skia2/src/pathops/SkIntersections.h
caryclark a35ab3e6e0 fix fuzzers
Many old pathops-related fuzz failures have built up while
the codebase was under a state a flux. Now that the code
is stable, address these failures.

Most of the CL plumbs the debug global state to downstream
routines so that, if the data is not trusted (ala fuzzed)
the function can safely exit without asserting.

TBR=reed@google.com
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2426173002

Review-Url: https://chromiumcodereview.appspot.com/2426173002
2016-10-20 08:32:18 -07:00

330 lines
10 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkIntersections_DEFINE
#define SkIntersections_DEFINE
#include "SkPathOpsConic.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsPoint.h"
#include "SkPathOpsQuad.h"
class SkIntersections {
public:
SkIntersections(SkDEBUGCODE(SkOpGlobalState* globalState = nullptr))
: fSwap(0)
#ifdef SK_DEBUG
SkDEBUGPARAMS(fDebugGlobalState(globalState))
, fDepth(0)
#endif
{
sk_bzero(fPt, sizeof(fPt));
sk_bzero(fPt2, sizeof(fPt2));
sk_bzero(fT, sizeof(fT));
sk_bzero(fNearlySame, sizeof(fNearlySame));
#if DEBUG_T_SECT_LOOP_COUNT
sk_bzero(fDebugLoopCount, sizeof(fDebugLoopCount));
#endif
reset();
fMax = 0; // require that the caller set the max
}
class TArray {
public:
explicit TArray(const double ts[10]) : fTArray(ts) {}
double operator[](int n) const {
return fTArray[n];
}
const double* fTArray;
};
TArray operator[](int n) const { return TArray(fT[n]); }
void allowNear(bool nearAllowed) {
fAllowNear = nearAllowed;
}
void clearCoincidence(int index) {
SkASSERT(index >= 0);
int bit = 1 << index;
fIsCoincident[0] &= ~bit;
fIsCoincident[1] &= ~bit;
}
int conicHorizontal(const SkPoint a[3], SkScalar weight, SkScalar left, SkScalar right,
SkScalar y, bool flipped) {
SkDConic conic;
conic.set(a, weight);
fMax = 2;
return horizontal(conic, left, right, y, flipped);
}
int conicVertical(const SkPoint a[3], SkScalar weight, SkScalar top, SkScalar bottom,
SkScalar x, bool flipped) {
SkDConic conic;
conic.set(a, weight);
fMax = 2;
return vertical(conic, top, bottom, x, flipped);
}
int conicLine(const SkPoint a[3], SkScalar weight, const SkPoint b[2]) {
SkDConic conic;
conic.set(a, weight);
SkDLine line;
line.set(b);
fMax = 3; // 2; permit small coincident segment + non-coincident intersection
return intersect(conic, line);
}
int cubicHorizontal(const SkPoint a[4], SkScalar left, SkScalar right, SkScalar y,
bool flipped) {
SkDCubic cubic;
cubic.set(a);
fMax = 3;
return horizontal(cubic, left, right, y, flipped);
}
int cubicVertical(const SkPoint a[4], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) {
SkDCubic cubic;
cubic.set(a);
fMax = 3;
return vertical(cubic, top, bottom, x, flipped);
}
int cubicLine(const SkPoint a[4], const SkPoint b[2]) {
SkDCubic cubic;
cubic.set(a);
SkDLine line;
line.set(b);
fMax = 3;
return intersect(cubic, line);
}
#ifdef SK_DEBUG
SkOpGlobalState* globalState() const { return fDebugGlobalState; }
#endif
bool hasT(double t) const {
SkASSERT(t == 0 || t == 1);
return fUsed > 0 && (t == 0 ? fT[0][0] == 0 : fT[0][fUsed - 1] == 1);
}
bool hasOppT(double t) const {
SkASSERT(t == 0 || t == 1);
return fUsed > 0 && (fT[1][0] == t || fT[1][fUsed - 1] == t);
}
int insertSwap(double one, double two, const SkDPoint& pt) {
if (fSwap) {
return insert(two, one, pt);
} else {
return insert(one, two, pt);
}
}
bool isCoincident(int index) {
return (fIsCoincident[0] & 1 << index) != 0;
}
int lineHorizontal(const SkPoint a[2], SkScalar left, SkScalar right, SkScalar y,
bool flipped) {
SkDLine line;
line.set(a);
fMax = 2;
return horizontal(line, left, right, y, flipped);
}
int lineVertical(const SkPoint a[2], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) {
SkDLine line;
line.set(a);
fMax = 2;
return vertical(line, top, bottom, x, flipped);
}
int lineLine(const SkPoint a[2], const SkPoint b[2]) {
SkDLine aLine, bLine;
aLine.set(a);
bLine.set(b);
fMax = 2;
return intersect(aLine, bLine);
}
bool nearlySame(int index) const {
SkASSERT(index == 0 || index == 1);
return fNearlySame[index];
}
const SkDPoint& pt(int index) const {
return fPt[index];
}
const SkDPoint& pt2(int index) const {
return fPt2[index];
}
int quadHorizontal(const SkPoint a[3], SkScalar left, SkScalar right, SkScalar y,
bool flipped) {
SkDQuad quad;
quad.set(a);
fMax = 2;
return horizontal(quad, left, right, y, flipped);
}
int quadVertical(const SkPoint a[3], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) {
SkDQuad quad;
quad.set(a);
fMax = 2;
return vertical(quad, top, bottom, x, flipped);
}
int quadLine(const SkPoint a[3], const SkPoint b[2]) {
SkDQuad quad;
quad.set(a);
SkDLine line;
line.set(b);
