skia2/tests/PathOpsCubicLineIntersectionTest.cpp
caryclark a35ab3e6e0 fix fuzzers
Many old pathops-related fuzz failures have built up while
the codebase was under a state a flux. Now that the code
is stable, address these failures.

Most of the CL plumbs the debug global state to downstream
routines so that, if the data is not trusted (ala fuzzed)
the function can safely exit without asserting.

TBR=reed@google.com
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2426173002

Review-Url: https://chromiumcodereview.appspot.com/2426173002
2016-10-20 08:32:18 -07:00

203 lines
7.4 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsTestCommon.h"
#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkReduceOrder.h"
#include "Test.h"
struct lineCubic {
CubicPts cubic;
SkDLine line;
};
static lineCubic failLineCubicTests[] = {
{{{{37.5273438,-1.44140625}, {37.8736992,-1.69921875}, {38.1640625,-2.140625},
{38.3984375,-2.765625}}},
{{{40.625,-5.7890625}, {37.7109375,1.3515625}}}},
};
static const size_t failLineCubicTests_count = SK_ARRAY_COUNT(failLineCubicTests);
static void testFail(skiatest::Reporter* reporter, int iIndex) {
const CubicPts& cuPts = failLineCubicTests[iIndex].cubic;
SkDCubic cubic;
cubic.debugSet(cuPts.fPts);
SkASSERT(ValidCubic(cubic));
const SkDLine& line = failLineCubicTests[iIndex].line;
SkASSERT(ValidLine(line));
SkReduceOrder reduce1;
SkReduceOrder reduce2;
int order1 = reduce1.reduce(cubic, SkReduceOrder::kNo_Quadratics);
int order2 = reduce2.reduce(line);
if (order1 < 4) {
SkDebugf("[%d] cubic order=%d\n", iIndex, order1);
REPORTER_ASSERT(reporter, 0);
}
if (order2 < 2) {
SkDebugf("[%d] line order=%d\n", iIndex, order2);
REPORTER_ASSERT(reporter, 0);
}
if (order1 == 4 && order2 == 2) {
SkIntersections i;
int roots = i.intersect(cubic, line);
REPORTER_ASSERT(reporter, roots == 0);
}
}
static lineCubic lineCubicTests[] = {
{{{{0, 6}, {1.0851458311080933, 4.3722810745239258}, {1.5815209150314331, 3.038947582244873}, {1.9683018922805786, 1.9999997615814209}}},
{{{3,2}, {1,2}}}},
{{{{0.468027353,4}, {1.06734705,1.33333337}, {1.36700678,0}, {3,0}}},
{{{2,1}, {0,1}}}},
{{{{-634.60540771484375, -481.262939453125}, {266.2696533203125, -752.70867919921875},
{-751.8370361328125, -317.37921142578125}, {-969.7427978515625, 824.7255859375}}},
{{{-287.9506133720805678, -557.1376476615772617},
{-285.9506133720805678, -557.1376476615772617}}}},
{{{{36.7184372,0.888650894}, {36.7184372,0.888650894}, {35.1233864,0.554015458},
{34.5114098,-0.115255356}}}, {{{35.4531212,0}, {31.9375,0}}}},
{{{{421, 378}, {421, 380.209137f}, {418.761414f, 382}, {416, 382}}},
{{{320, 378}, {421, 378.000031f}}}},
{{{{416, 383}, {418.761414f, 383}, {421, 380.761414f}, {421, 378}}},
{{{320, 378}, {421, 378.000031f}}}},
{{{{154,715}, {151.238571,715}, {149,712.761414}, {149,710}}},
{{{149,675}, {149,710.001465}}}},
{{{{0,1}, {1,6}, {4,1}, {4,3}}},
{{{6,1}, {1,4}}}},
{{{{0,1}, {2,6}, {4,1}, {5,4}}},
{{{6,2}, {1,4}}}},
{{{{0,4}, {3,4}, {6,2}, {5,2}}},
{{{4,3}, {2,6}}}},
#if 0
{{{{258, 122}, {260.761414, 122}, { 263, 124.238579}, {263, 127}}},
{{{259.82843, 125.17157}, {261.535522, 123.46447}}}},
#endif
{{{{1006.6951293945312,291}, {1023.263671875,291}, {1033.8402099609375,304.43145751953125},
{1030.318359375,321}}},
{{{979.30487060546875,561}, {1036.695068359375,291}}}},
{{{{259.30487060546875,561}, {242.73631286621094,561}, {232.15980529785156,547.56854248046875},
{235.68154907226562,531}}},
{{{286.69512939453125,291}, {229.30485534667969,561}}}},
