88d90714fa
This reverts commit 8005bff7e6
.
Reason for revert: hwui, flutter, and headless blink in G3 all still using these.
Original change's description:
> hide picture virtuals (no public callers)
>
> This prepares the way for a clean impl of a "placeholder" picture that never unrolls
>
> Bug: skia:
> Change-Id: I3b5785c5c94432b54e9a7dc280b2a6e716592473
> Reviewed-on: https://skia-review.googlesource.com/100260
> Commit-Queue: Mike Reed <reed@google.com>
> Reviewed-by: Mike Klein <mtklein@chromium.org>
TBR=mtklein@chromium.org,mtklein@google.com,reed@google.com
Change-Id: I385789dd420588ea9a9390c8a44c6ecb96c7f358
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: skia:
Reviewed-on: https://skia-review.googlesource.com/100880
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
1413 lines
52 KiB
C++
1413 lines
52 KiB
C++
/*
|
|
* Copyright 2014 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
|
|
#include "nanobench.h"
|
|
|
|
#include "AndroidCodecBench.h"
|
|
#include "Benchmark.h"
|
|
#include "BitmapRegionDecoderBench.h"
|
|
#include "CodecBench.h"
|
|
#include "CodecBenchPriv.h"
|
|
#include "ColorCodecBench.h"
|
|
#include "CrashHandler.h"
|
|
#include "GMBench.h"
|
|
#include "ProcStats.h"
|
|
#include "RecordingBench.h"
|
|
#include "ResultsWriter.h"
|
|
#include "SKPAnimationBench.h"
|
|
#include "SKPBench.h"
|
|
#include "SkAndroidCodec.h"
|
|
#include "SkAutoMalloc.h"
|
|
#include "SkBBoxHierarchy.h"
|
|
#include "SkBitmapRegionDecoder.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkCodec.h"
|
|
#include "SkCommonFlags.h"
|
|
#include "SkCommonFlagsConfig.h"
|
|
#include "SkCommonFlagsGpu.h"
|
|
#include "SkData.h"
|
|
#include "SkDebugfTracer.h"
|
|
#include "SkEventTracingPriv.h"
|
|
#include "SkGraphics.h"
|
|
#include "SkLeanWindows.h"
|
|
#include "SkOSFile.h"
|
|
#include "SkOSPath.h"
|
|
#include "SkPictureRecorder.h"
|
|
#include "SkSVGDOM.h"
|
|
#include "SkScan.h"
|
|
#include "SkString.h"
|
|
#include "SkSurface.h"
|
|
#include "SkTaskGroup.h"
|
|
#include "SkTraceEvent.h"
|
|
#include "Stats.h"
|
|
#include "ios_utils.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <thread>
|
|
|
|
extern bool gSkForceRasterPipelineBlitter;
|
|
|
|
#ifndef SK_BUILD_FOR_WIN
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if SK_SUPPORT_GPU
|
|
#include "gl/GrGLDefines.h"
|
|
#include "GrCaps.h"
|
|
#include "GrContextFactory.h"
|
|
#include "gl/GrGLUtil.h"
|
|
#include "SkGr.h"
|
|
using sk_gpu_test::ContextInfo;
|
|
using sk_gpu_test::GrContextFactory;
|
|
using sk_gpu_test::TestContext;
|
|
GrContextOptions grContextOpts;
|
|
#endif
|
|
|
|
struct GrContextOptions;
|
|
|
|
static const int kAutoTuneLoops = 0;
|
|
|
|
#if !defined(__has_feature)
|
|
#define __has_feature(x) 0
|
|
#endif
|
|
|
|
static const int kDefaultLoops =
|
|
#if defined(SK_DEBUG) || __has_feature(address_sanitizer)
|
|
1;
|
|
#else
|
|
kAutoTuneLoops;
|
|
#endif
|
|
|
|
static SkString loops_help_txt() {
|
|
SkString help;
|
|
help.printf("Number of times to run each bench. Set this to %d to auto-"
|
|
"tune for each bench. Timings are only reported when auto-tuning.",
|
|
kAutoTuneLoops);
|
|
return help;
|
|
}
|
|
|
|
static SkString to_string(int n) {
|
|
SkString str;
|
|
str.appendS32(n);
|
|
return str;
|
|
}
|
|
|
|
DECLARE_bool(undefok);
|
|
|
|
DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str());
|
|
|
|
DEFINE_int32(samples, 10, "Number of samples to measure for each bench.");
|
|
DEFINE_int32(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples.");
|
|
DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead.");
|
|
DEFINE_double(overheadGoal, 0.0001,
|
|
"Loop until timer overhead is at most this fraction of our measurments.");
|
|
DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
|
|
DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag.");
|
|
|
|
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
|
|
DEFINE_int32(maxCalibrationAttempts, 3,
|
|
"Try up to this many times to guess loops for a bench, or skip the bench.");
|
|
DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this.");
|
|
DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
|
|
DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
|
|
DEFINE_string(zoom, "1.0,0", "Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom "
|
|
"function that ping-pongs between 1.0 and zoomMax.");
|
|
DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
|
|
DEFINE_bool(lite, false, "Use SkLiteRecorder in recording benchmarks?");
|
|
DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?");
|
|
DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?");
|
|
DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run.");
|
|
DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?");
|
|
DEFINE_bool(gpuStatsDump, false, "Dump GPU states after each benchmark to json");
|
|
DEFINE_bool(keepAlive, false, "Print a message every so often so that we don't time out");
|
|
DEFINE_bool(csv, false, "Print status in CSV format");
|
|
DEFINE_string(sourceType, "",
|
|
"Apply usual --match rules to source type: bench, gm, skp, image, etc.");
|
|
DEFINE_string(benchType, "",
|
|
"Apply usual --match rules to bench type: micro, recording, piping, playback, skcodec, etc.");
|
|
|
|
DEFINE_bool(forceRasterPipeline, false, "sets gSkForceRasterPipelineBlitter");
|
|
|
|
static double now_ms() { return SkTime::GetNSecs() * 1e-6; }
|
|
|
|
static SkString humanize(double ms) {
|
|
if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
|
|
return HumanizeMs(ms);
|
|
}
|
|
#define HUMANIZE(ms) humanize(ms).c_str()
|
|
|
|
bool Target::init(SkImageInfo info, Benchmark* bench) {
|
|
if (Benchmark::kRaster_Backend == config.backend) {
|
|
this->surface = SkSurface::MakeRaster(info);
|
|
if (!this->surface) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
bool Target::capturePixels(SkBitmap* bmp) {
|
|
SkCanvas* canvas = this->getCanvas();
|
|
if (!canvas) {
|
|
return false;
|
|
}
|
|
bmp->allocPixels(canvas->imageInfo());
|
|
if (!canvas->readPixels(*bmp, 0, 0)) {
|
|
SkDebugf("Can't read canvas pixels.\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if SK_SUPPORT_GPU
|
|
struct GPUTarget : public Target {
|
|
explicit GPUTarget(const Config& c) : Target(c) {}
|
|
ContextInfo contextInfo;
|
|
std::unique_ptr<GrContextFactory> factory;
|
|
|
|
void setup() override {
|
|
this->contextInfo.testContext()->makeCurrent();
|
|
// Make sure we're done with whatever came before.
