insert(std::make_pair(index, &l));
return &l;
}
}
return nullptr;
}
sk_sp<sksg::Matrix> AttachLayerMatrix(const Json::Value& jlayer) {
SkASSERT(jlayer.isObject());
const auto cached = fLayerMatrixCache.find(&jlayer);
if (cached != fLayerMatrixCache.end()) {
return cached->second;
}
const auto* parentLayer = this->findLayer(ParseInt(jlayer["parent"], -1));
// TODO: cycle detection?
auto parentMatrix = (parentLayer && parentLayer != &jlayer)
? this->AttachLayerMatrix(*parentLayer) : nullptr;
auto layerMatrix = AttachMatrix(jlayer["ks"], fCtx, std::move(parentMatrix));
fLayerMatrixCache.insert(std::make_pair(&jlayer, layerMatrix));
return layerMatrix;
}
};
sk_sp<sksg::RenderNode> AttachLayer(const Json::Value& jlayer,
AttachLayerContext* layerCtx) {
if (!jlayer.isObject())
return nullptr;
using LayerAttacher = sk_sp<sksg::RenderNode> (*)(const Json::Value&, AttachContext*);
static constexpr LayerAttacher gLayerAttachers[] = {
AttachCompLayer, // 'ty': 0
AttachSolidLayer, // 'ty': 1
AttachImageLayer, // 'ty': 2
AttachNullLayer, // 'ty': 3
AttachShapeLayer, // 'ty': 4
AttachTextLayer, // 'ty': 5
};
int type = ParseInt(jlayer["ty"], -1);
if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gLayerAttachers))) {
return nullptr;
}
// Layer content.
auto layer = gLayerAttachers[type](jlayer, layerCtx->fCtx);
if (auto layerMatrix = layerCtx->AttachLayerMatrix(jlayer)) {
// Optional layer transform.
layer = sksg::Transform::Make(std::move(layer), std::move(layerMatrix));
}
// Optional layer opacity.
layer = AttachOpacity(jlayer["ks"], layerCtx->fCtx, std::move(layer));
// TODO: we should also disable related/inactive animators.
class Activator final : public sksg::Animator {
public:
Activator(sk_sp<sksg::OpacityEffect> controlNode, float in, float out)
: fControlNode(std::move(controlNode))
, fIn(in)
, fOut(out) {}
void onTick(float t) override {
// Keep the layer fully transparent except for its [in..out] lifespan.
// (note: opacity == 0 disables rendering, while opacity == 1 is a noop)
fControlNode->setOpacity(t >= fIn && t <= fOut ? 1 : 0);
}
private:
const sk_sp<sksg::OpacityEffect> fControlNode;
const float fIn,
fOut;
};
auto layerControl = sksg::OpacityEffect::Make(std::move(layer));
const auto in = ParseScalar(jlayer["ip"], 0),
out = ParseScalar(jlayer["op"], in);
if (in >= out || ! layerControl)
return nullptr;
layerCtx->fCtx->fAnimators.push_back(skstd::make_unique<Activator>(layerControl, in, out));
if (ParseBool(jlayer["td"], false)) {
// This layer is a matte. We apply it as a mask to the next layer.
layerCtx->fCurrentMatte = std::move(layerControl);
return nullptr;
}
if (layerCtx->fCurrentMatte) {
// There is a pending matte. Apply and reset.
return sksg::MaskEffect::Make(std::move(layerControl), std::move(layerCtx->fCurrentMatte));
}
return layerControl;
}
sk_sp<sksg::RenderNode> AttachComposition(const Json::Value& comp, AttachContext* ctx) {
if (!comp.isObject())
return nullptr;
const auto& jlayers = comp["layers"];
if (!jlayers.isArray())
return nullptr;
SkSTArray<16, sk_sp<sksg::RenderNode>, true> layers;
AttachLayerContext layerCtx(jlayers, ctx);
for (const auto& l : jlayers) {
if (auto layer_fragment = AttachLayer(l, &layerCtx)) {
layers.push_back(std::move(layer_fragment));
}
}
if (layers.empty()) {
return nullptr;
}
// Layers are painted in bottom->top order.
auto comp_group = sksg::Group::Make();
for (int i = layers.count() - 1; i >= 0; --i) {
comp_group->addChild(std::move(layers[i]));
}
LOG("** Attached composition '%s': %d layers.\n",
ParseString(comp["id"], "").c_str(), layers.count());
return comp_group;
}
} // namespace
std::unique_ptr<Animation> Animation::Make(SkStream* stream, const ResourceProvider& res) {
if (!stream->hasLength()) {
// TODO: handle explicit buffering?