{{{{1, 2}, {2, 6}, {2, 0}, {1, 0}}}, {{{1, 0}, {1, 2}}}},
{{{{0, 0}, {0, 1}, {0, 1}, {1, 1}}}, {{{0, 1}, {1, 0}}}},
};
static const size_t lineCubicTests_count = SK_ARRAY_COUNT(lineCubicTests);
static int doIntersect(SkIntersections& intersections, const SkDCubic& cubic, const SkDLine& line) {
int result;
bool flipped = false;
if (line[0].fX == line[1].fX) {
double top = line[0].fY;
double bottom = line[1].fY;
flipped = top > bottom;
if (flipped) {
SkTSwap<double>(top, bottom);
}
result = intersections.vertical(cubic, top, bottom, line[0].fX, flipped);
} else if (line[0].fY == line[1].fY) {
double left = line[0].fX;
double right = line[1].fX;
flipped = left > right;
if (flipped) {
SkTSwap<double>(left, right);
}
result = intersections.horizontal(cubic, left, right, line[0].fY, flipped);
} else {
intersections.intersect(cubic, line);
result = intersections.used();
}
return result;
}
static void testOne(skiatest::Reporter* reporter, int iIndex) {
const CubicPts& cuPts = lineCubicTests[iIndex].cubic;
SkDCubic cubic;
cubic.debugSet(cuPts.fPts);
SkASSERT(ValidCubic(cubic));
const SkDLine& line = lineCubicTests[iIndex].line;
SkASSERT(ValidLine(line));
SkReduceOrder reduce1;
SkReduceOrder reduce2;
int order1 = reduce1.reduce(cubic, SkReduceOrder::kNo_Quadratics);
int order2 = reduce2.reduce(line);
if (order1 < 4) {
SkDebugf("[%d] cubic order=%d\n", iIndex, order1);
REPORTER_ASSERT(reporter, 0);
}
if (order2 < 2) {
SkDebugf("[%d] line order=%d\n", iIndex, order2);
REPORTER_ASSERT(reporter, 0);
}
if (order1 == 4 && order2 == 2) {
SkIntersections i;
int roots = doIntersect(i, cubic, line);
for (int pt = 0; pt < roots; ++pt) {
double tt1 = i[0][pt];
SkDPoint xy1 = cubic.ptAtT(tt1);
double tt2 = i[1][pt];
SkDPoint xy2 = line.ptAtT(tt2);
if (!xy1.approximatelyEqual(xy2)) {
SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, iIndex, pt, tt1, xy1.fX, xy1.fY, tt2, xy2.fX, xy2.fY);
}
REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2));
}
#if ONE_OFF_DEBUG
double cubicT = i[0][0];
SkDPoint prev = cubic.ptAtT(cubicT * 2 - 1);
SkDPoint sect = cubic.ptAtT(cubicT);
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", prev.fX, prev.fY, sect.fX, sect.fY);
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", sect.fX, sect.fY, cubic[3].fX, cubic[3].fY);
SkDPoint prevL = line.ptAtT(i[1][0] - 0.0000007);
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", prevL.fX, prevL.fY, i.pt(0).fX, i.pt(0).fY);
SkDPoint nextL = line.ptAtT(i[1][0] + 0.0000007);
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", i.pt(0).fX, i.pt(0).fY, nextL.fX, nextL.fY);
SkDebugf("prevD=%1.9g dist=%1.9g nextD=%1.9g\n", prev.distance(nextL),
sect.distance(i.pt(0)), cubic[3].distance(prevL));
#endif
}
}
DEF_TEST(PathOpsFailCubicLineIntersection, reporter) {
for (size_t index = 0; index < failLineCubicTests_count; ++index) {
int iIndex = static_cast<int>(index);
testFail(reporter, iIndex);
reporter->bumpTestCount();
}
}
DEF_TEST(PathOpsCubicLineIntersection, reporter) {
for (size_t index = 0; index < lineCubicTests_count; ++index) {
int iIndex = static_cast<int>(index);
testOne(reporter, iIndex);
reporter->bumpTestCount();
}
}
DEF_TEST(PathOpsCubicLineIntersectionOneOff, reporter) {
int iIndex = 0;
testOne(reporter, iIndex);
const CubicPts& cuPts = lineCubicTests[iIndex].cubic;
SkDCubic cubic;
cubic.debugSet(cuPts.fPts);
const SkDLine& line = lineCubicTests[iIndex].line;
SkIntersections i;
i.intersect(cubic, line);
SkASSERT(i.used() == 1);
}