9e49fb63d3
add copyrights everywhere start working on quadratic line segments (for quad intersection) git-svn-id: http://skia.googlecode.com/svn/trunk@5286 2bbb7eff-a529-9590-31e7-b0007b416f81
522 lines
18 KiB
C++
522 lines
18 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "CurveIntersection.h"
|
|
#include "CubicUtilities.h"
|
|
|
|
/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
|
|
*
|
|
* This paper proves that Syvester's method can compute the implicit form of
|
|
* the quadratic from the parameterzied form.
|
|
*
|
|
* Given x = a*t*t*t + b*t*t + c*t + d (the parameterized form)
|
|
* y = e*t*t*t + f*t*t + g*t + h
|
|
*
|
|
* we want to find an equation of the implicit form:
|
|
*
|
|
* A*x^3 + B*x*x*y + C*x*y*y + D*y^3 + E*x*x + F*x*y + G*y*y + H*x + I*y + J = 0
|
|
*
|
|
* The implicit form can be expressed as a 6x6 determinant, as shown.
|
|
*
|
|
* The resultant obtained by Syvester's method is
|
|
*
|
|
* | a b c (d - x) 0 0 |
|
|
* | 0 a b c (d - x) 0 |
|
|
* | 0 0 a b c (d - x) |
|
|
* | e f g (h - y) 0 0 |
|
|
* | 0 e f g (h - y) 0 |
|
|
* | 0 0 e f g (h - y) |
|
|
*
|
|
* which, according to Mathematica, expands as shown below.
|
|
*
|
|
* Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t]
|
|
*
|
|
* -d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g +
|
|
* 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g -
|
|
* b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h -
|
|
* 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h +
|
|
* a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h -
|
|
* 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h +
|
|
* a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 +
|
|
* a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x -
|
|
* 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x -
|
|
* 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x +
|
|
* b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x +
|
|
* 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x +
|
|
* 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x -
|
|
* 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 +
|
|
* 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 -
|
|
* c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y -
|
|
* 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y -
|
|
* b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y -
|
|
* 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y +
|
|
* 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y -
|
|
* 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y +
|
|
* a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y -
|
|
* 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 -
|
|
* 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 +
|
|
* 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3
|
|
*/
|
|
|
|
enum {
|
|
xxx_coeff, // A
|
|
xxy_coeff, // B
|
|
xyy_coeff, // C
|
|
yyy_coeff, // D
|
|
xx_coeff,
|
|
xy_coeff,
|
|
yy_coeff,
|
|
x_coeff,
|
|
y_coeff,
|
|
c_coeff,
|
|
coeff_count
|
|
};
|
|
|
|
#define USE_SYVESTER 0 // if 0, use control-point base parametric form
|
|
#if USE_SYVESTER
|
|
|
|
// FIXME: factoring version unwritten
|
|
// static bool straight_forward = true;
|
|
|
|
/* from CubicParameterizationCode.cpp output:
|
|
* double A = e * e * e;
|
|
* double B = -3 * a * e * e;
|
|
* double C = 3 * a * a * e;
|
|
* double D = -a * a * a;
|
|
*/
|
|
static void calc_ABCD(double a, double e, double p[coeff_count]) {
|
|
double ee = e * e;
|
|
p[xxx_coeff] = e * ee;
|
|
p[xxy_coeff] = -3 * a * ee;
|
|
double aa = a * a;
|
|
p[xyy_coeff] = 3 * aa * e;
|
|
p[yyy_coeff] = -aa * a;
|
|
}
|
|
|
|
/* CubicParameterizationCode.cpp turns Mathematica output into C.
|
|
* Rather than edit the lines below, please edit the code there instead.