|
|
this->contextInfo.testContext()->finish();
|
|
}
|
|
void endTiming() override {
|
|
if (this->contextInfo.testContext()) {
|
|
this->contextInfo.testContext()->waitOnSyncOrSwap();
|
|
}
|
|
}
|
|
void fence() override { this->contextInfo.testContext()->finish(); }
|
|
|
|
bool needsFrameTiming(int* maxFrameLag) const override {
|
|
if (!this->contextInfo.testContext()->getMaxGpuFrameLag(maxFrameLag)) {
|
|
// Frame lag is unknown.
|
|
*maxFrameLag = FLAGS_gpuFrameLag;
|
|
}
|
|
return true;
|
|
}
|
|
bool init(SkImageInfo info, Benchmark* bench) override {
|
|
GrContextOptions options = grContextOpts;
|
|
bench->modifyGrContextOptions(&options);
|
|
this->factory.reset(new GrContextFactory(options));
|
|
uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag :
|
|
0;
|
|
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
|
|
this->surface = SkSurface::MakeRenderTarget(
|
|
this->factory->get(this->config.ctxType, this->config.ctxOverrides),
|
|
SkBudgeted::kNo, info, this->config.samples, &props);
|
|
this->contextInfo =
|
|
this->factory->getContextInfo(this->config.ctxType, this->config.ctxOverrides);
|
|
if (!this->surface.get()) {
|
|
return false;
|
|
}
|
|
if (!this->contextInfo.testContext()->fenceSyncSupport()) {
|
|
SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. "
|
|
"Timings might not be accurate.\n", this->config.name.c_str());
|
|
}
|
|
return true;
|
|
}
|
|
void fillOptions(ResultsWriter* log) override {
|
|
const GrGLubyte* version;
|
|
if (this->contextInfo.backend() == kOpenGL_GrBackend) {
|
|
const GrGLInterface* gl = reinterpret_cast<const GrGLInterface*>(
|
|
this->contextInfo.testContext()->backendContext());
|
|
GR_GL_CALL_RET(gl, version, GetString(GR_GL_VERSION));
|
|
log->configOption("GL_VERSION", (const char*)(version));
|
|
|
|
GR_GL_CALL_RET(gl, version, GetString(GR_GL_RENDERER));
|
|
log->configOption("GL_RENDERER", (const char*) version);
|
|
|
|
GR_GL_CALL_RET(gl, version, GetString(GR_GL_VENDOR));
|
|
log->configOption("GL_VENDOR", (const char*) version);
|
|
|
|
GR_GL_CALL_RET(gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
|
|
log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version);
|
|
}
|
|
}
|
|
|
|
void dumpStats() override {
|
|
this->contextInfo.grContext()->printCacheStats();
|
|
this->contextInfo.grContext()->printGpuStats();
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
static double time(int loops, Benchmark* bench, Target* target) {
|
|
SkCanvas* canvas = target->getCanvas();
|
|
if (canvas) {
|
|
canvas->clear(SK_ColorWHITE);
|
|
}
|
|
bench->preDraw(canvas);
|
|
double start = now_ms();
|
|
canvas = target->beginTiming(canvas);
|
|
bench->draw(loops, canvas);
|
|
if (canvas) {
|
|
canvas->flush();
|
|
}
|
|
target->endTiming();
|
|
double elapsed = now_ms() - start;
|
|
bench->postDraw(canvas);
|
|
return elapsed;
|
|
}
|
|
|
|
static double estimate_timer_overhead() {
|
|
double overhead = 0;
|
|
for (int i = 0; i < FLAGS_overheadLoops; i++) {
|
|
double start = now_ms();
|
|
overhead += now_ms() - start;
|
|
}
|
|
return overhead / FLAGS_overheadLoops;
|
|
}
|
|
|
|
static int detect_forever_loops(int loops) {
|
|
// look for a magic run-forever value
|
|
if (loops < 0) {
|
|
loops = SK_MaxS32;
|
|
}
|
|
return loops;
|
|
}
|
|
|
|
static int clamp_loops(int loops) {
|
|
if (loops < 1) {
|
|
SkDebugf("ERROR: clamping loops from %d to 1. "
|
|
"There's probably something wrong with the bench.\n", loops);
|
|
return 1;
|
|
}
|
|
if (loops > FLAGS_maxLoops) {
|
|
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
|
|
return FLAGS_maxLoops;
|
|
}
|
|
return loops;
|
|
}
|
|
|
|
static bool write_canvas_png(Target* target, const SkString& filename) {
|
|
|
|
if (filename.isEmpty()) {
|
|
return false;
|
|
}
|
|
if (target->getCanvas() &&
|
|
kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) {
|
|
return false;
|
|
}
|
|
|
|
SkBitmap bmp;
|
|
|
|
if (!target->capturePixels(&bmp)) {
|
|
return false;
|
|
}
|
|
|
|
SkString dir = SkOSPath::Dirname(filename.c_str());
|
|
if (!sk_mkdir(dir.c_str())) {
|
|
SkDebugf("Can't make dir %s.\n", dir.c_str());
|
|
return false;
|
|
}
|
|
SkFILEWStream stream(filename.c_str());
|
|
if (!stream.isValid()) {
|
|
SkDebugf("Can't write %s.\n", filename.c_str());
|
|
return false;
|
|
}
|
|
if (!SkEncodeImage(&stream, bmp, SkEncodedImageFormat::kPNG, 100)) {
|
|
SkDebugf("Can't encode a PNG.\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int kFailedLoops = -2;
|
|
static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) {
|
|
// First figure out approximately how many loops of bench it takes to make overhead negligible.
|
|
double bench_plus_overhead = 0.0;
|
|
int round = 0;
|
|
int loops = bench->calculateLoops(FLAGS_loops);
|
|
if (kAutoTuneLoops == loops) {
|
|
while (bench_plus_overhead < overhead) {
|
|
if (round++ == FLAGS_maxCalibrationAttempts) {
|
|
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
|
|
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
|
|
return kFailedLoops;
|
|
}
|
|
bench_plus_overhead = time(1, bench, target);
|
|
}
|
|
}
|
|
|
|
// Later we'll just start and stop the timer once but loop N times.
|
|
// We'll pick N to make timer overhead negligible:
|
|
//
|
|
// overhead
|
|
// ------------------------- < FLAGS_overheadGoal
|
|
// overhead + N * Bench Time
|
|
//
|
|
// where bench_plus_overhead ~=~ overhead + Bench Time.
