skia2/tests/SkVMTest.cpp
Mike Klein d48488b5ea reorder to minimize register pressure
Rewrite program instructions so that each value becomes available as
late as possible, just before it's used by another instruction.  This
reorders blocks of instructions to reduce them number of temporary
registers in flight.

Take this example of the sort of program that we naturally write,
noting the registers needed as we progress down the right:

    src = load32 ...          (1)
    sr = extract src ...      (2)
    sg = extract src ...      (3)
    sb = extract src ...      (4)
    sa = extract src ...      (4, src dies)

    dst = load32 ...          (5)
    dr = extract dst ...      (6)
    dg = extract dst ...      (7)
    db = extract dst ...      (8)
    da = extract dst ...      (8, dst dies)

    r = add sr dr             (7, sr and dr die)
    g = add sg dg             (6, sg and dg die)
    b = add sb db             (5, sb and db die)
    a = add sa da             (4, sa and da die)

    rg   = pack r g ...       (3, r and g die)
    ba   = pack b a ...       (2, b and a die)
    rgba = pack rg ba ...     (1, rg and ba die)
    store32 rgba ...          (0, rgba dies)

That original ordering of the code needs 8 registers (perhaps with a
temporary 9th, but we'll ignore that here).  This CL will rewrite the
program to something more like this by recursively issuing inputs only
once needed:

    src = load32 ...       (1)
    sr  = extract src ...  (2)
    dst = load32 ...       (3)
    dr  = extract dst ...  (4)
     r  = add sr dr        (3, sr and dr die)

    sg  = extract src ...  (4)
    dg  = extract dst ...  (5)
     g  = add sg dg        (4, sg and dg die)

    rg  = pack r g         (3, r and g die)

    sb  = extract src ...  (4)
    db  = extract dst ...  (5)
     b  = add sb db        (4, sb and db die)

    sa  = extract src ...  (4, src dies)
    da  = extract dst ...  (4, dst dies)
     a  = add sa da        (3, sa and da die)

    ba  = pack b a         (2, b and a die)

    rgba = pack rg ba ...  (1, rg and ba die)
    store32 rgba  ...      (0)

That trims 3 registers off the example, just by reordering!
I've added the real version of this example to SkVMTest.cpp.
(Its 6th register comes from holding the 0xff byte mask used
by extract, in case you're curious).

I'll admit it's not exactly easy to work out how this reordering works
without a pen and paper or trial and error.  I've tried to make the
implementation preserve the original program's order as much as makes
sense (i.e. when order is an otherwise arbitrary choice) to keep it
somewhat sane to follow.

This reordering naturally skips dead code, so pour one out for ☠️ .
We lose our cute dead code emoji marker, but on the other hand all code
downstream of Builder::done() can assume every instruction is live.

Change-Id: Iceffcd10fd7465eae51a39ef8eec7a7189766ba2
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/249999
Commit-Queue: Mike Klein <mtklein@google.com>
Reviewed-by: Herb Derby <herb@google.com>
2019-10-22 21:49:05 +00:00