|
|
*/
|
|
// start of generated code
|
|
static double calc_xx(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
-3 * d * e * e * e
|
|
+ c * e * e * f
|
|
- b * e * f * f
|
|
+ a * f * f * f
|
|
+ 2 * b * e * e * g
|
|
- 3 * a * e * f * g
|
|
+ 3 * a * e * e * h;
|
|
}
|
|
|
|
static double calc_xy(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
-3 * b * c * e * e
|
|
+ 6 * a * d * e * e
|
|
+ 2 * b * b * e * f
|
|
+ a * c * e * f
|
|
- 2 * a * b * f * f
|
|
- a * b * e * g
|
|
+ 3 * a * a * f * g
|
|
- 6 * a * a * e * h;
|
|
}
|
|
|
|
static double calc_yy(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
-b * b * b * e
|
|
+ 3 * a * b * c * e
|
|
- 3 * a * a * d * e
|
|
+ a * b * b * f
|
|
- 2 * a * a * c * f
|
|
- a * a * b * g
|
|
+ 3 * a * a * a * h;
|
|
}
|
|
|
|
static double calc_x(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
3 * d * d * e * e * e
|
|
- 2 * c * d * e * e * f
|
|
+ 2 * b * d * e * f * f
|
|
- 2 * a * d * f * f * f
|
|
+ c * c * e * e * g
|
|
- 4 * b * d * e * e * g
|
|
- b * c * e * f * g
|
|
+ 6 * a * d * e * f * g
|
|
+ a * c * f * f * g
|
|
+ b * b * e * g * g
|
|
- 2 * a * c * e * g * g
|
|
- a * b * f * g * g
|
|
+ a * a * g * g * g
|
|
+ 3 * b * c * e * e * h
|
|
- 6 * a * d * e * e * h
|
|
- 2 * b * b * e * f * h
|
|
- a * c * e * f * h
|
|
+ 2 * a * b * f * f * h
|
|
+ a * b * e * g * h
|
|
- 3 * a * a * f * g * h
|
|
+ 3 * a * a * e * h * h;
|
|
}
|
|
|
|
static double calc_y(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
-c * c * c * e * e
|
|
+ 3 * b * c * d * e * e
|
|
- 3 * a * d * d * e * e
|
|
+ b * c * c * e * f
|
|
- 2 * b * b * d * e * f
|
|
- a * c * d * e * f
|
|
- a * c * c * f * f
|
|
+ 2 * a * b * d * f * f
|
|
- b * b * c * e * g
|
|
+ 2 * a * c * c * e * g
|
|
+ a * b * d * e * g
|
|
+ a * b * c * f * g
|
|
- 3 * a * a * d * f * g
|
|
- a * a * c * g * g
|
|
+ 2 * b * b * b * e * h
|
|
- 6 * a * b * c * e * h
|
|
+ 6 * a * a * d * e * h
|
|
- 2 * a * b * b * f * h
|
|
+ 4 * a * a * c * f * h
|
|
+ 2 * a * a * b * g * h
|
|
- 3 * a * a * a * h * h;
|
|
}
|
|
|
|
static double calc_c(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
-d * d * d * e * e * e
|
|
+ c * d * d * e * e * f
|
|
- b * d * d * e * f * f
|
|
+ a * d * d * f * f * f
|
|
- c * c * d * e * e * g
|
|
+ 2 * b * d * d * e * e * g
|
|
+ b * c * d * e * f * g
|
|
- 3 * a * d * d * e * f * g
|
|
- a * c * d * f * f * g
|
|
- b * b * d * e * g * g
|
|
+ 2 * a * c * d * e * g * g
|
|
+ a * b * d * f * g * g
|
|
- a * a * d * g * g * g
|
|
+ c * c * c * e * e * h
|
|
- 3 * b * c * d * e * e * h
|
|
+ 3 * a * d * d * e * e * h
|
|
- b * c * c * e * f * h
|
|
+ 2 * b * b * d * e * f * h
|
|
+ a * c * d * e * f * h
|
|
+ a * c * c * f * f * h
|
|
- 2 * a * b * d * f * f * h
|
|