|
|
//
|
|
// Doing some math, we get:
|
|
//
|
|
// (overhead / FLAGS_overheadGoal) - overhead
|
|
// ------------------------------------------ < N
|
|
// bench_plus_overhead - overhead)
|
|
//
|
|
// Luckily, this also works well in practice. :)
|
|
if (kAutoTuneLoops == loops) {
|
|
const double numer = overhead / FLAGS_overheadGoal - overhead;
|
|
const double denom = bench_plus_overhead - overhead;
|
|
loops = (int)ceil(numer / denom);
|
|
loops = clamp_loops(loops);
|
|
} else {
|
|
loops = detect_forever_loops(loops);
|
|
}
|
|
|
|
return loops;
|
|
}
|
|
|
|
static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) {
|
|
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
|
|
int loops = bench->calculateLoops(FLAGS_loops);
|
|
if (kAutoTuneLoops == loops) {
|
|
loops = 1;
|
|
double elapsed = 0;
|
|
do {
|
|
if (1<<30 == loops) {
|
|
// We're about to wrap. Something's wrong with the bench.
|
|
loops = 0;
|
|
break;
|
|
}
|
|
loops *= 2;
|
|
// If the GPU lets frames lag at all, we need to make sure we're timing
|
|
// _this_ round, not still timing last round.
|
|
for (int i = 0; i < maxGpuFrameLag; i++) {
|
|
elapsed = time(loops, bench, target);
|
|
}
|
|
} while (elapsed < FLAGS_gpuMs);
|
|
|
|
// We've overshot at least a little. Scale back linearly.
|
|
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
|
|
loops = clamp_loops(loops);
|
|
|
|
// Make sure we're not still timing our calibration.
|
|
target->fence();
|
|
} else {
|
|
loops = detect_forever_loops(loops);
|
|
}
|
|
// Pretty much the same deal as the calibration: do some warmup to make
|
|
// sure we're timing steady-state pipelined frames.
|
|
for (int i = 0; i < maxGpuFrameLag; i++) {
|
|
time(loops, bench, target);
|
|
}
|
|
|
|
return loops;
|
|
}
|
|
|
|
#if SK_SUPPORT_GPU
|
|
#define kBogusContextType GrContextFactory::kGL_ContextType
|
|
#define kBogusContextOverrides GrContextFactory::ContextOverrides::kNone
|
|
#else
|
|
#define kBogusContextType 0
|
|
#define kBogusContextOverrides 0
|
|
#endif
|
|
|
|
static void create_config(const SkCommandLineConfig* config, SkTArray<Config>* configs) {
|
|
|
|
#if SK_SUPPORT_GPU
|
|
if (const auto* gpuConfig = config->asConfigGpu()) {
|
|
if (!FLAGS_gpu) {
|
|
SkDebugf("Skipping config '%s' as requested.\n", config->getTag().c_str());
|
|
return;
|
|
}
|
|
|
|
const auto ctxType = gpuConfig->getContextType();
|
|
const auto ctxOverrides = gpuConfig->getContextOverrides();
|
|
const auto sampleCount = gpuConfig->getSamples();
|
|
const auto colorType = gpuConfig->getColorType();
|
|
auto colorSpace = gpuConfig->getColorSpace();
|
|
|
|
GrContextFactory factory(grContextOpts);
|
|
if (const GrContext* ctx = factory.get(ctxType, ctxOverrides)) {
|
|
GrPixelConfig grPixConfig = SkImageInfo2GrPixelConfig(colorType, colorSpace,
|
|
*ctx->caps());
|
|
int supportedSampleCount = ctx->caps()->getSampleCount(sampleCount, grPixConfig);
|
|
if (sampleCount != supportedSampleCount) {
|
|
SkDebugf("Configuration '%s' sample count %d is not a supported sample count.\n",
|
|
config->getTag().c_str(), sampleCount);
|
|
return;
|
|
}
|
|
} else {
|
|
SkDebugf("No context was available matching config '%s'.\n",
|
|
config->getTag().c_str());
|
|
return;
|
|
}
|
|
|
|
Config target = {
|
|
gpuConfig->getTag(),
|
|
Benchmark::kGPU_Backend,
|
|
colorType,
|
|
kPremul_SkAlphaType,
|
|
sk_ref_sp(colorSpace),
|
|
sampleCount,
|
|
ctxType,
|
|
ctxOverrides,
|
|
gpuConfig->getUseDIText()
|
|
};
|
|
|
|
configs->push_back(target);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#define CPU_CONFIG(name, backend, color, alpha, colorSpace) \
|
|
if (config->getTag().equals(#name)) { \
|
|
if (!FLAGS_cpu) { \
|
|
SkDebugf("Skipping config '%s' as requested.\n", \
|
|
config->getTag().c_str()); \
|
|
return; \
|
|
} \
|
|
Config config = { \
|
|
SkString(#name), Benchmark::backend, color, alpha, colorSpace, \
|
|
0, kBogusContextType, kBogusContextOverrides, false \
|
|
}; \
|
|
configs->push_back(config); \
|
|
return; \
|
|
}
|
|
|
|
CPU_CONFIG(nonrendering, kNonRendering_Backend,
|
|
kUnknown_SkColorType, kUnpremul_SkAlphaType, nullptr)
|
|
|
|
CPU_CONFIG(a8, kRaster_Backend,
|
|
kAlpha_8_SkColorType, kPremul_SkAlphaType, nullptr)
|
|
CPU_CONFIG(8888, kRaster_Backend,
|
|
kN32_SkColorType, kPremul_SkAlphaType, nullptr)
|
|
CPU_CONFIG(565, kRaster_Backend,
|
|
kRGB_565_SkColorType, kOpaque_SkAlphaType, nullptr)
|
|
auto srgbColorSpace = SkColorSpace::MakeSRGB();
|
|
CPU_CONFIG(srgb, kRaster_Backend,
|
|
kN32_SkColorType, kPremul_SkAlphaType, srgbColorSpace)
|
|
auto srgbLinearColorSpace = SkColorSpace::MakeSRGBLinear();
|
|
CPU_CONFIG(f16, kRaster_Backend,
|
|
kRGBA_F16_SkColorType, kPremul_SkAlphaType, srgbLinearColorSpace)
|
|
|
|
#undef CPU_CONFIG
|
|
|
|
SkDebugf("Unknown config '%s'.\n", config->getTag().c_str());
|
|
}
|
|
|
|
// Append all configs that are enabled and supported.
|
|
void create_configs(SkTArray<Config>* configs) {
|
|
SkCommandLineConfigArray array;
|
|
ParseConfigs(FLAGS_config, &array);
|
|
for (int i = 0; i < array.count(); ++i) {
|
|
create_config(array[i].get(), configs);
|
|
}
|
|
|
|
// If no just default configs were requested, then we're okay.
|
|
if (array.count() == 0 || FLAGS_config.count() == 0 ||
|
|
// If we've been told to ignore undefined flags, we're okay.
