cc8a76f3c7
Note to the reviewer: Look at tests/util.js first and then look at the others. Gerrit lets you ignore whitespace changes, which I would recommend for this. This emulates tests on the C++ side and dramatically reduces boilerplate on the test code. This also uses the beforeEach(async () => {}) trick to save a lot of promise resolutions before each tests. I try to clean up the style a bit as I go, seriously thinking about adding eslint for at least the tests. Change-Id: Iced4abb57f66572035ab5d1a54b374055e8aaa58 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/281439 Reviewed-by: Joe Gregorio <jcgregorio@google.com>
189 lines
4.6 KiB
JavaScript
189 lines
4.6 KiB
JavaScript
describe('CanvasKit\'s Matrix Helpers', () => {
|
|
|
|
beforeEach(async () => {
|
|
await LoadCanvasKit;
|
|
});
|
|
|
|
const expectArrayCloseTo = (a, b) => {
|
|
expect(a.length).toEqual(b.length);
|
|
for (let i=0; i<a.length; i++) {
|
|
expect(a[i]).toBeCloseTo(b[i], 14); // 14 digits of precision in base 10
|
|
}
|
|
};
|
|
|
|
describe('3x3 matrices', () => {
|
|
|
|
it('can make a translated 3x3 matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkMatrix.translated(5, -1),
|
|
[1, 0, 5,
|
|
0, 1, -1,
|
|
0, 0, 1]);
|
|
});
|
|
|
|
it('can make a scaled 3x3 matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkMatrix.scaled(2, 3),
|
|
[2, 0, 0,
|
|
0, 3, 0,
|
|
0, 0, 1]);
|
|
});
|
|
|
|
it('can make a rotated 3x3 matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkMatrix.rotated(Math.PI, 9, 9),
|
|
[-1, 0, 18,
|
|
0, -1, 18,
|
|
0, 0, 1]);
|
|
});
|
|
|
|
it('can make a skewed 3x3 matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkMatrix.skewed(4, 3, 2, 1),
|
|
[1, 4, -8,
|
|
3, 1, -3,
|
|
0, 0, 1]);
|
|
});
|
|
|
|
it('can multiply 3x3 matrices', () => {
|
|
const a = [
|
|
0.1, 0.2, 0.3,
|
|
0.0, 0.6, 0.7,
|
|
0.9, -0.9, -0.8,
|
|
];
|
|
const b = [
|
|
2.0, 3.0, 4.0,
|
|
-3.0, -4.0, -5.0,
|
|
7.0, 8.0, 9.0,
|
|
];
|
|
const expected = [
|
|
1.7, 1.9, 2.1,
|
|
3.1, 3.2, 3.3,
|
|
-1.1, -0.1, 0.9,
|
|
];
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkMatrix.multiply(a, b),
|
|
expected);
|
|
});
|
|
|
|
it('satisfies the inverse rule for 3x3 matrics', () => {
|
|
// a matrix times its inverse is the identity matrix.
|
|
const a = [
|
|
0.1, 0.2, 0.3,
|
|
0.0, 0.6, 0.7,
|
|
0.9, -0.9, -0.8,
|
|
];
|
|
const b = CanvasKit.SkMatrix.invert(a);
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkMatrix.multiply(a, b),
|
|
CanvasKit.SkMatrix.identity());
|
|
});
|
|
|
|
it('maps 2D points correctly with a 3x3 matrix', () => {
|
|
const a = [
|
|
3, 0, -4,
|
|
0, 2, 4,
|
|
0, 0, 1,
|
|
];
|
|
const points = [
|
|
0, 0,
|
|
1, 1,
|
|
];
|
|
const expected = [
|
|
-4, 4,
|
|
-1, 6,
|
|
];
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkMatrix.mapPoints(a, points),
|
|
expected);
|
|
});
|
|
|
|
}); // describe 3x3
|
|
describe('4x4 matrices', () => {
|
|
|
|
it('can make a translated 4x4 matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkM44.translated([5, 6, 7]),
|
|
[1, 0, 0, 5,
|
|
0, 1, 0, 6,
|
|
0, 0, 1, 7,
|
|
0, 0, 0, 1]);
|
|
});
|
|
|
|
it('can make a scaled 4x4 matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkM44.scaled([5, 6, 7]),
|
|
[5, 0, 0, 0,
|
|
0, 6, 0, 0,
|
|
0, 0, 7, 0,
|
|
0, 0, 0, 1]);
|
|
});
|
|
|
|
it('can make a rotated 4x4 matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkM44.rotated([1,1,1], Math.PI),
|
|
[-1/3, 2/3, 2/3, 0,
|
|
2/3, -1/3, 2/3, 0,
|
|
2/3, 2/3, -1/3, 0,
|
|
0, 0, 0, 1]);
|
|
});
|
|
|
|
it('can make a 4x4 matrix looking from eye to center', () => {
|
|
eye = [1, 0, 0];
|
|
center = [1, 0, 1];
|
|
up = [0, 1, 0]
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkM44.lookat(eye, center, up),
|
|
[-1, 0, 0, 1,
|
|
0, 1, 0, 0,
|
|
0, 0, -1, 0,
|
|
0, 0, 0, 1]);
|
|
});
|
|
|
|
it('can make a 4x4 prespective matrix', () => {
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkM44.perspective(2, 10, Math.PI/2),
|
|
[1, 0, 0, 0,
|
|
0, 1, 0, 0,
|
|
0, 0, 1.5, 5,
|
|
0, 0, -1, 1]);
|
|
});
|
|
|
|
it('can multiply 4x4 matrices', () => {
|
|
const a = [
|
|
0.1, 0.2, 0.3, 0.4,
|
|
0.0, 0.6, 0.7, 0.8,
|
|
0.9, -0.9, -0.8, -0.7,
|
|
-0.6, -0.5, -0.4, -0.3,
|
|
];
|
|
const b = [
|
|
2.0, 3.0, 4.0, 5.0,
|
|
-3.0, -4.0, -5.0, -6.0,
|
|
7.0, 8.0, 9.0, 10.0,
|
|
-4.0, -3.0, -2.0, -1.0,
|
|
];
|
|
const expected = [
|
|
0.1, 0.7, 1.3, 1.9,
|
|
-0.1, 0.8, 1.7, 2.6,
|
|
1.7, 2.0, 2.3, 2.6,
|
|
-1.3, -2.1, -2.9, -3.7,
|
|
];
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkM44.multiply(a, b),
|
|
expected);
|
|
});
|
|
|
|
it('satisfies the identity rule for 4x4 matrices', () => {
|
|
const a = [
|
|
0.1, 0.2, 0.3, 0.4,
|
|
0.0, 0.6, 0.7, 0.8,
|
|
0.9, 0.9, -0.8, -0.7,
|
|
-0.6, -0.5, -0.4, -0.3,
|
|
];
|
|
const b = CanvasKit.SkM44.invert(a)
|
|
expectArrayCloseTo(
|
|
CanvasKit.SkM44.multiply(a, b),
|
|
CanvasKit.SkM44.identity());
|
|
});
|
|
}); // describe 4x4
|
|
}); |