+ b * b * c * e * g * h
|
|
- 2 * a * c * c * e * g * h
|
|
- a * b * d * e * g * h
|
|
- a * b * c * f * g * h
|
|
+ 3 * a * a * d * f * g * h
|
|
+ a * a * c * g * g * h
|
|
- b * b * b * e * h * h
|
|
+ 3 * a * b * c * e * h * h
|
|
- 3 * a * a * d * e * h * h
|
|
+ a * b * b * f * h * h
|
|
- 2 * a * a * c * f * h * h
|
|
- a * a * b * g * h * h
|
|
+ a * a * a * h * h * h;
|
|
}
|
|
// end of generated code
|
|
|
|
#else
|
|
|
|
/* more Mathematica generated code. This takes a different tack, starting with
|
|
the control-point based parametric formulas. The C code is unoptimized --
|
|
in this form, this is a proof of concept (since the other code didn't work)
|
|
*/
|
|
static double calc_c(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
d*d*d*e*e*e - 3*d*d*(3*c*e*e*f + 3*b*e*(-3*f*f + 2*e*g) + a*(9*f*f*f - 9*e*f*g + e*e*h)) -
|
|
h*(27*c*c*c*e*e - 27*c*c*(3*b*e*f - 3*a*f*f + 2*a*e*g) +
|
|
h*(-27*b*b*b*e + 27*a*b*b*f - 9*a*a*b*g + a*a*a*h) +
|
|
9*c*(9*b*b*e*g + a*b*(-9*f*g + 3*e*h) + a*a*(3*g*g - 2*f*h))) +
|
|
3*d*(9*c*c*e*e*g + 9*b*b*e*(3*g*g - 2*f*h) + 3*a*b*(-9*f*g*g + 6*f*f*h + e*g*h) +
|
|
a*a*(9*g*g*g - 9*f*g*h + e*h*h) + 3*c*(3*b*e*(-3*f*g + e*h) + a*(9*f*f*g - 6*e*g*g - e*f*h)))
|
|
;
|
|
}
|
|
|
|
// - Power(e - 3*f + 3*g - h,3)*Power(x,3)
|
|
static double calc_xxx(double e3f3gh) {
|
|
return -e3f3gh * e3f3gh * e3f3gh;
|
|
}
|
|
|
|
static double calc_y(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
+ 3*(6*b*d*d*e*e - d*d*d*e*e + 18*b*b*d*e*f - 18*b*d*d*e*f -
|
|
9*b*d*d*f*f - 54*b*b*d*e*g + 12*b*d*d*e*g - 27*b*b*d*g*g - 18*b*b*b*e*h + 18*b*b*d*e*h +
|
|
18*b*b*d*f*h + a*a*a*h*h - 9*b*b*b*h*h + 9*c*c*c*e*(e + 2*h) +
|
|
a*a*(-3*b*h*(2*g + h) + d*(-27*g*g + 9*g*h - h*(2*e + h) + 9*f*(g + h))) +
|
|
a*(9*b*b*h*(2*f + h) - 3*b*d*(6*f*f - 6*f*(3*g - 2*h) + g*(-9*g + h) + e*(g + h)) +
|
|
d*d*(e*e + 9*f*(3*f - g) + e*(-9*f - 9*g + 2*h))) -
|
|
9*c*c*(d*e*(e + 2*g) + 3*b*(f*h + e*(f + h)) + a*(-3*f*f - 6*f*h + 2*(g*h + e*(g + h)))) +
|
|
3*c*(d*d*e*(e + 2*f) + a*a*(3*g*g + 6*g*h - 2*h*(2*f + h)) + 9*b*b*(g*h + e*(g + h)) +
|
|
a*d*(-9*f*f - 18*f*g + 6*g*g + f*h + e*(f + 12*g + h)) +
|
|
b*(d*(-3*e*e + 9*f*g + e*(9*f + 9*g - 6*h)) + 3*a*(h*(2*e - 3*g + h) - 3*f*(g + h))))) // *y
|
|
;
|
|
}
|
|
|
|
static double calc_yy(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
- 3*(18*c*c*c*e - 18*c*c*d*e + 6*c*d*d*e - d*d*d*e + 3*c*d*d*f - 9*c*c*d*g + a*a*a*h + 9*c*c*c*h -
|
|
9*b*b*b*(e + 2*h) - a*a*(d*(e - 9*f + 18*g - 7*h) + 3*c*(2*f - 6*g + h)) +
|
|
a*(-9*c*c*(2*e - 6*f + 2*g - h) + d*d*(-7*e + 18*f - 9*g + h) + 3*c*d*(7*e - 17*f + 3*g + h)) +
|
|
9*b*b*(3*c*(e + g + h) + a*(f + 2*h) - d*(e - 2*(f - 3*g + h))) -
|
|
3*b*(-(d*d*(e - 6*f + 2*g)) - 3*c*d*(e + 3*f + 3*g - h) + 9*c*c*(e + f + h) + a*a*(g + 2*h) +