|
|
FLAGS_undefok ||
|
|
// Otherwise, make sure that all specified configs have been created.
|
|
array.count() == configs->count()) {
|
|
return;
|
|
}
|
|
SkDebugf("Invalid --config. Use --undefok to bypass this warning.\n");
|
|
exit(1);
|
|
}
|
|
|
|
// disable warning : switch statement contains default but no 'case' labels
|
|
#if defined _WIN32
|
|
#pragma warning ( push )
|
|
#pragma warning ( disable : 4065 )
|
|
#endif
|
|
|
|
// If bench is enabled for config, returns a Target* for it, otherwise nullptr.
|
|
static Target* is_enabled(Benchmark* bench, const Config& config) {
|
|
if (!bench->isSuitableFor(config.backend)) {
|
|
return nullptr;
|
|
}
|
|
|
|
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
|
|
config.color, config.alpha, config.colorSpace);
|
|
|
|
Target* target = nullptr;
|
|
|
|
switch (config.backend) {
|
|
#if SK_SUPPORT_GPU
|
|
case Benchmark::kGPU_Backend:
|
|
target = new GPUTarget(config);
|
|
break;
|
|
#endif
|
|
default:
|
|
target = new Target(config);
|
|
break;
|
|
}
|
|
|
|
if (!target->init(info, bench)) {
|
|
delete target;
|
|
return nullptr;
|
|
}
|
|
return target;
|
|
}
|
|
|
|
#if defined _WIN32
|
|
#pragma warning ( pop )
|
|
#endif
|
|
|
|
static bool valid_brd_bench(sk_sp<SkData> encoded, SkColorType colorType, uint32_t sampleSize,
|
|
uint32_t minOutputSize, int* width, int* height) {
|
|
std::unique_ptr<SkBitmapRegionDecoder> brd(
|
|
SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy));
|
|
if (nullptr == brd.get()) {
|
|
// This is indicates that subset decoding is not supported for a particular image format.
|
|
return false;
|
|
}
|
|
|
|
if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize >
|
|
(uint32_t) brd->height()) {
|
|
// This indicates that the image is not large enough to decode a
|
|
// minOutputSize x minOutputSize subset at the given sampleSize.
|
|
return false;
|
|
}
|
|
|
|
// Set the image width and height. The calling code will use this to choose subsets to decode.
|
|
*width = brd->width();
|
|
*height = brd->height();
|
|
return true;
|
|
}
|
|
|
|
static void cleanup_run(Target* target) {
|
|
delete target;
|
|
}
|
|
|
|
static void collect_files(const SkCommandLineFlags::StringArray& paths, const char* ext,
|
|
SkTArray<SkString>* list) {
|
|
for (int i = 0; i < paths.count(); ++i) {
|
|
if (SkStrEndsWith(paths[i], ext)) {
|
|
list->push_back(SkString(paths[i]));
|
|
} else {
|
|
SkOSFile::Iter it(paths[i], ext);
|
|
SkString path;
|
|
while (it.next(&path)) {
|
|
list->push_back(SkOSPath::Join(paths[i], path.c_str()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
class BenchmarkStream {
|
|
public:
|
|
BenchmarkStream() : fBenches(BenchRegistry::Head())
|
|
, fGMs(skiagm::GMRegistry::Head())
|
|
, fCurrentRecording(0)
|
|
, fCurrentPiping(0)
|
|
, fCurrentDeserialPicture(0)
|
|
, fCurrentScale(0)
|
|
, fCurrentSKP(0)
|
|
, fCurrentSVG(0)
|
|
, fCurrentUseMPD(0)
|
|
, fCurrentCodec(0)
|
|
, fCurrentAndroidCodec(0)
|
|
, fCurrentBRDImage(0)
|
|
, fCurrentColorImage(0)
|
|
, fCurrentColorType(0)
|
|
, fCurrentAlphaType(0)
|
|
, fCurrentSubsetType(0)
|
|
, fCurrentSampleSize(0)
|
|
, fCurrentAnimSKP(0) {
|
|
collect_files(FLAGS_skps, ".skp", &fSKPs);
|
|
collect_files(FLAGS_svgs, ".svg", &fSVGs);
|
|
|
|
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
|
|
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
|
|
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
|
|
exit(1);
|
|
}
|
|
|
|
for (int i = 0; i < FLAGS_scales.count(); i++) {
|
|
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
|
|
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) {
|
|
SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]);
|
|
exit(1);
|
|
}
|
|
|
|
if (FLAGS_mpd) {
|
|
fUseMPDs.push_back() = true;
|
|
}
|
|
fUseMPDs.push_back() = false;
|
|
|
|
// Prepare the images for decoding
|
|
if (!CollectImages(FLAGS_images, &fImages)) {
|
|
exit(1);
|
|
}
|
|
if (!CollectImages(FLAGS_colorImages, &fColorImages)) {
|
|
exit(1);
|
|
}
|
|
|
|
// Choose the candidate color types for image decoding
|
|
fColorTypes.push_back(kN32_SkColorType);
|
|
if (!FLAGS_simpleCodec) {
|
|
fColorTypes.push_back(kRGB_565_SkColorType);
|
|
fColorTypes.push_back(kAlpha_8_SkColorType);
|
|
fColorTypes.push_back(kGray_8_SkColorType);
|
|
}
|
|
}
|
|
|
|
static sk_sp<SkPicture> ReadPicture(const char* path) {
|
|
// Not strictly necessary, as it will be checked again later,
|
|
// but helps to avoid a lot of pointless work if we're going to skip it.
|
|
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) {
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path);
|
|
if (!stream) {
|
|
SkDebugf("Could not read %s.\n", path);
|
|
return nullptr;
|
|
}
|
|
|
|
return SkPicture::MakeFromStream(stream.get());
|
|
}
|
|
|
|
static sk_sp<SkPicture> ReadSVGPicture(const char* path) {
|
|
SkFILEStream stream(path);
|
|
if (!stream.isValid()) {
|
|
SkDebugf("Could not read %s.\n", path);
|
|
return nullptr;
|
|
}
|
|
|
|
sk_sp<SkSVGDOM> svgDom = SkSVGDOM::MakeFromStream(stream);
|
|
if (!svgDom) {
|
|
SkDebugf("Could not parse %s.\n", path);
|
|
return nullptr;
|
|
}
|
|
|
|
// Use the intrinsic SVG size if available, otherwise fall back to a default value.
