skia2/tests/PathOpsTestCommon.cpp
caryclark 54359294a7 cumulative pathops patch
Replace the implicit curve intersection with a geometric curve intersection. The implicit intersection proved mathematically unstable and took a long time to zero in on an answer.

Use pointers instead of indices to refer to parts of curves. Indices required awkward renumbering.

Unify t and point values so that small intervals can be eliminated in one pass.

Break cubics up front to eliminate loops and cusps.

Make the Simplify and Op code more regular and eliminate arbitrary differences.

Add a builder that takes an array of paths and operators.

Delete unused code.

BUG=skia:3588
R=reed@google.com

Review URL: https://codereview.chromium.org/1037573004
2015-03-26 07:52:43 -07:00

307 lines
9.4 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsTestCommon.h"
#include "SkPathOpsBounds.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkReduceOrder.h"
#include "SkTSort.h"
static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
const double adjust = sqrt(3.) / 36;
SkDCubic sub;
const SkDCubic* cPtr;
if (start == 0) {
cPtr = &cubic;
} else {
// OPTIMIZE: special-case half-split ?
sub = cubic.subDivide(start, 1);
cPtr = ⊂
}
const SkDCubic& c = *cPtr;
double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
double dist = sqrt(dx * dx + dy * dy);
double tDiv3 = precision / (adjust * dist);
double t = SkDCubeRoot(tDiv3);
if (start > 0) {
t = start + (1 - start) * t;
}
return t;
}
static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
double tDiv = calc_t_div(cubic, precision, 0);
if (tDiv >= 1) {
return true;
}
if (tDiv >= 0.5) {
ts->push_back(0.5);
return true;
}
return false;
}
static void addTs(const SkDCubic& cubic, double precision, double start, double end,
SkTArray<double, true>* ts) {
double tDiv = calc_t_div(cubic, precision, 0);
double parts = ceil(1.0 / tDiv);
for (double index = 0; index < parts; ++index) {
double newT = start + (index / parts) * (end - start);
if (newT > 0 && newT < 1) {
ts->push_back(newT);
}
}
}
static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<double, true>* ts) {
SkReduceOrder reducer;
int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics);
if (order < 3) {
return;
}
double inflectT[5];
int inflections = cubic->findInflections(inflectT);
SkASSERT(inflections <= 2);
if (!cubic->endsAreExtremaInXOrY()) {
inflections += cubic->findMaxCurvature(&inflectT[inflections]);
SkASSERT(inflections <= 5);
}
SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
// OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
// own subroutine?
while (inflections && approximately_less_than_zero(inflectT[0])) {
memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
}
int start = 0;
int next = 1;
while (next < inflections) {
if (!approximately_equal(inflectT[start], inflectT[next])) {
++start;
++next;
continue;
}
memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
}
while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
--inflections;
}
SkDCubicPair pair;
if (inflections == 1) {
pair = cubic->chopAt(inflectT[0]);
int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
if (orderP1 < 2) {
--inflections;
} else {
int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
if (orderP2 < 2) {
--inflections;
}
}
}
if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) {
return;
}
if (inflections == 1) {
pair = cubic->chopAt(inflectT[0]);
addTs(pair.first(), precision, 0, inflectT[0], ts);
addTs(pair.second(), precision, inflectT[0], 1, ts);
return;
}
if (inflections > 1) {
SkDCubic part = cubic->subDivide(0, inflectT[0]);
addTs(part, precision, 0, inflectT[0], ts);
int last = inflections - 1;
for (int idx = 0; idx < last; ++idx) {
part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]);
addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
}
part = cubic->subDivide(inflectT[last], 1);
addTs(part, precision, inflectT[last], 1, ts);
return;
}
addTs(*cubic, precision, 0, 1, ts);
}
void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) {
SkTArray<double, true> ts;
toQuadraticTs(&cubic, precision, &ts);
if (ts.count() <= 0) {
SkDQuad quad = cubic.toQuad();
quads.push_back(quad);
return;
}
double tStart = 0;
for (int i1 = 0; i1 <= ts.count(); ++i1) {
const double tEnd = i1 < ts.count() ? ts[i1] : 1;
SkDCubic part = cubic.subDivide(tStart, tEnd);
SkDQuad quad = part.toQuad();
quads.push_back(quad);
tStart = tEnd;
}
}
void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) {
quadPath->reset();
SkDCubic cubic;
SkTArray<SkDQuad, true> quads;
SkPath::RawIter iter(cubicPath);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
quadPath->moveTo(pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
quadPath->lineTo(pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
quads.reset();
cubic.set(pts);
CubicToQuads(cubic, cubic.calcPrecision(), quads);
for (int index = 0; index < quads.count(); ++index) {
SkPoint qPts[2] = {
quads[index][1].asSkPoint(),
quads[index][2].asSkPoint()
};
quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY);
}
break;
case SkPath::kClose_Verb:
quadPath->close();
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) {
simplePath->reset();
SkDCubic cubic;
SkPath::RawIter iter(cubicPath);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
simplePath->moveTo(pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
simplePath->lineTo(pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb: {
cubic.set(pts);
double tInflects[2];
int inflections = cubic.findInflections(tInflects);
if (inflections > 1 && tInflects[0] > tInflects[1]) {
SkTSwap(tInflects[0], tInflects[1]);
}
double lo = 0;
for (int index = 0; index <= inflections; ++index) {
double hi = index < inflections ? tInflects[index] : 1;
SkDCubic part = cubic.subDivide(lo, hi);
SkPoint cPts[3];
cPts[0] = part[1].asSkPoint();
cPts[1] = part[2].asSkPoint();
cPts[2] = part[3].asSkPoint();
simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY,
cPts[2].fX, cPts[2].fY);
lo = hi;
}
break;
}
case SkPath::kClose_Verb:
simplePath->close();
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static bool SkDoubleIsNaN(double x) {
return x != x;
}
bool ValidBounds(const SkPathOpsBounds& bounds) {
if (SkScalarIsNaN(bounds.fLeft)) {
return false;
}
if (SkScalarIsNaN(bounds.fTop)) {
return false;
}
if (SkScalarIsNaN(bounds.fRight)) {
return false;
}
return !SkScalarIsNaN(bounds.fBottom);
}
bool ValidCubic(const SkDCubic& cubic) {
for (int index = 0; index < 4; ++index) {
if (!ValidPoint(cubic[index])) {
return false;
}
}
return true;
}
bool ValidLine(const SkDLine& line) {
for (int index = 0; index < 2; ++index) {
if (!ValidPoint(line[index])) {
return false;
}
}
return true;
}
bool ValidPoint(const SkDPoint& pt) {
if (SkDoubleIsNaN(pt.fX)) {
return false;
}
return !SkDoubleIsNaN(pt.fY);
}
bool ValidPoints(const SkPoint* pts, int count) {
for (int index = 0; index < count; ++index) {
if (SkScalarIsNaN(pts[index].fX)) {
return false;
}
if (SkScalarIsNaN(pts[index].fY)) {
return false;
}
}
return true;
}
bool ValidQuad(const SkDQuad& quad) {
for (int index = 0; index < 3; ++index) {
if (!ValidPoint(quad[index])) {
return false;
}
}
return true;
}
bool ValidVector(const SkDVector& v) {
if (SkDoubleIsNaN(v.fX)) {
return false;
}
return !SkDoubleIsNaN(v.fY);
}