2e3b3e369d
In addition, NVPR makes this very complicated, and I haven't quite figured out a good way to handle it, so for now color and coverage DO live on optstate, but I will figure out some way to refactor that in future CLs. BUG=skia: Review URL: https://codereview.chromium.org/783763002
534 lines
19 KiB
C++
534 lines
19 KiB
C++
|
|
/*
|
|
* Copyright 2013 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
// This test only works with the GPU backend.
|
|
|
|
#include "gm.h"
|
|
|
|
#if SK_SUPPORT_GPU
|
|
|
|
#include "GrContext.h"
|
|
#include "GrPathUtils.h"
|
|
#include "GrTest.h"
|
|
#include "SkColorPriv.h"
|
|
#include "SkDevice.h"
|
|
#include "SkGeometry.h"
|
|
|
|
#include "effects/GrBezierEffect.h"
|
|
|
|
static inline SkScalar eval_line(const SkPoint& p, const SkScalar lineEq[3], SkScalar sign) {
|
|
return sign * (lineEq[0] * p.fX + lineEq[1] * p.fY + lineEq[2]);
|
|
}
|
|
|
|
namespace skiagm {
|
|
/**
|
|
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
|
|
*/
|
|
class BezierCubicEffects : public GM {
|
|
public:
|
|
BezierCubicEffects() {
|
|
this->setBGColor(0xFFFFFFFF);
|
|
}
|
|
|
|
protected:
|
|
virtual SkString onShortName() SK_OVERRIDE {
|
|
return SkString("bezier_cubic_effects");
|
|
}
|
|
|
|
virtual SkISize onISize() SK_OVERRIDE {
|
|
return SkISize::Make(800, 800);
|
|
}
|
|
|
|
virtual uint32_t onGetFlags() const SK_OVERRIDE {
|
|
// This is a GPU-specific GM.
|
|
return kGPUOnly_Flag;
|
|
}
|
|
|
|
|
|
virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
|
|
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
|
|
if (NULL == rt) {
|
|
return;
|
|
}
|
|
GrContext* context = rt->getContext();
|
|
if (NULL == context) {
|
|
return;
|
|
}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
static const int kNumCubics = 15;
|
|
SkRandom rand;
|
|
|
|
// Mult by 3 for each edge effect type
|
|
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3)));
|
|
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols);
|
|
SkScalar w = SkIntToScalar(rt->width()) / numCols;
|
|
SkScalar h = SkIntToScalar(rt->height()) / numRows;
|
|
int row = 0;
|
|
int col = 0;
|
|
|
|
for (int i = 0; i < kNumCubics; ++i) {
|
|
SkPoint baseControlPts[] = {
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
|
|
};
|
|
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
|
|
SkAutoTUnref<GrGeometryProcessor> gp;
|
|
{ // scope to contain GrTestTarget
|
|
GrTestTarget tt;
|
|
context->getTestTarget(&tt);
|
|
if (NULL == tt.target()) {
|
|
continue;
|
|
}
|
|
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
|
|
gp.reset(GrCubicEffect::Create(0xff000000, et, *tt.target()->caps()));
|
|
if (!gp) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
SkScalar x = SkScalarMul(col, w);
|
|
SkScalar y = SkScalarMul(row, h);
|
|
SkPoint controlPts[] = {
|
|
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
|
|
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
|
|
{x + baseControlPts[2].fX, y + baseControlPts[2].fY},
|
|
{x + baseControlPts[3].fX, y + baseControlPts[3].fY}
|
|
};
|
|
SkPoint chopped[10];
|
|
SkScalar klmEqs[9];
|
|
SkScalar klmSigns[3];
|
|
int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts,
|
|
chopped,
|
|
klmEqs,
|
|
klmSigns);
|
|
|
|
SkPaint ctrlPtPaint;
|
|
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
|
|
for (int i = 0; i < 4; ++i) {
|
|
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
|
|
}
|
|
|
|
SkPaint polyPaint;
|
|
polyPaint.setColor(0xffA0A0A0);
|
|
polyPaint.setStrokeWidth(0);
|
|
polyPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint);
|
|
|
|
SkPaint choppedPtPaint;
|
|
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