1264 lines
38 KiB
C++

/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkColorPriv.h"
#include "include/private/SkColorData.h"
#include "src/core/SkCpu.h"
#include "src/core/SkVM.h"
#include "tests/Test.h"
#include "tools/Resources.h"
#include "tools/SkVMBuilders.h"
using Fmt = SrcoverBuilder_F32::Fmt;
const char* fmt_name(Fmt fmt) {
switch (fmt) {
case Fmt::A8: return "A8";
case Fmt::G8: return "G8";
case Fmt::RGBA_8888: return "RGBA_8888";
}
return "";
}
static void dump(skvm::Builder& builder, SkWStream* o) {
skvm::Program program = builder.done();
builder.dump(o);
o->writeText("\n");
program.dump(o);
o->writeText("\n");
}
// TODO: I'd like this to go away and have every test in here run both JIT and interpreter.
template <typename Fn>
static void test_interpreter_only(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
#if defined(SKVM_JIT)
REPORTER_ASSERT(r, !program.hasJIT());
#endif
test((const skvm::Program&) program);
}
template <typename Fn>
static void test_jit_and_interpreter(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
#if defined(SKVM_JIT)
const bool expect_jit
#if defined(SK_CPU_X86)
= SkCpu::Supports(SkCpu::HSW);
#elif defined(SK_CPU_ARM64)
= true;
#else
= false;
#endif
if (expect_jit) {
REPORTER_ASSERT(r, program.hasJIT());
test((const skvm::Program&) program);
program.dropJIT();
}
#endif
test_interpreter_only(r, std::move(program), std::move(test));
}
DEF_TEST(SkVM, r) {
SkDynamicMemoryWStream buf;
// Write all combinations of SrcoverBuilder_F32
for (int s = 0; s < 3; s++)
for (int d = 0; d < 3; d++) {
auto srcFmt = (Fmt)s,
dstFmt = (Fmt)d;
SrcoverBuilder_F32 builder{srcFmt, dstFmt};
buf.writeText(fmt_name(srcFmt));
buf.writeText(" over ");
buf.writeText(fmt_name(dstFmt));
buf.writeText("\n");
dump(builder, &buf);
}
// Write the I32 Srcovers also.
{
SrcoverBuilder_I32_Naive builder;
buf.writeText("I32 (Naive) 8888 over 8888\n");
dump(builder, &buf);
}
{
SrcoverBuilder_I32 builder;
buf.writeText("I32 8888 over 8888\n");
dump(builder, &buf);
}
{
SrcoverBuilder_I32_SWAR builder;
buf.writeText("I32 (SWAR) 8888 over 8888\n");
dump(builder, &buf);
}
{
skvm::Builder b;
skvm::Arg arg = b.varying<int>();
// x and y can both be hoisted,
// and x can die at y, while y must live for the loop.
skvm::I32 x = b.splat(1),
y = b.add(x, b.splat(2));
b.store32(arg, b.mul(b.load32(arg), y));
skvm::Program program = b.done();
REPORTER_ASSERT(r, program.nregs() == 2);
std::vector<skvm::Builder::Instruction> insts = b.program();
REPORTER_ASSERT(r, insts.size() == 6);
REPORTER_ASSERT(r, insts[0].can_hoist && insts[0].death == 2 && !insts[0].used_in_loop);
REPORTER_ASSERT(r, insts[1].can_hoist && insts[1].death == 2 && !insts[1].used_in_loop);
REPORTER_ASSERT(r, insts[2].can_hoist && insts[2].death == 4 && insts[2].used_in_loop);
REPORTER_ASSERT(r, !insts[3].can_hoist);
REPORTER_ASSERT(r, !insts[4].can_hoist);
REPORTER_ASSERT(r, !insts[5].can_hoist);
dump(b, &buf);
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
int arg[] = {0,1,2,3,4,5,6,7,8,9};
program.eval(SK_ARRAY_COUNT(arg), arg);
for (int i = 0; i < (int)SK_ARRAY_COUNT(arg); i++) {
REPORTER_ASSERT(r, arg[i] == i*3);
}
});
}
{
// Demonstrate the value of program reordering.
skvm::Builder b;
skvm::Arg sp = b.varying<int>(),
dp = b.varying<int>();
skvm::I32 byte = b.splat(0xff);
skvm::I32 src = b.load32(sp),
sr = b.extract(src, 0, byte),
sg = b.extract(src, 8, byte),
sb = b.extract(src, 16, byte),
sa = b.extract(src, 24, byte);
skvm::I32 dst = b.load32(dp),
dr = b.extract(dst, 0, byte),
dg = b.extract(dst, 8, byte),
db = b.extract(dst, 16, byte),
da = b.extract(dst, 24, byte);
skvm::I32 R = b.add(sr, dr),
G = b.add(sg, dg),
B = b.add(sb, db),
A = b.add(sa, da);
skvm::I32 rg = b.pack(R, G, 8),
ba = b.pack(B, A, 8),
rgba = b.pack(rg, ba, 16);
b.store32(dp, rgba);
dump(b, &buf);
}
sk_sp<SkData> blob = buf.detachAsData();
{
sk_sp<SkData> expected = GetResourceAsData("SkVMTest.expected");
REPORTER_ASSERT(r, expected, "Couldn't load SkVMTest.expected.");
if (expected) {
if (blob->size() != expected->size()
|| 0 != memcmp(blob->data(), expected->data(), blob->size())) {