LOG("!! cannot parse streaming content\n");
return nullptr;
}
Json::Value json;
{
auto data = SkData::MakeFromStream(stream, stream->getLength());
if (!data) {
LOG("!! could not read stream\n");
return nullptr;
}
Json::Reader reader;
auto dataStart = static_cast<const char*>(data->data());
if (!reader.parse(dataStart, dataStart + data->size(), json, false) || !json.isObject()) {
LOG("!! failed to parse json: %s\n", reader.getFormattedErrorMessages().c_str());
return nullptr;
}
}
const auto version = ParseString(json["v"], "");
const auto size = SkSize::Make(ParseScalar(json["w"], -1), ParseScalar(json["h"], -1));
const auto fps = ParseScalar(json["fr"], -1);
if (size.isEmpty() || version.isEmpty() || fps < 0) {
LOG("!! invalid animation params (version: %s, size: [%f %f], frame rate: %f)",
version.c_str(), size.width(), size.height(), fps);
return nullptr;
}
return std::unique_ptr<Animation>(new Animation(res, std::move(version), size, fps, json));
}
std::unique_ptr<Animation> Animation::MakeFromFile(const char path[], const ResourceProvider* res) {
class DirectoryResourceProvider final : public ResourceProvider {
public:
explicit DirectoryResourceProvider(SkString dir) : fDir(std::move(dir)) {}
std::unique_ptr<SkStream> openStream(const char resource[]) const override {
const auto resPath = SkOSPath::Join(fDir.c_str(), resource);
return SkStream::MakeFromFile(resPath.c_str());
}
private:
const SkString fDir;
};
const auto jsonStream = SkStream::MakeFromFile(path);
if (!jsonStream)
return nullptr;
std::unique_ptr<ResourceProvider> defaultProvider;
if (!res) {
defaultProvider = skstd::make_unique<DirectoryResourceProvider>(SkOSPath::Dirname(path));
}
return Make(jsonStream.get(), res ? *res : *defaultProvider);
}
Animation::Animation(const ResourceProvider& resources,
SkString version, const SkSize& size, SkScalar fps, const Json::Value& json)
: fVersion(std::move(version))
, fSize(size)
, fFrameRate(fps)
, fInPoint(ParseScalar(json["ip"], 0))
, fOutPoint(SkTMax(ParseScalar(json["op"], SK_ScalarMax), fInPoint)) {
AssetMap assets;
for (const auto& asset : json["assets"]) {
if (!asset.isObject()) {
continue;
}
assets.set(ParseString(asset["id"], ""), &asset);
}
sksg::Scene::AnimatorList animators;
AttachContext ctx = { resources, assets, animators };
auto root = AttachComposition(json, &ctx);
LOG("** Attached %d animators\n", animators.size());
fScene = sksg::Scene::Make(std::move(root), std::move(animators));
// In case the client calls render before the first tick.
this->animationTick(0);
}
Animation::~Animation() = default;
void Animation::setShowInval(bool show) {
if (fScene) {
fScene->setShowInval(show);
}
}
void Animation::render(SkCanvas* canvas, const SkRect* dstR) const {
if (!fScene)
return;
SkAutoCanvasRestore restore(canvas, true);
const SkRect srcR = SkRect::MakeSize(this->size());
if (dstR) {
canvas->concat(SkMatrix::MakeRectToRect(srcR, *dstR, SkMatrix::kCenter_ScaleToFit));
}
canvas->clipRect(srcR);
fScene->render(canvas);
}
void Animation::animationTick(SkMSec ms) {
if (!fScene)
return;
// 't' in the BM model really means 'frame #'
auto t = static_cast<float>(ms) * fFrameRate / 1000;
t = fInPoint + std::fmod(t, fOutPoint - fInPoint);
fScene->animate(t);
}
} // namespace skottie