|
|
|
|
for (int c = 0; c < cnt; ++c) {
|
|
SkPoint* pts = chopped + 3 * c;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
|
|
}
|
|
|
|
SkRect bounds;
|
|
bounds.set(pts, 4);
|
|
|
|
SkPaint boundsPaint;
|
|
boundsPaint.setColor(0xff808080);
|
|
boundsPaint.setStrokeWidth(0);
|
|
boundsPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawRect(bounds, boundsPaint);
|
|
|
|
GrTestTarget tt;
|
|
context->getTestTarget(&tt);
|
|
SkASSERT(tt.target());
|
|
|
|
GrDrawState ds;
|
|
|
|
GrDrawTarget::AutoReleaseGeometry geo(tt.target(), 4, gp->getVertexStride(), 0);
|
|
SkASSERT(gp->getVertexStride() == sizeof(Vertex));
|
|
Vertex* verts = reinterpret_cast<Vertex*>(geo.vertices());
|
|
|
|
verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
|
|
bounds.fRight, bounds.fBottom,
|
|
sizeof(Vertex));
|
|
for (int v = 0; v < 4; ++v) {
|
|
verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, klmSigns[c]);
|
|
verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, klmSigns[c]);
|
|
verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f);
|
|
}
|
|
|
|
ds.setGeometryProcessor(gp);
|
|
ds.setRenderTarget(rt);
|
|
|
|
tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
|
|
tt.target()->drawIndexed(&ds, kTriangleFan_GrPrimitiveType, 0, 0, 4, 6);
|
|
}
|
|
++col;
|
|
if (numCols == col) {
|
|
col = 0;
|
|
++row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
typedef GM INHERITED;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
|
|
*/
|
|
class BezierConicEffects : public GM {
|
|
public:
|
|
BezierConicEffects() {
|
|
this->setBGColor(0xFFFFFFFF);
|
|
}
|
|
|
|
protected:
|
|
virtual SkString onShortName() SK_OVERRIDE {
|
|
return SkString("bezier_conic_effects");
|
|
}
|
|
|
|
virtual SkISize onISize() SK_OVERRIDE {
|
|
return SkISize::Make(800, 800);
|
|
}
|
|
|
|
virtual uint32_t onGetFlags() const SK_OVERRIDE {
|
|
// This is a GPU-specific GM.
|
|
return kGPUOnly_Flag;
|
|
}
|
|
|
|
|
|
virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
|
|
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
|
|
if (NULL == rt) {
|
|
return;
|
|
}
|
|
GrContext* context = rt->getContext();
|
|
if (NULL == context) {
|
|
return;
|
|
}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
static const int kNumConics = 10;
|
|
SkRandom rand;
|
|
|
|
// Mult by 3 for each edge effect type
|
|
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3)));
|
|
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols);
|
|
SkScalar w = SkIntToScalar(rt->width()) / numCols;
|
|
SkScalar h = SkIntToScalar(rt->height()) / numRows;
|
|
int row = 0;
|
|
int col = 0;
|
|
|
|
for (int i = 0; i < kNumConics; ++i) {
|
|
SkPoint baseControlPts[] = {
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
|
|
};
|
|
SkScalar weight = rand.nextRangeF(0.f, 2.f);
|
|
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
|
|
SkAutoTUnref<GrGeometryProcessor> gp;
|
|
{ // scope to contain GrTestTarget
|
|
GrTestTarget tt;
|
|
context->getTestTarget(&tt);
|
|
if (NULL == tt.target()) {
|
|
continue;
|
|
}
|
|
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
|
|
gp.reset(GrConicEffect::Create(0xff000000, et, *tt.target()->caps()));
|
|
if (!gp) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
SkScalar x = SkScalarMul(col, w);
|
|
SkScalar y = SkScalarMul(row, h);
|
|
SkPoint controlPts[] = {
|
|
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
|
|
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
|
|
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
|
|
};
|
|
SkConic dst[4];
|
|
SkScalar klmEqs[9];
|
|
int cnt = chop_conic(controlPts, dst, weight);
|
|