|
|
static const SkSize kDefaultContainerSize = SkSize::Make(128, 128);
|
|
if (svgDom->containerSize().isEmpty()) {
|
|
svgDom->setContainerSize(kDefaultContainerSize);
|
|
}
|
|
|
|
SkPictureRecorder recorder;
|
|
svgDom->render(recorder.beginRecording(svgDom->containerSize().width(),
|
|
svgDom->containerSize().height()));
|
|
return recorder.finishRecordingAsPicture();
|
|
}
|
|
|
|
Benchmark* next() {
|
|
std::unique_ptr<Benchmark> bench;
|
|
do {
|
|
bench.reset(this->rawNext());
|
|
if (!bench) {
|
|
return nullptr;
|
|
}
|
|
} while(SkCommandLineFlags::ShouldSkip(FLAGS_sourceType, fSourceType) ||
|
|
SkCommandLineFlags::ShouldSkip(FLAGS_benchType, fBenchType));
|
|
return bench.release();
|
|
}
|
|
|
|
Benchmark* rawNext() {
|
|
if (fBenches) {
|
|
Benchmark* bench = fBenches->factory()(nullptr);
|
|
fBenches = fBenches->next();
|
|
fSourceType = "bench";
|
|
fBenchType = "micro";
|
|
return bench;
|
|
}
|
|
|
|
while (fGMs) {
|
|
std::unique_ptr<skiagm::GM> gm(fGMs->factory()(nullptr));
|
|
fGMs = fGMs->next();
|
|
if (gm->runAsBench()) {
|
|
fSourceType = "gm";
|
|
fBenchType = "micro";
|
|
return new GMBench(gm.release());
|
|
}
|
|
}
|
|
|
|
// First add all .skps as RecordingBenches.
|
|
while (fCurrentRecording < fSKPs.count()) {
|
|
const SkString& path = fSKPs[fCurrentRecording++];
|
|
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
|
|
if (!pic) {
|
|
continue;
|
|
}
|
|
SkString name = SkOSPath::Basename(path.c_str());
|
|
fSourceType = "skp";
|
|
fBenchType = "recording";
|
|
fSKPBytes = static_cast<double>(pic->approximateBytesUsed());
|
|
fSKPOps = pic->approximateOpCount();
|
|
return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh, FLAGS_lite);
|
|
}
|
|
|
|
// Add all .skps as PipeBenches.
|
|
while (fCurrentPiping < fSKPs.count()) {
|
|
const SkString& path = fSKPs[fCurrentPiping++];
|
|
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
|
|
if (!pic) {
|
|
continue;
|
|
}
|
|
SkString name = SkOSPath::Basename(path.c_str());
|
|
fSourceType = "skp";
|
|
fBenchType = "piping";
|
|
fSKPBytes = static_cast<double>(pic->approximateBytesUsed());
|
|
fSKPOps = pic->approximateOpCount();
|
|
return new PipingBench(name.c_str(), pic.get());
|
|
}
|
|
|
|
// Add all .skps as DeserializePictureBenchs.
|
|
while (fCurrentDeserialPicture < fSKPs.count()) {
|
|
const SkString& path = fSKPs[fCurrentDeserialPicture++];
|
|
sk_sp<SkData> data = SkData::MakeFromFileName(path.c_str());
|
|
if (!data) {
|
|
continue;
|
|
}
|
|
SkString name = SkOSPath::Basename(path.c_str());
|
|
fSourceType = "skp";
|
|
fBenchType = "deserial";
|
|
fSKPBytes = static_cast<double>(data->size());
|
|
fSKPOps = 0;
|
|
return new DeserializePictureBench(name.c_str(), std::move(data));
|
|
}
|
|
|
|
// Then once each for each scale as SKPBenches (playback).
|
|
while (fCurrentScale < fScales.count()) {
|
|
while (fCurrentSKP < fSKPs.count()) {
|
|
const SkString& path = fSKPs[fCurrentSKP];
|
|
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
|
|
if (!pic) {
|
|
fCurrentSKP++;
|
|
continue;
|
|
}
|
|
|
|
while (fCurrentUseMPD < fUseMPDs.count()) {
|
|
if (FLAGS_bbh) {
|
|
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
|
|
SkRTreeFactory factory;
|
|
SkPictureRecorder recorder;
|
|
pic->playback(recorder.beginRecording(pic->cullRect().width(),
|
|
pic->cullRect().height(),
|
|
&factory,
|
|
0));
|
|
pic = recorder.finishRecordingAsPicture();
|
|
}
|
|
SkString name = SkOSPath::Basename(path.c_str());
|
|
fSourceType = "skp";
|
|
fBenchType = "playback";
|
|
return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale],
|
|
fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP);
|
|
}
|
|
fCurrentUseMPD = 0;
|
|
fCurrentSKP++;
|
|
}
|
|
|
|
while (fCurrentSVG++ < fSVGs.count()) {
|
|
const char* path = fSVGs[fCurrentSVG - 1].c_str();
|
|
if (sk_sp<SkPicture> pic = ReadSVGPicture(path)) {
|
|
fSourceType = "svg";
|
|
fBenchType = "playback";
|
|
return new SKPBench(SkOSPath::Basename(path).c_str(), pic.get(), fClip,
|
|
fScales[fCurrentScale], false, FLAGS_loopSKP);
|
|
}
|
|
}
|
|
|
|
fCurrentSKP = 0;
|
|
fCurrentSVG = 0;
|
|
fCurrentScale++;
|
|
}
|
|
|
|
// Now loop over each skp again if we have an animation
|
|
if (fZoomMax != 1.0f && fZoomPeriodMs > 0) {
|
|
while (fCurrentAnimSKP < fSKPs.count()) {
|
|
const SkString& path = fSKPs[fCurrentAnimSKP];
|
|
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
|
|
if (!pic) {
|
|
fCurrentAnimSKP++;
|
|
continue;
|
|
}
|
|
|
|
fCurrentAnimSKP++;
|
|
SkString name = SkOSPath::Basename(path.c_str());
|
|
sk_sp<SKPAnimationBench::Animation> animation(
|
|
SKPAnimationBench::CreateZoomAnimation(fZoomMax, fZoomPeriodMs));
|
|
return new SKPAnimationBench(name.c_str(), pic.get(), fClip, animation.get(),
|
|
FLAGS_loopSKP);
|
|
}
|
|
}
|
|
|
|
for (; fCurrentCodec < fImages.count(); fCurrentCodec++) {
|
|
fSourceType = "image";
|
|
fBenchType = "skcodec";
|
|
const SkString& path = fImages[fCurrentCodec];
|
|
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
|
|
continue;
|
|
}
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
|
|
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
|
|
if (!codec) {
|
|
// Nothing to time.
|
|
SkDebugf("Cannot find codec for %s\n", path.c_str());
|
|
continue;
|
|
}
|
|
|
|
while (fCurrentColorType < fColorTypes.count()) {
|
|
const SkColorType colorType = fColorTypes[fCurrentColorType];
|
|
|
|
SkAlphaType alphaType = codec->getInfo().alphaType();
|
|
if (FLAGS_simpleCodec) {
|
|
if (kUnpremul_SkAlphaType == alphaType) {
|
|
alphaType = kPremul_SkAlphaType;
|
|
}
|
|
|
|
fCurrentColorType++;
|
|
} else {
|
|
switch (alphaType) {
|
|
case kOpaque_SkAlphaType:
|
|
// We only need to test one alpha type (opaque).
