531237ef3a
The vertices which are produced by stage 5 of the tesselator are copied into the Polys and MonotonePolys it produces. This is necessary because each vertex may have an arbitrary valence, since it may participate in an arbitrary number of Polys, so we can't use the vertex's prev/next pointers to represent all the Monotones of which this vertex may be a member. However, each Edge can only be a member of two Polys (one on each side of the edge). So by adding two prev/next pointer pairs to each Edge, we can represent each Monotone as a list of edges instead. Then we no longer need to copy the vertices. One wrinkle is that the ear-clipping stage (6) of the tessellator does require prev/next pointers, in order to remove vertices as their ears are clipped. So we convert the edge list into a vertex list during Monotone::emit(), using the prev/next pointers temporarily for that monotone. This change improves performance by 7-20% on a non-caching version of the tessellator, and reduces memory use. Other notes: 1) Polys are initially constructed empty (no edges), but with the top vertex, which is needed for splitting Polys. Edges are added to Polys only after their bottom vertex is seen. 2) MonotonePolys are always constructed with one edge, so we always know their handedness (left/right). MonotonePoly::addEdge() no longer detects when a monotone is "done" (edge of opposite handedness); this is handled by Poly::addEdge(), so MonotonePoly::addEdge() has no return value. GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2029243002 Review-Url: https://codereview.chromium.org/2029243002
413 lines
13 KiB
C++
413 lines
13 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "gm.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkPath.h"
|
|
|
|
#define WIDTH 400
|
|
#define HEIGHT 600
|
|
|
|
namespace {
|
|
// Concave test
|
|
void test_concave(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->translate(0, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(30), SkIntToScalar(30));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
}
|
|
|
|
// Reverse concave test
|
|
void test_reverse_concave(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(30), SkIntToScalar(30));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Bowtie (intersection)
|
|
void test_bowtie(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// "fake" bowtie (concave, but no intersection)
|
|
void test_fake_bowtie(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 0);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(40));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(60));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Fish test (intersection/concave)
|
|
void test_fish(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 100);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(70), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(0), SkIntToScalar(50));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Collinear edges
|
|
void test_collinear_edges(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 100);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Square polygon with a square hole.
|
|
void test_hole(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 100);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.moveTo(SkIntToScalar(30), SkIntToScalar(30));
|
|
path.lineTo(SkIntToScalar(30), SkIntToScalar(70));
|
|
path.lineTo(SkIntToScalar(70), SkIntToScalar(70));
|
|
path.lineTo(SkIntToScalar(70), SkIntToScalar(30));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Star test (self-intersecting)
|
|
void test_star(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 100);
|
|
path.moveTo(30, 20);
|
|
path.lineTo(50, 80);
|
|
path.lineTo(70, 20);
|
|
path.lineTo(20, 57);
|
|
path.lineTo(80, 57);
|
|
path.close();
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Stairstep with repeated vert (intersection)
|
|
void test_stairstep(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 200);
|
|
path.moveTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
void test_stairstep2(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 200);
|
|
path.moveTo(20, 60);
|
|
path.lineTo(35, 80);
|
|
path.lineTo(50, 60);
|
|
path.lineTo(65, 80);
|
|
path.lineTo(80, 60);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Overlapping segments
|
|
void test_overlapping(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 200);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(30));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Two "island" triangles inside a containing rect.
|
|
// This exercises the partnering code in the tessellator.
|
|
void test_partners(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 200);
|
|
path.moveTo(20, 80);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(80, 20);
|
|
path.lineTo(20, 20);
|
|
path.moveTo(30, 30);
|
|
path.lineTo(45, 50);
|
|
path.lineTo(30, 70);
|
|
path.moveTo(70, 30);
|
|
path.lineTo(70, 70);
|
|
path.lineTo(55, 50);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 1 (point in the middle)
|
|
void test_monotone_1(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 300);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(50),
|
|
SkIntToScalar(80), SkIntToScalar(50));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(50),
|
|
SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 2 (point at the top)
|
|
void test_monotone_2(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 300);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(30));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(20),
|
|
SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 3 (point at the bottom)
|
|
void test_monotone_3(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 300);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(70));
|
|
path.quadTo(SkIntToScalar(20), SkIntToScalar(80),
|
|
SkIntToScalar(20), SkIntToScalar(20));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 4 (merging of two monotones)
|
|
void test_monotone_4(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 300);
|
|
path.moveTo(80, 25);
|
|
path.lineTo(50, 39);
|
|
path.lineTo(20, 25);
|
|
path.lineTo(40, 45);
|
|
path.lineTo(70, 50);
|
|
path.lineTo(80, 80);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Monotone test 5 (aborted merging of two monotones)
|
|
void test_monotone_5(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 400);
|
|
path.moveTo(50, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(50, 50);
|
|
path.lineTo(20, 80);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Degenerate intersection test
|
|
void test_degenerate(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 400);
|
|
path.moveTo(50, 20);
|
|
path.lineTo(70, 30);
|
|
path.lineTo(20, 50);
|
|
path.moveTo(50, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(50, 80);
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Two triangles with a coincident edge.