GrPathUtils::getConicKLM(controlPts, weight, klmEqs);
|
|
|
|
SkPaint ctrlPtPaint;
|
|
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
|
|
}
|
|
|
|
SkPaint polyPaint;
|
|
polyPaint.setColor(0xffA0A0A0);
|
|
polyPaint.setStrokeWidth(0);
|
|
polyPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
|
|
|
|
SkPaint choppedPtPaint;
|
|
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
|
|
|
|
for (int c = 0; c < cnt; ++c) {
|
|
SkPoint* pts = dst[c].fPts;
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
|
|
}
|
|
|
|
SkRect bounds;
|
|
//SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}};
|
|
//bounds.set(bPts, 2);
|
|
bounds.set(pts, 3);
|
|
|
|
SkPaint boundsPaint;
|
|
boundsPaint.setColor(0xff808080);
|
|
boundsPaint.setStrokeWidth(0);
|
|
boundsPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawRect(bounds, boundsPaint);
|
|
|
|
GrTestTarget tt;
|
|
context->getTestTarget(&tt);
|
|
SkASSERT(tt.target());
|
|
|
|
GrDrawState ds;
|
|
|
|
GrDrawTarget::AutoReleaseGeometry geo(tt.target(), 4, gp->getVertexStride(), 0);
|
|
SkASSERT(gp->getVertexStride() == sizeof(Vertex));
|
|
Vertex* verts = reinterpret_cast<Vertex*>(geo.vertices());
|
|
|
|
verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
|
|
bounds.fRight, bounds.fBottom,
|
|
sizeof(Vertex));
|
|
for (int v = 0; v < 4; ++v) {
|
|
verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, 1.f);
|
|
verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, 1.f);
|
|
verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f);
|
|
}
|
|
|
|
ds.setGeometryProcessor(gp);
|
|
ds.setRenderTarget(rt);
|
|
|
|
tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
|
|
tt.target()->drawIndexed(&ds, kTriangleFan_GrPrimitiveType, 0, 0, 4, 6);
|
|
}
|
|
++col;
|
|
if (numCols == col) {
|
|
col = 0;
|
|
++row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Uses the max curvature function for quads to estimate
|
|
// where to chop the conic. If the max curvature is not
|
|
// found along the curve segment it will return 1 and
|
|
// dst[0] is the original conic. If it returns 2 the dst[0]
|
|
// and dst[1] are the two new conics.
|
|
int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
|
|
SkScalar t = SkFindQuadMaxCurvature(src);
|
|
if (t == 0) {
|
|
if (dst) {
|
|
dst[0].set(src, weight);
|
|
}
|
|
return 1;
|
|
} else {
|
|
if (dst) {
|
|
SkConic conic;
|
|
conic.set(src, weight);
|
|
conic.chopAt(t, dst);
|
|
}
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
// Calls split_conic on the entire conic and then once more on each subsection.
|
|
// Most cases will result in either 1 conic (chop point is not within t range)
|
|
// or 3 points (split once and then one subsection is split again).
|
|
int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
|
|
SkConic dstTemp[2];
|
|
int conicCnt = split_conic(src, dstTemp, weight);
|
|
if (2 == conicCnt) {
|
|
int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
|
|
conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
|
|
} else {
|
|
dst[0] = dstTemp[0];
|
|
}
|
|
return conicCnt;
|
|
}
|
|
|
|
typedef GM INHERITED;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/**
|
|
* This GM directly exercises effects that draw Bezier quad curves in the GPU backend.
|
|
*/
|
|
class BezierQuadEffects : public GM {
|
|
public:
|
|
BezierQuadEffects() {
|
|
this->setBGColor(0xFFFFFFFF);
|
|
}
|
|
|
|
protected:
|
|
virtual SkString onShortName() SK_OVERRIDE {
|
|
return SkString("bezier_quad_effects");
|
|
}
|
|
|
|
virtual SkISize onISize() SK_OVERRIDE {
|
|
return SkISize::Make(800, 800);
|
|
}
|
|
|
|
virtual uint32_t onGetFlags() const SK_OVERRIDE {
|
|
// This is a GPU-specific GM.