|
|
fCurrentColorType++;
|
|
break;
|
|
case kUnpremul_SkAlphaType:
|
|
case kPremul_SkAlphaType:
|
|
if (0 == fCurrentAlphaType) {
|
|
// Test unpremul first.
|
|
alphaType = kUnpremul_SkAlphaType;
|
|
fCurrentAlphaType++;
|
|
} else {
|
|
// Test premul.
|
|
alphaType = kPremul_SkAlphaType;
|
|
fCurrentAlphaType = 0;
|
|
fCurrentColorType++;
|
|
}
|
|
break;
|
|
default:
|
|
SkASSERT(false);
|
|
fCurrentColorType++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Make sure we can decode to this color type and alpha type.
|
|
SkImageInfo info =
|
|
codec->getInfo().makeColorType(colorType).makeAlphaType(alphaType);
|
|
const size_t rowBytes = info.minRowBytes();
|
|
SkAutoMalloc storage(info.computeByteSize(rowBytes));
|
|
|
|
const SkCodec::Result result = codec->getPixels(
|
|
info, storage.get(), rowBytes);
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
return new CodecBench(SkOSPath::Basename(path.c_str()),
|
|
encoded.get(), colorType, alphaType);
|
|
case SkCodec::kInvalidConversion:
|
|
// This is okay. Not all conversions are valid.
|
|
break;
|
|
default:
|
|
// This represents some sort of failure.
|
|
SkASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
fCurrentColorType = 0;
|
|
}
|
|
|
|
// Run AndroidCodecBenches
|
|
const int sampleSizes[] = { 2, 4, 8 };
|
|
for (; fCurrentAndroidCodec < fImages.count(); fCurrentAndroidCodec++) {
|
|
fSourceType = "image";
|
|
fBenchType = "skandroidcodec";
|
|
|
|
const SkString& path = fImages[fCurrentAndroidCodec];
|
|
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
|
|
continue;
|
|
}
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
|
|
std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded));
|
|
if (!codec) {
|
|
// Nothing to time.
|
|
SkDebugf("Cannot find codec for %s\n", path.c_str());
|
|
continue;
|
|
}
|
|
|
|
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) {
|
|
int sampleSize = sampleSizes[fCurrentSampleSize];
|
|
fCurrentSampleSize++;
|
|
if (10 * sampleSize > SkTMin(codec->getInfo().width(), codec->getInfo().height())) {
|
|
// Avoid benchmarking scaled decodes of already small images.
|
|
break;
|
|
}
|
|
|
|
return new AndroidCodecBench(SkOSPath::Basename(path.c_str()),
|
|
encoded.get(), sampleSize);
|
|
}
|
|
fCurrentSampleSize = 0;
|
|
}
|
|
|
|
// Run the BRDBenches
|
|
// We intend to create benchmarks that model the use cases in
|
|
// android/libraries/social/tiledimage. In this library, an image is decoded in 512x512
|
|
// tiles. The image can be translated freely, so the location of a tile may be anywhere in
|
|
// the image. For that reason, we will benchmark decodes in five representative locations
|
|
// in the image. Additionally, this use case utilizes power of two scaling, so we will
|
|
// test on power of two sample sizes. The output tile is always 512x512, so, when a
|
|
// sampleSize is used, the size of the subset that is decoded is always
|
|
// (sampleSize*512)x(sampleSize*512).
|
|
// There are a few good reasons to only test on power of two sample sizes at this time:
|
|
// All use cases we are aware of only scale by powers of two.
|
|
// PNG decodes use the indicated sampling strategy regardless of the sample size, so
|
|
// these tests are sufficient to provide good coverage of our scaling options.
|
|
const uint32_t brdSampleSizes[] = { 1, 2, 4, 8, 16 };
|
|
const uint32_t minOutputSize = 512;
|
|
for (; fCurrentBRDImage < fImages.count(); fCurrentBRDImage++) {
|
|
fSourceType = "image";
|
|
fBenchType = "BRD";
|
|
|
|
const SkString& path = fImages[fCurrentBRDImage];
|
|
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
|
|
continue;
|
|
}
|
|
|
|
while (fCurrentColorType < fColorTypes.count()) {
|
|
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(brdSampleSizes)) {
|
|
while (fCurrentSubsetType <= kLastSingle_SubsetType) {
|
|
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
|
|
const SkColorType colorType = fColorTypes[fCurrentColorType];
|
|
uint32_t sampleSize = brdSampleSizes[fCurrentSampleSize];
|
|
int currentSubsetType = fCurrentSubsetType++;
|
|
|
|
int width = 0;
|
|
int height = 0;
|
|
if (!valid_brd_bench(encoded, colorType, sampleSize, minOutputSize,
|
|
&width, &height)) {
|
|
break;
|
|
}
|
|
|
|
SkString basename = SkOSPath::Basename(path.c_str());
|
|
SkIRect subset;
|
|
const uint32_t subsetSize = sampleSize * minOutputSize;
|
|
switch (currentSubsetType) {
|
|
case kTopLeft_SubsetType:
|
|
basename.append("_TopLeft");
|
|
subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize);
|
|
break;
|
|
case kTopRight_SubsetType:
|
|
basename.append("_TopRight");
|
|
subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize,
|
|
subsetSize);
|
|
break;
|
|
case kMiddle_SubsetType:
|
|
basename.append("_Middle");
|
|
subset = SkIRect::MakeXYWH((width - subsetSize) / 2,
|
|
(height - subsetSize) / 2, subsetSize, subsetSize);
|
|
break;
|
|
case kBottomLeft_SubsetType:
|
|
basename.append("_BottomLeft");
|
|
subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize,
|
|
subsetSize);
|
|
break;
|
|
case kBottomRight_SubsetType:
|
|
basename.append("_BottomRight");
|
|
subset = SkIRect::MakeXYWH(width - subsetSize,
|
|
height - subsetSize, subsetSize, subsetSize);
|
|
break;
|
|
default:
|
|
SkASSERT(false);
|
|
}
|
|
|
|
return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(),
|
|
colorType, sampleSize, subset);
|
|
}
|
|
fCurrentSubsetType = 0;
|
|
fCurrentSampleSize++;
|
|
}
|
|
fCurrentSampleSize = 0;
|
|
fCurrentColorType++;
|
|
}
|
|
fCurrentColorType = 0;
|
|
}
|
|
|
|
while (fCurrentColorImage < fColorImages.count()) {
|
|
fSourceType = "colorimage";
|
|
fBenchType = "skcolorcodec";
|
|
const SkString& path = fColorImages[fCurrentColorImage];
|
|
fCurrentColorImage++;
|
|
sk_sp<SkData> encoded = SkData::MakeFromFileName(path.c_str());
|
|
if (encoded) {
|
|
return new ColorCodecBench(SkOSPath::Basename(path.c_str()).c_str(),
|
|