|
|
a*(c*(-3*e + 9*f + 9*g + 3*h) + d*(e + 3*f - 17*g + 7*h)))) // *Power(y,2)
|
|
;
|
|
}
|
|
|
|
// + Power(a - 3*b + 3*c - d,3)*Power(y,3)
|
|
static double calc_yyy(double a3b3cd) {
|
|
return a3b3cd * a3b3cd * a3b3cd;
|
|
}
|
|
|
|
static double calc_xx(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
// + Power(x,2)*
|
|
(-3*(-9*b*e*f*f + 9*a*f*f*f + 6*b*e*e*g - 9*a*e*f*g + 27*b*e*f*g - 27*a*f*f*g + 18*a*e*g*g - 54*b*e*g*g +
|
|
27*a*f*g*g + 27*b*f*g*g - 18*a*g*g*g + a*e*e*h - 9*b*e*e*h + 3*a*e*f*h + 9*b*e*f*h + 9*a*f*f*h -
|
|
18*b*f*f*h - 21*a*e*g*h + 51*b*e*g*h - 9*a*f*g*h - 27*b*f*g*h + 18*a*g*g*h + 7*a*e*h*h - 18*b*e*h*h - 3*a*f*h*h +
|
|
18*b*f*h*h - 6*a*g*h*h - 3*b*g*h*h + a*h*h*h +
|
|
3*c*(-9*f*f*(g - 2*h) + 3*g*g*h - f*h*(9*g + 2*h) + e*e*(f - 6*g + 6*h) +
|
|
e*(9*f*g + 6*g*g - 17*f*h - 3*g*h + 3*h*h)) -
|
|
d*(e*e*e + e*e*(-6*f - 3*g + 7*h) - 9*(2*f - g)*(f*f + g*g - f*(g + h)) +
|
|
e*(18*f*f + 9*g*g + 3*g*h + h*h - 3*f*(3*g + 7*h)))) )
|
|
;
|
|
}
|
|
|
|
// + Power(x,2)*(3*(a - 3*b + 3*c - d)*Power(e - 3*f + 3*g - h,2)*y)
|
|
static double calc_xxy(double a3b3cd, double e3f3gh) {
|
|
return 3 * a3b3cd * e3f3gh * e3f3gh;
|
|
}
|
|
|
|
static double calc_x(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
// + x*
|
|
(-3*(27*b*b*e*g*g - 27*a*b*f*g*g + 9*a*a*g*g*g - 18*b*b*e*f*h + 18*a*b*f*f*h + 3*a*b*e*g*h -
|
|
27*b*b*e*g*h - 9*a*a*f*g*h + 27*a*b*f*g*h - 9*a*a*g*g*h + a*a*e*h*h - 9*a*b*e*h*h +
|
|
27*b*b*e*h*h + 6*a*a*f*h*h - 18*a*b*f*h*h - 9*b*b*f*h*h + 3*a*a*g*h*h +
|
|
6*a*b*g*h*h - a*a*h*h*h + 9*c*c*(e*e*(g - 3*h) - 3*f*f*h + e*(3*f + 2*g)*h) +
|
|
d*d*(e*e*e - 9*f*f*f + 9*e*f*(f + g) - e*e*(3*f + 6*g + h)) +
|
|
d*(-3*c*(-9*f*f*g + e*e*(2*f - 6*g - 3*h) + e*(9*f*g + 6*g*g + f*h)) +
|
|
a*(-18*f*f*f - 18*e*g*g + 18*g*g*g - 2*e*e*h + 3*e*g*h + 2*e*h*h + 9*f*f*(3*g + 2*h) +
|
|
3*f*(6*e*g - 9*g*g - e*h - 6*g*h)) - 3*b*(9*f*g*g + e*e*(4*g - 3*h) - 6*f*f*h -
|
|
e*(6*f*f + g*(18*g + h) - 3*f*(3*g + 4*h)))) +
|
|
3*c*(3*b*(e*e*h + 3*f*g*h - e*(3*f*g - 6*f*h + 6*g*h + h*h)) +
|
|
a*(9*f*f*(g - 2*h) + f*h*(-e + 9*g + 4*h) - 3*(2*g*g*h + e*(2*g*g - 4*g*h + h*h))))) )
|
|
;
|
|
}
|
|
|
|
static double calc_xy(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) {
|
|
return
|
|
// + x*3*
|
|
(-2*a*d*e*e - 7*d*d*e*e + 15*a*d*e*f + 21*d*d*e*f - 9*a*d*f*f - 18*d*d*f*f - 15*a*d*e*g -
|
|
3*d*d*e*g - 9*a*a*f*g + 9*d*d*f*g + 18*a*a*g*g + 9*a*d*g*g + 2*a*a*e*h - 2*d*d*e*h +
|
|
3*a*a*f*h + 15*a*d*f*h - 21*a*a*g*h - 15*a*d*g*h + 7*a*a*h*h + 2*a*d*h*h -
|
|
9*c*c*(2*e*e + 3*f*f + 3*f*h - 2*g*h + e*(-3*f - 4*g + h)) +
|
|
9*b*b*(3*g*g - 3*g*h + 2*h*(-2*f + h) + e*(-2*f + 3*g + h)) +
|
|
3*b*(3*c*(e*e + 3*e*(f - 3*g) + (9*f - 3*g - h)*h) + a*(6*f*f + e*g - 9*f*g - 9*g*g - 5*e*h + 9*f*h + 14*g*h - 7*h*h) +
|
|