|
|
return kGPUOnly_Flag;
|
|
}
|
|
|
|
|
|
virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
|
|
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
|
|
if (NULL == rt) {
|
|
return;
|
|
}
|
|
GrContext* context = rt->getContext();
|
|
if (NULL == context) {
|
|
return;
|
|
}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fUV[4]; // The last two values are ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
static const int kNumQuads = 5;
|
|
SkRandom rand;
|
|
|
|
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3)));
|
|
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols);
|
|
SkScalar w = SkIntToScalar(rt->width()) / numCols;
|
|
SkScalar h = SkIntToScalar(rt->height()) / numRows;
|
|
int row = 0;
|
|
int col = 0;
|
|
|
|
for (int i = 0; i < kNumQuads; ++i) {
|
|
SkPoint baseControlPts[] = {
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
|
|
};
|
|
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
|
|
SkAutoTUnref<GrGeometryProcessor> gp;
|
|
{ // scope to contain GrTestTarget
|
|
GrTestTarget tt;
|
|
context->getTestTarget(&tt);
|
|
if (NULL == tt.target()) {
|
|
continue;
|
|
}
|
|
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
|
|
gp.reset(GrQuadEffect::Create(0xff000000, et, *tt.target()->caps()));
|
|
if (!gp) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
SkScalar x = SkScalarMul(col, w);
|
|
SkScalar y = SkScalarMul(row, h);
|
|
SkPoint controlPts[] = {
|
|
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
|
|
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
|
|
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
|
|
};
|
|
SkPoint chopped[5];
|
|
int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped);
|
|
|
|
SkPaint ctrlPtPaint;
|
|
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
|
|
}
|
|
|
|
SkPaint polyPaint;
|
|
polyPaint.setColor(0xffA0A0A0);
|
|
polyPaint.setStrokeWidth(0);
|
|
polyPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
|
|
|
|
SkPaint choppedPtPaint;
|
|
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
|
|
|
|
for (int c = 0; c < cnt; ++c) {
|
|
SkPoint* pts = chopped + 2 * c;
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
|
|
}
|
|
|
|
SkRect bounds;
|
|
bounds.set(pts, 3);
|
|
|
|
SkPaint boundsPaint;
|
|
boundsPaint.setColor(0xff808080);
|
|
boundsPaint.setStrokeWidth(0);
|
|
boundsPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawRect(bounds, boundsPaint);
|
|
|
|
GrTestTarget tt;
|
|
context->getTestTarget(&tt);
|
|
SkASSERT(tt.target());
|
|
|
|
GrDrawState ds;
|
|
|
|
GrDrawTarget::AutoReleaseGeometry geo(tt.target(), 4, gp->getVertexStride(), 0);
|
|
SkASSERT(gp->getVertexStride() == sizeof(Vertex));
|
|
Vertex* verts = reinterpret_cast<Vertex*>(geo.vertices());
|
|
|
|
verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
|
|
bounds.fRight, bounds.fBottom,
|
|
sizeof(Vertex));
|
|
|
|
GrPathUtils::QuadUVMatrix DevToUV(pts);
|
|
DevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts);
|
|
|
|
ds.setGeometryProcessor(gp);
|
|
ds.setRenderTarget(rt);
|
|
|
|
tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
|
|
tt.target()->drawIndexed(&ds, kTriangles_GrPrimitiveType, 0, 0, 4, 6);
|
|
}
|
|
++col;
|
|
if (numCols == col) {
|
|
col = 0;
|
|
++row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
typedef GM INHERITED;
|
|
};
|
|
|
|
DEF_GM( return SkNEW(BezierCubicEffects); )
|
|
DEF_GM( return SkNEW(BezierConicEffects); )
|
|
DEF_GM( return SkNEW(BezierQuadEffects); )
|
|
|
|
}
|
|
|
|
#endif
|