std::move(encoded));
|
|
} else {
|
|
SkDebugf("Could not read file %s.\n", path.c_str());
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void fillCurrentOptions(ResultsWriter* log) const {
|
|
log->configOption("source_type", fSourceType);
|
|
log->configOption("bench_type", fBenchType);
|
|
if (0 == strcmp(fSourceType, "skp")) {
|
|
log->configOption("clip",
|
|
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
|
|
fClip.fRight, fClip.fBottom).c_str());
|
|
SkASSERT_RELEASE(fCurrentScale < fScales.count()); // debugging paranoia
|
|
log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
|
|
if (fCurrentUseMPD > 0) {
|
|
SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD);
|
|
log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false");
|
|
}
|
|
}
|
|
if (0 == strcmp(fBenchType, "recording")) {
|
|
log->metric("bytes", fSKPBytes);
|
|
log->metric("ops", fSKPOps);
|
|
}
|
|
}
|
|
|
|
private:
|
|
enum SubsetType {
|
|
kTopLeft_SubsetType = 0,
|
|
kTopRight_SubsetType = 1,
|
|
kMiddle_SubsetType = 2,
|
|
kBottomLeft_SubsetType = 3,
|
|
kBottomRight_SubsetType = 4,
|
|
kTranslate_SubsetType = 5,
|
|
kZoom_SubsetType = 6,
|
|
kLast_SubsetType = kZoom_SubsetType,
|
|
kLastSingle_SubsetType = kBottomRight_SubsetType,
|
|
};
|
|
|
|
const BenchRegistry* fBenches;
|
|
const skiagm::GMRegistry* fGMs;
|
|
SkIRect fClip;
|
|
SkTArray<SkScalar> fScales;
|
|
SkTArray<SkString> fSKPs;
|
|
SkTArray<SkString> fSVGs;
|
|
SkTArray<bool> fUseMPDs;
|
|
SkTArray<SkString> fImages;
|
|
SkTArray<SkString> fColorImages;
|
|
SkTArray<SkColorType, true> fColorTypes;
|
|
SkScalar fZoomMax;
|
|
double fZoomPeriodMs;
|
|
|
|
double fSKPBytes, fSKPOps;
|
|
|
|
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
|
|
const char* fBenchType; // How we bench it: micro, recording, playback, ...
|
|
int fCurrentRecording;
|
|
int fCurrentPiping;
|
|
int fCurrentDeserialPicture;
|
|
int fCurrentScale;
|
|
int fCurrentSKP;
|
|
int fCurrentSVG;
|
|
int fCurrentUseMPD;
|
|
int fCurrentCodec;
|
|
int fCurrentAndroidCodec;
|
|
int fCurrentBRDImage;
|
|
int fCurrentColorImage;
|
|
int fCurrentColorType;
|
|
int fCurrentAlphaType;
|
|
int fCurrentSubsetType;
|
|
int fCurrentSampleSize;
|
|
int fCurrentAnimSKP;
|
|
};
|
|
|
|
// Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung.
|
|
// This prints something every once in a while so that it knows we're still working.
|
|
static void start_keepalive() {
|
|
static std::thread* intentionallyLeaked = new std::thread([]{
|
|
for (;;) {
|
|
static const int kSec = 1200;
|
|
#if defined(SK_BUILD_FOR_WIN)
|
|
Sleep(kSec * 1000);
|
|
#else
|
|
sleep(kSec);
|
|
#endif
|
|
SkDebugf("\nBenchmarks still running...\n");
|
|
}
|
|
});
|
|
(void)intentionallyLeaked;
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
SkCommandLineFlags::Parse(argc, argv);
|
|
|
|
initializeEventTracingForTools();
|
|
|
|
#if defined(SK_BUILD_FOR_IOS)
|
|
cd_Documents();
|
|
#endif
|
|
SetupCrashHandler();
|
|
SkAutoGraphics ag;
|
|
SkTaskGroup::Enabler enabled(FLAGS_threads);
|
|
|
|
#if SK_SUPPORT_GPU
|
|
SetCtxOptionsFromCommonFlags(&grContextOpts);
|
|
#endif
|
|
|
|
if (FLAGS_veryVerbose) {
|
|
FLAGS_verbose = true;
|
|
}
|
|
|
|
if (kAutoTuneLoops != FLAGS_loops) {
|
|
FLAGS_samples = 1;
|
|
FLAGS_gpuFrameLag = 0;
|
|
}
|
|
|
|
if (!FLAGS_writePath.isEmpty()) {
|
|
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
|
|
if (!sk_mkdir(FLAGS_writePath[0])) {
|
|
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
|
|
FLAGS_writePath.set(0, nullptr);
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<ResultsWriter> log(new ResultsWriter);
|
|
if (!FLAGS_outResultsFile.isEmpty()) {
|
|
#if defined(SK_RELEASE)
|
|
log.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0]));
|
|
#else
|
|
SkDebugf("I'm ignoring --outResultsFile because this is a Debug build.");
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
if (1 == FLAGS_properties.count() % 2) {
|
|
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
|
|
return 1;
|
|
}
|
|
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
|
|
log->property(FLAGS_properties[i-1], FLAGS_properties[i]);
|
|
}
|
|
|
|
if (1 == FLAGS_key.count() % 2) {
|
|
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
|
|
return 1;
|
|
}
|
|
for (int i = 1; i < FLAGS_key.count(); i += 2) {
|
|
log->key(FLAGS_key[i-1], FLAGS_key[i]);
|
|
}
|
|
|
|
const double overhead = estimate_timer_overhead();
|
|
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
|
|
|
|
SkTArray<double> samples;
|
|
|
|
if (kAutoTuneLoops != FLAGS_loops) {
|
|
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
|
|
} else if (FLAGS_quiet) {
|
|
SkDebugf("! -> high variance, ? -> moderate variance\n");
|
|
SkDebugf(" micros \tbench\n");
|
|
} else if (FLAGS_ms) {
|
|
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n");
|
|
} else {
|
|
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
|
|
FLAGS_samples, "samples");
|
|
}
|
|
|
|
SkTArray<Config> configs;
|
|
create_configs(&configs);
|
|
|
|
if (FLAGS_keepAlive) {
|
|
start_keepalive();
|
|
}
|
|
|
|
gSkUseAnalyticAA = FLAGS_analyticAA;
|
|
gSkUseDeltaAA = FLAGS_deltaAA;
|
|
|
|
if (FLAGS_forceDeltaAA) {
|
|
gSkForceDeltaAA = true;
|
|
}
|
|
if (FLAGS_forceAnalyticAA) {
|
|
gSkForceAnalyticAA = true;
|
|
}
|
|
if (FLAGS_forceRasterPipeline) {
|
|
gSkForceRasterPipelineBlitter = true;
|
|
}
|
|
|
|
int runs = 0;
|
|
BenchmarkStream benchStream;
|
|
while (Benchmark* b = benchStream.next()) {
|
|
std::unique_ptr<Benchmark> bench(b);
|
|
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
|
|
continue;
|
|
}
|
|
|
|
if (!configs.empty()) {
|
|
log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
|
|
bench->delayedSetup();
|
|
}
|
|
for (int i = 0; i < configs.count(); ++i) {
|
|
Target* target = is_enabled(b, configs[i]);
|
|
if (!target) {
|
|
continue;
|
|
}
|
|
|
|
// During HWUI output this canvas may be nullptr.