d*(-e*e + 12*f*f - 27*f*g + e*(-9*f + 20*g - 5*h) + g*(9*g + h))) +
|
|
3*c*(a*(-(e*f) - 9*f*f + 27*f*g - 12*g*g + 5*e*h - 20*f*h + 9*g*h + h*h) +
|
|
d*(7*e*e + 9*f*f + 9*f*g - 6*g*g - f*h + e*(-14*f - 9*g + 5*h)))) // *y
|
|
;
|
|
}
|
|
|
|
// - x*3*Power(a - 3*b + 3*c - d,2)*(e - 3*f + 3*g - h)*Power(y,2)
|
|
static double calc_xyy(double a3b3cd, double e3f3gh) {
|
|
return -3 * a3b3cd * a3b3cd * e3f3gh;
|
|
}
|
|
|
|
#endif
|
|
|
|
static double (*calc_proc[])(double a, double b, double c, double d,
|
|
double e, double f, double g, double h) = {
|
|
calc_xx, calc_xy, calc_yy, calc_x, calc_y, calc_c
|
|
};
|
|
|
|
#if USE_SYVESTER
|
|
/* Control points to parametric coefficients
|
|
s = 1 - t
|
|
Attt + 3Btts + 3Ctss + Dsss ==
|
|
Attt + 3B(1 - t)tt + 3C(1 - t)(t - tt) + D(1 - t)(1 - 2t + tt) ==
|
|
Attt + 3B(tt - ttt) + 3C(t - tt - tt + ttt) + D(1-2t+tt-t+2tt-ttt) ==
|
|
Attt + 3Btt - 3Bttt + 3Ct - 6Ctt + 3Cttt + D - 3Dt + 3Dtt - Dttt ==
|
|
D + (3C - 3D)t + (3B - 6C + 3D)tt + (A - 3B + 3C - D)ttt
|
|
a = A - 3*B + 3*C - D
|
|
b = 3*B - 6*C + 3*D
|
|
c = 3*C - 3*D
|
|
d = D
|
|
*/
|
|
|
|
/* http://www.algorithmist.net/bezier3.html
|
|
p = 3 * A
|
|
q = 3 * B
|
|
r = 3 * C
|
|
a = A
|
|
b = q - p
|
|
c = p - 2 * q + r
|
|
d = D - A + q - r
|
|
|
|
B(t) = a + t * (b + t * (c + t * d))
|
|
|
|
so
|
|
|
|
B(t) = a + t*b + t*t*(c + t*d)
|
|
= a + t*b + t*t*c + t*t*t*d
|
|
*/
|
|
static void set_abcd(const double* cubic, double& a, double& b, double& c,
|
|
double& d) {
|
|
a = cubic[0]; // a = A
|
|
b = 3 * cubic[2]; // b = 3*B (compute rest of b lazily)
|
|
c = 3 * cubic[4]; // c = 3*C (compute rest of c lazily)
|
|
d = cubic[6]; // d = D
|
|
a += -b + c - d; // a = A - 3*B + 3*C - D
|
|
}
|
|
|
|
static void calc_bc(const double d, double& b, double& c) {
|
|
b -= 3 * c; // b = 3*B - 3*C
|
|
c -= 3 * d; // c = 3*C - 3*D
|
|
b -= c; // b = 3*B - 6*C + 3*D
|
|
}
|
|
|
|
static void alt_set_abcd(const double* cubic, double& a, double& b, double& c,
|
|
double& d) {
|
|
a = cubic[0];
|
|
double p = 3 * a;
|
|
double q = 3 * cubic[2];
|
|
double r = 3 * cubic[4];
|
|
b = q - p;
|
|
c = p - 2 * q + r;
|
|
d = cubic[6] - a + q - r;
|
|
}
|
|
|
|
const bool try_alt = true;
|
|
|
|
#else
|
|
|
|
static void calc_ABCD(double a, double b, double c, double d,
|
|
double e, double f, double g, double h,
|
|
double p[coeff_count]) {
|
|
double a3b3cd = a - 3 * (b - c) - d;
|
|
double e3f3gh = e - 3 * (f - g) - h;
|
|
p[xxx_coeff] = calc_xxx(e3f3gh);
|
|
p[xxy_coeff] = calc_xxy(a3b3cd, e3f3gh);
|
|
p[xyy_coeff] = calc_xyy(a3b3cd, e3f3gh);
|
|
p[yyy_coeff] = calc_yyy(a3b3cd);
|
|
}
|
|
#endif
|
|
|
|
bool implicit_matches(const Cubic& one, const Cubic& two) {
|
|
double p1[coeff_count]; // a'xxx , b'xxy , c'xyy , d'xx , e'xy , f'yy, etc.
