skia2/tests/PathCoverageTest.cpp
Brian Osman 7f36405ea3 Remove SkMin32/SkMax32
Use std::max and std::min instead

Change-Id: I7fd2626ea9ea8ea09c709ff962523ca3de2f8a16
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269136
Reviewed-by: Mike Klein <mtklein@google.com>
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
2020-02-06 17:31:51 +00:00

164 lines
5.2 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkScalar.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkPointPriv.h"
#include "tests/Test.h"
/*
Duplicates lots of code from gpu/src/GrPathUtils.cpp
It'd be nice not to do so, but that code's set up currently to only have
a single implementation.
*/
// Sk uses 6, Gr (implicitly) used 10, both apparently arbitrarily.
#define MAX_COEFF_SHIFT 6
static const uint32_t MAX_POINTS_PER_CURVE = 1 << MAX_COEFF_SHIFT;
// max + 0.5 min has error [0.0, 0.12]
// max + 0.375 min has error [-.03, 0.07]
// 0.96043387 max + 0.397824735 min has error [-.06, +.05]
// For determining the maximum possible number of points to use in
// drawing a quadratic, we want to err on the high side.
static inline int cheap_distance(SkScalar dx, SkScalar dy) {
int idx = SkAbs32(SkScalarRoundToInt(dx));
int idy = SkAbs32(SkScalarRoundToInt(dy));
if (idx > idy) {
idx += idy >> 1;
} else {
idx = idy + (idx >> 1);
}
return idx;
}
static inline int estimate_distance(const SkPoint points[]) {
return cheap_distance(points[1].fX * 2 - points[2].fX - points[0].fX,
points[1].fY * 2 - points[2].fY - points[0].fY);
}
static inline SkScalar compute_distance(const SkPoint points[]) {
return SkPointPriv::DistanceToLineSegmentBetween(points[1], points[0], points[2]);
}
static inline uint32_t estimate_pointCount(int distance) {
// Includes -2 bias because this estimator runs 4x high?
int shift = 30 - SkCLZ(distance);
// Clamp to zero if above subtraction went negative.
shift &= ~(shift>>31);
if (shift > MAX_COEFF_SHIFT) {
shift = MAX_COEFF_SHIFT;
}
return 1 << shift;
}
static inline uint32_t compute_pointCount(SkScalar d, SkScalar tol) {
if (d < tol) {
return 1;
} else {
int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
uint32_t count = std::min<uint32_t>(SkNextPow2(temp), MAX_POINTS_PER_CURVE);
return count;
}
}
static uint32_t quadraticPointCount_EE(const SkPoint points[]) {
int distance = estimate_distance(points);
return estimate_pointCount(distance);
}
static uint32_t quadraticPointCount_EC(const SkPoint points[], SkScalar tol) {
int distance = estimate_distance(points);
return compute_pointCount(SkIntToScalar(distance), tol);
}
static uint32_t quadraticPointCount_CE(const SkPoint points[]) {
SkScalar distance = compute_distance(points);
return estimate_pointCount(SkScalarRoundToInt(distance));
}
static uint32_t quadraticPointCount_CC(const SkPoint points[], SkScalar tol) {
SkScalar distance = compute_distance(points);
return compute_pointCount(distance, tol);
}
// Curve from samplecode/SampleSlides.cpp
static const int gXY[] = {
4, 0, 0, -4, 8, -4, 12, 0, 8, 4, 0, 4
};
static const int gSawtooth[] = {
0, 0, 10, 10, 20, 20, 30, 10, 40, 0, 50, -10, 60, -20, 70, -10, 80, 0
};
static const int gOvalish[] = {
0, 0, 5, 15, 20, 20, 35, 15, 40, 0
};
static const int gSharpSawtooth[] = {
0, 0, 1, 10, 2, 0, 3, -10, 4, 0
};
// Curve crosses back over itself around 0,10
static const int gRibbon[] = {
-4, 0, 4, 20, 0, 25, -4, 20, 4, 0
};
static bool one_d_pe(const int* array, const unsigned int count,
skiatest::Reporter* reporter) {
SkPoint path [3];
path[1] = SkPoint::Make(SkIntToScalar(array[0]), SkIntToScalar(array[1]));
path[2] = SkPoint::Make(SkIntToScalar(array[2]), SkIntToScalar(array[3]));
int numErrors = 0;
for (unsigned i = 4; i < count; i += 2) {
path[0] = path[1];
path[1] = path[2];
path[2] = SkPoint::Make(SkIntToScalar(array[i]),
SkIntToScalar(array[i+1]));
uint32_t computedCount =
quadraticPointCount_CC(path, SkIntToScalar(1));
uint32_t estimatedCount =
quadraticPointCount_EE(path);
if (false) { // avoid bit rot, suppress warning
computedCount =
quadraticPointCount_EC(path, SkIntToScalar(1));
estimatedCount =
quadraticPointCount_CE(path);
}
// Allow estimated to be high by a factor of two, but no less than
// the computed value.
bool isAccurate = (estimatedCount >= computedCount) &&
(estimatedCount <= 2 * computedCount);
if (!isAccurate) {
ERRORF(reporter, "Curve from %.2f %.2f through %.2f %.2f to "
"%.2f %.2f computes %d, estimates %d\n",
path[0].fX, path[0].fY, path[1].fX, path[1].fY,
path[2].fX, path[2].fY, computedCount, estimatedCount);
numErrors++;
}
}
return (numErrors == 0);
}
static void TestQuadPointCount(skiatest::Reporter* reporter) {
one_d_pe(gXY, SK_ARRAY_COUNT(gXY), reporter);
one_d_pe(gSawtooth, SK_ARRAY_COUNT(gSawtooth), reporter);
one_d_pe(gOvalish, SK_ARRAY_COUNT(gOvalish), reporter);
one_d_pe(gSharpSawtooth, SK_ARRAY_COUNT(gSharpSawtooth), reporter);
one_d_pe(gRibbon, SK_ARRAY_COUNT(gRibbon), reporter);
}
DEF_TEST(PathCoverage, reporter) {
TestQuadPointCount(reporter);
}