return intersect(quad, line);
}
// leaves swap, max alone
void reset() {
fAllowNear = true;
fUsed = 0;
sk_bzero(fIsCoincident, sizeof(fIsCoincident));
}
void set(bool swap, int tIndex, double t) {
fT[(int) swap][tIndex] = t;
}
void setMax(int max) {
SkASSERT(max <= (int) SK_ARRAY_COUNT(fPt));
fMax = max;
}
void swap() {
fSwap ^= true;
}
bool swapped() const {
return fSwap;
}
int used() const {
return fUsed;
}
void downDepth() {
SkASSERT(--fDepth >= 0);
}
bool unBumpT(int index) {
SkASSERT(fUsed == 1);
fT[0][index] = fT[0][index] * (1 + BUMP_EPSILON * 2) - BUMP_EPSILON;
if (!between(0, fT[0][index], 1)) {
fUsed = 0;
return false;
}
return true;
}
void upDepth() {
SkASSERT(++fDepth < 16);
}
void alignQuadPts(const SkPoint a[3], const SkPoint b[3]);
int cleanUpCoincidence();
int closestTo(double rangeStart, double rangeEnd, const SkDPoint& testPt, double* dist) const;
void cubicInsert(double one, double two, const SkDPoint& pt, const SkDCubic& c1,
const SkDCubic& c2);
void flip();
int horizontal(const SkDLine&, double left, double right, double y, bool flipped);
int horizontal(const SkDQuad&, double left, double right, double y, bool flipped);
int horizontal(const SkDQuad&, double left, double right, double y, double tRange[2]);
int horizontal(const SkDCubic&, double y, double tRange[3]);
int horizontal(const SkDConic&, double left, double right, double y, bool flipped);
int horizontal(const SkDCubic&, double left, double right, double y, bool flipped);
int horizontal(const SkDCubic&, double left, double right, double y, double tRange[3]);
static double HorizontalIntercept(const SkDLine& line, double y);
static int HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots);
static int HorizontalIntercept(const SkDConic& conic, SkScalar y, double* roots);
// FIXME : does not respect swap
int insert(double one, double two, const SkDPoint& pt);
void insertNear(double one, double two, const SkDPoint& pt1, const SkDPoint& pt2);
// start if index == 0 : end if index == 1
int insertCoincident(double one, double two, const SkDPoint& pt);
int intersect(const SkDLine&, const SkDLine&);
int intersect(const SkDQuad&, const SkDLine&);
int intersect(const SkDQuad&, const SkDQuad&);
int intersect(const SkDConic&, const SkDLine&);
int intersect(const SkDConic&, const SkDQuad&);
int intersect(const SkDConic&, const SkDConic&);
int intersect(const SkDCubic&, const SkDLine&);
int intersect(const SkDCubic&, const SkDQuad&);
int intersect(const SkDCubic&, const SkDConic&);
int intersect(const SkDCubic&, const SkDCubic&);
int intersectRay(const SkDLine&, const SkDLine&);
int intersectRay(const SkDQuad&, const SkDLine&);
int intersectRay(const SkDConic&, const SkDLine&);
int intersectRay(const SkDCubic&, const SkDLine&);
void merge(const SkIntersections& , int , const SkIntersections& , int );
int mostOutside(double rangeStart, double rangeEnd, const SkDPoint& origin) const;
void removeOne(int index);
void setCoincident(int index);
int vertical(const SkDLine&, double top, double bottom, double x, bool flipped);
int vertical(const SkDQuad&, double top, double bottom, double x, bool flipped);
int vertical(const SkDConic&, double top, double bottom, double x, bool flipped);
int vertical(const SkDCubic&, double top, double bottom, double x, bool flipped);
static double VerticalIntercept(const SkDLine& line, double x);
static int VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots);
static int VerticalIntercept(const SkDConic& conic, SkScalar x, double* roots);
int depth() const {
#ifdef SK_DEBUG
return fDepth;
#else
return 0;
#endif
}
enum DebugLoop {
kIterations_DebugLoop,
kCoinCheck_DebugLoop,
kComputePerp_DebugLoop,
};
void debugBumpLoopCount(DebugLoop );
int debugCoincidentUsed() const;
int debugLoopCount(DebugLoop ) const;
void debugResetLoopCount();
void dump() const; // implemented for testing only
private:
bool cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2);
bool cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2);
void cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, const SkDRect& );
void cleanUpParallelLines(bool parallel);
void computePoints(const SkDLine& line, int used);
SkDPoint fPt[13]; // FIXME: since scans store points as SkPoint, this should also
SkDPoint fPt2[2]; // used by nearly same to store alternate intersection point
double fT[2][13];
uint16_t fIsCoincident[2]; // bit set for each curve's coincident T
bool fNearlySame[2]; // true if end points nearly match
unsigned char fUsed;
unsigned char fMax;
bool fAllowNear;
bool fSwap;
#ifdef SK_DEBUG
SkOpGlobalState* fDebugGlobalState;
int fDepth;
#endif
#if DEBUG_T_SECT_LOOP_COUNT
int fDebugLoopCount[3];
#endif
};
#endif