|
|
void test_coincident_edge(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 400);
|
|
|
|
path.moveTo(80, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(20, 80);
|
|
|
|
path.moveTo(20, 20);
|
|
path.lineTo(80, 80);
|
|
path.lineTo(20, 80);
|
|
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Bowtie with a coincident triangle (one triangle vertex coincident with the
|
|
// bowtie's intersection).
|
|
void test_bowtie_coincident_triangle(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 400);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.moveTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
// Coincident edges (big ones first, coincident vert on top).
|
|
void test_coincident_edges_1(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(0, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Coincident edges (small ones first, coincident vert on top).
|
|
void test_coincident_edges_2(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(100, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Coincident edges (small ones first, coincident vert on bottom).
|
|
void test_coincident_edges_3(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(200, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
// Coincident edges (big ones first, coincident vert on bottom).
|
|
void test_coincident_edges_4(SkCanvas* canvas, const SkPaint& paint) {
|
|
SkPath path;
|
|
canvas->save();
|
|
canvas->translate(300, 500);
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(20));
|
|
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
|
|
path.moveTo(SkIntToScalar(20), SkIntToScalar(80));
|
|
path.lineTo(SkIntToScalar(20), SkIntToScalar(50));
|
|
path.lineTo(SkIntToScalar(50), SkIntToScalar(50));
|
|
canvas->drawPath(path, paint);
|
|
canvas->restore();
|
|
}
|
|
|
|
};
|
|
|
|
class ConcavePathsGM : public skiagm::GM {
|
|
public:
|
|
ConcavePathsGM() {}
|
|
|
|
protected:
|
|
SkString onShortName() override {
|
|
return SkString("concavepaths");
|
|
}
|
|
|
|
SkISize onISize() override {
|
|
return SkISize::Make(WIDTH, HEIGHT);
|
|
}
|
|
|
|
void onDraw(SkCanvas* canvas) override {
|
|
SkPaint paint;
|
|
|
|
paint.setAntiAlias(true);
|
|
paint.setStyle(SkPaint::kFill_Style);
|
|
|
|
test_concave(canvas, paint);
|
|
test_reverse_concave(canvas, paint);
|
|
test_bowtie(canvas, paint);
|
|
test_fake_bowtie(canvas, paint);
|
|
test_fish(canvas, paint);
|
|
test_collinear_edges(canvas, paint);
|
|
test_hole(canvas, paint);
|
|
test_star(canvas, paint);
|
|
test_stairstep(canvas, paint);
|
|
test_stairstep2(canvas, paint);
|
|
test_overlapping(canvas, paint);
|
|
test_partners(canvas, paint);
|
|
test_monotone_1(canvas, paint);
|
|
test_monotone_2(canvas, paint);
|
|
test_monotone_3(canvas, paint);
|
|
test_monotone_4(canvas, paint);
|
|
test_monotone_5(canvas, paint);
|
|
test_degenerate(canvas, paint);
|
|
test_coincident_edge(canvas, paint);
|
|
test_bowtie_coincident_triangle(canvas, paint);
|
|
test_coincident_edges_1(canvas, paint);
|
|
test_coincident_edges_2(canvas, paint);
|
|
test_coincident_edges_3(canvas, paint);
|
|
test_coincident_edges_4(canvas, paint);
|
|
}
|
|
|
|
private:
|
|
typedef skiagm::GM INHERITED;
|
|
};
|
|
|
|
DEF_GM( return new ConcavePathsGM; )
|