|
|
SkCanvas* canvas = target->getCanvas();
|
|
const char* config = target->config.name.c_str();
|
|
|
|
if (FLAGS_pre_log || FLAGS_dryRun) {
|
|
SkDebugf("Running %s\t%s\n"
|
|
, bench->getUniqueName()
|
|
, config);
|
|
if (FLAGS_dryRun) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
TRACE_EVENT2("skia", "Benchmark", "name", TRACE_STR_COPY(bench->getUniqueName()),
|
|
"config", TRACE_STR_COPY(config));
|
|
|
|
target->setup();
|
|
bench->perCanvasPreDraw(canvas);
|
|
|
|
int maxFrameLag;
|
|
int loops = target->needsFrameTiming(&maxFrameLag)
|
|
? setup_gpu_bench(target, bench.get(), maxFrameLag)
|
|
: setup_cpu_bench(overhead, target, bench.get());
|
|
|
|
if (kFailedLoops == loops) {
|
|
// Can't be timed. A warning note has already been printed.
|
|
cleanup_run(target);
|
|
continue;
|
|
}
|
|
|
|
if (runs == 0 && FLAGS_ms < 1000) {
|
|
// Run the first bench for 1000ms to warm up the nanobench if FLAGS_ms < 1000.
|
|
// Otherwise, the first few benches' measurements will be inaccurate.
|
|
auto stop = now_ms() + 1000;
|
|
do {
|
|
time(loops, bench.get(), target);
|
|
} while (now_ms() < stop);
|
|
}
|
|
|
|
if (FLAGS_ms) {
|
|
samples.reset();
|
|
auto stop = now_ms() + FLAGS_ms;
|
|
do {
|
|
samples.push_back(time(loops, bench.get(), target) / loops);
|
|
} while (now_ms() < stop);
|
|
} else {
|
|
samples.reset(FLAGS_samples);
|
|
for (int s = 0; s < FLAGS_samples; s++) {
|
|
samples[s] = time(loops, bench.get(), target) / loops;
|
|
}
|
|
}
|
|
|
|
#if SK_SUPPORT_GPU
|
|
SkTArray<SkString> keys;
|
|
SkTArray<double> values;
|
|
bool gpuStatsDump = FLAGS_gpuStatsDump && Benchmark::kGPU_Backend == configs[i].backend;
|
|
if (gpuStatsDump) {
|
|
// TODO cache stats
|
|
bench->getGpuStats(canvas, &keys, &values);
|
|
}
|
|
#endif
|
|
|
|
bench->perCanvasPostDraw(canvas);
|
|
|
|
if (Benchmark::kNonRendering_Backend != target->config.backend &&
|
|
!FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
|
|
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
|
|
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
|
|
pngFilename.append(".png");
|
|
write_canvas_png(target, pngFilename);
|
|
}
|
|
|
|
Stats stats(samples);
|
|
log->config(config);
|
|
log->configOption("name", bench->getName());
|
|
benchStream.fillCurrentOptions(log.get());
|
|
target->fillOptions(log.get());
|
|
log->metric("min_ms", stats.min);
|
|
log->metrics("samples", samples);
|
|
#if SK_SUPPORT_GPU
|
|
if (gpuStatsDump) {
|
|
// dump to json, only SKPBench currently returns valid keys / values
|
|
SkASSERT(keys.count() == values.count());
|
|
for (int i = 0; i < keys.count(); i++) {
|
|
log->metric(keys[i].c_str(), values[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (runs++ % FLAGS_flushEvery == 0) {
|
|
log->flush();
|
|
}
|
|
|
|
if (kAutoTuneLoops != FLAGS_loops) {
|
|
if (configs.count() == 1) {
|
|
config = ""; // Only print the config if we run the same bench on more than one.
|
|
}
|
|
SkDebugf("%4d/%-4dMB\t%s\t%s\n"
|
|
, sk_tools::getCurrResidentSetSizeMB()
|
|
, sk_tools::getMaxResidentSetSizeMB()
|
|
, bench->getUniqueName()
|
|
, config);
|
|
} else if (FLAGS_quiet) {
|
|
const char* mark = " ";
|
|
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
|
|
if (stddev_percent > 5) mark = "?";
|
|
if (stddev_percent > 10) mark = "!";
|
|
|
|
SkDebugf("%10.2f %s\t%s\t%s\n",
|
|
stats.median*1e3, mark, bench->getUniqueName(), config);
|
|
} else if (FLAGS_csv) {
|
|
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
|
|
SkDebugf("%g,%g,%g,%g,%g,%s,%s\n"
|
|
, stats.min
|
|
, stats.median
|
|
, stats.mean
|
|
, stats.max
|
|
, stddev_percent
|
|
, config
|
|
, bench->getUniqueName()
|
|
);
|
|
} else {
|
|
const char* format = "%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n";
|
|
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
|
|
SkDebugf(format
|
|
, sk_tools::getCurrResidentSetSizeMB()
|
|
, sk_tools::getMaxResidentSetSizeMB()
|
|
, loops
|
|
, HUMANIZE(stats.min)
|
|
, HUMANIZE(stats.median)
|
|
, HUMANIZE(stats.mean)
|
|
, HUMANIZE(stats.max)
|
|
, stddev_percent
|
|
, FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str()
|
|
, config
|
|
, bench->getUniqueName()
|
|
);
|
|
}
|
|
|
|
#if SK_SUPPORT_GPU
|
|
if (FLAGS_gpuStats && Benchmark::kGPU_Backend == configs[i].backend) {
|
|
target->dumpStats();
|
|
}
|
|
#endif
|
|
|
|
if (FLAGS_verbose) {
|
|
SkDebugf("Samples: ");
|
|
for (int i = 0; i < samples.count(); i++) {
|
|
SkDebugf("%s ", HUMANIZE(samples[i]));
|
|
}
|
|
SkDebugf("%s\n", bench->getUniqueName());
|
|
}
|
|
cleanup_run(target);
|
|
}
|
|
}
|
|
|
|
SkGraphics::PurgeAllCaches();
|
|
|
|
log->bench("memory_usage", 0,0);
|
|
log->config("meta");
|
|
log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB());
|
|
|
|
return 0;
|
|
}
|