|
|
double p2[coeff_count];
|
|
#if USE_SYVESTER
|
|
double a1, b1, c1, d1;
|
|
if (try_alt)
|
|
alt_set_abcd(&one[0].x, a1, b1, c1, d1);
|
|
else
|
|
set_abcd(&one[0].x, a1, b1, c1, d1);
|
|
double e1, f1, g1, h1;
|
|
if (try_alt)
|
|
alt_set_abcd(&one[0].y, e1, f1, g1, h1);
|
|
else
|
|
set_abcd(&one[0].y, e1, f1, g1, h1);
|
|
calc_ABCD(a1, e1, p1);
|
|
double a2, b2, c2, d2;
|
|
if (try_alt)
|
|
alt_set_abcd(&two[0].x, a2, b2, c2, d2);
|
|
else
|
|
set_abcd(&two[0].x, a2, b2, c2, d2);
|
|
double e2, f2, g2, h2;
|
|
if (try_alt)
|
|
alt_set_abcd(&two[0].y, e2, f2, g2, h2);
|
|
else
|
|
set_abcd(&two[0].y, e2, f2, g2, h2);
|
|
calc_ABCD(a2, e2, p2);
|
|
#else
|
|
double a1 = one[0].x;
|
|
double b1 = one[1].x;
|
|
double c1 = one[2].x;
|
|
double d1 = one[3].x;
|
|
double e1 = one[0].y;
|
|
double f1 = one[1].y;
|
|
double g1 = one[2].y;
|
|
double h1 = one[3].y;
|
|
calc_ABCD(a1, b1, c1, d1, e1, f1, g1, h1, p1);
|
|
double a2 = two[0].x;
|
|
double b2 = two[1].x;
|
|
double c2 = two[2].x;
|
|
double d2 = two[3].x;
|
|
double e2 = two[0].y;
|
|
double f2 = two[1].y;
|
|
double g2 = two[2].y;
|
|
double h2 = two[3].y;
|
|
calc_ABCD(a2, b2, c2, d2, e2, f2, g2, h2, p2);
|
|
#endif
|
|
int first = 0;
|
|
for (int index = 0; index < coeff_count; ++index) {
|
|
#if USE_SYVESTER
|
|
if (!try_alt && index == xx_coeff) {
|
|
calc_bc(d1, b1, c1);
|
|
calc_bc(h1, f1, g1);
|
|
calc_bc(d2, b2, c2);
|
|
calc_bc(h2, f2, g2);
|
|
}
|
|
#endif
|
|
if (index >= xx_coeff) {
|
|
int procIndex = index - xx_coeff;
|
|
p1[index] = (*calc_proc[procIndex])(a1, b1, c1, d1, e1, f1, g1, h1);
|
|
p2[index] = (*calc_proc[procIndex])(a2, b2, c2, d2, e2, f2, g2, h2);
|
|
}
|
|
if (approximately_zero(p1[index]) || approximately_zero(p2[index])) {
|
|
first += first == index;
|
|
continue;
|
|
}
|
|
if (first == index) {
|
|
continue;
|
|
}
|
|
if (!approximately_equal(p1[index] * p2[first],
|
|
p1[first] * p2[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static double tangent(const double* cubic, double t) {
|
|
double a, b, c, d;
|
|
#if USE_SYVESTER
|
|
set_abcd(cubic, a, b, c, d);
|
|
calc_bc(d, b, c);
|
|
#else
|
|
coefficients(cubic, a, b, c, d);
|
|
#endif
|
|
return 3 * a * t * t + 2 * b * t + c;
|
|
}
|
|
|
|
void tangent(const Cubic& cubic, double t, _Point& result) {
|
|
result.x = tangent(&cubic[0].x, t);
|
|
result.y = tangent(&cubic[0].y, t);
|
|
}
|
|
|
|
// unit test to return and validate parametric coefficients
|
|
#include "CubicParameterization_TestUtility.cpp"
|
|
|
|
|