ERRORF(r, "SkVMTest expected\n%.*s\nbut got\n%.*s\n",
expected->size(), expected->data(),
blob->size(), blob->data());
}
SkFILEWStream out(GetResourcePath("SkVMTest.expected").c_str());
if (out.isValid()) {
out.write(blob->data(), blob->size());
}
}
}
auto test_8888 = [&](skvm::Program&& program) {
uint32_t src[9];
uint32_t dst[SK_ARRAY_COUNT(src)];
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
src[i] = 0xbb007733;
dst[i] = 0xffaaccee;
}
SkPMColor expected = SkPMSrcOver(src[0], dst[0]); // 0xff2dad73
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
// dst is probably 0xff2dad72.
for (auto got : dst) {
auto want = expected;
for (int i = 0; i < 4; i++) {
uint8_t d = got & 0xff,
w = want & 0xff;
if (abs(d-w) >= 2) {
SkDebugf("d %02x, w %02x\n", d,w);
}
REPORTER_ASSERT(r, abs(d-w) < 2);
got >>= 8;
want >>= 8;
}
}
});
};
test_8888(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::RGBA_8888}.done("srcover_f32"));
test_8888(SrcoverBuilder_I32_Naive{}.done("srcover_i32_naive"));
test_8888(SrcoverBuilder_I32{}.done("srcover_i32"));
test_8888(SrcoverBuilder_I32_SWAR{}.done("srcover_i32_SWAR"));
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::G8}.done(),
[&](const skvm::Program& program) {
uint32_t src[9];
uint8_t dst[SK_ARRAY_COUNT(src)];
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
src[i] = 0xbb007733;
dst[i] = 0x42;
}
SkPMColor over = SkPMSrcOver(SkPackARGB32(0xbb, 0x33, 0x77, 0x00),
0xff424242);
uint8_t want = SkComputeLuminance(SkGetPackedR32(over),
SkGetPackedG32(over),
SkGetPackedB32(over));
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
for (auto got : dst) {
REPORTER_ASSERT(r, abs(got-want) < 3);
}
});
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::A8, Fmt::A8}.done(),
[&](const skvm::Program& program) {
uint8_t src[256],
dst[256];
for (int i = 0; i < 256; i++) {
src[i] = 255 - i;
dst[i] = i;
}
program.eval(256, src, dst);
for (int i = 0; i < 256; i++) {
uint8_t want = SkGetPackedA32(SkPMSrcOver(SkPackARGB32(src[i], 0,0,0),
SkPackARGB32( i, 0,0,0)));
REPORTER_ASSERT(r, abs(dst[i]-want) < 2);
}
});
}
DEF_TEST(SkVM_Pointless, r) {
// Let's build a program with no memory arguments.
// It should all be pegged as dead code, but we should be able to "run" it.
skvm::Builder b;
{
b.add(b.splat(5.0f),
b.splat(4.0f));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
for (int N = 0; N < 64; N++) {
program.eval(N);
}
});
for (const skvm::Builder::Instruction& inst : b.program()) {
REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true);
}
}
DEF_TEST(SkVM_LoopCounts, r) {
// Make sure we cover all the exact N we want.
// buf[i] += 1
skvm::Builder b;
skvm::Arg arg = b.varying<int>();
b.store32(arg,
b.add(b.splat(1),
b.load32(arg)));
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int buf[64];
for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) {
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
buf[i] = i;
}
program.eval(N, buf);
for (int i = 0; i < N; i++) {
REPORTER_ASSERT(r, buf[i] == i+1);
}
for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) {
REPORTER_ASSERT(r, buf[i] == i);
}
}
});
}
DEF_TEST(SkVM_gathers, r) {
skvm::Builder b;
{
skvm::Arg img = b.uniform(),
buf32 = b.varying<int>(),
buf16 = b.varying<uint16_t>(),
buf8 = b.varying<uint8_t>();
skvm::I32 x = b.load32(buf32);
b.store32(buf32, b.gather32(img, b.bit_and(x, b.splat( 7))));
b.store16(buf16, b.gather16(img, b.bit_and(x, b.splat(15))));
b.store8 (buf8 , b.gather8 (img, b.bit_and(x, b.splat(31))));
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
const int img[] = {12,34,56,78, 90,98,76,54};
constexpr int N = 20;
int buf32[N];
uint16_t buf16[N];
uint8_t buf8 [N];
for (int i = 0; i < 20; i++) {
buf32[i] = i;
}
program.eval(N, img, buf32, buf16, buf8);
int i = 0;
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++;
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++;
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++;
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++;
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++;
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
});
}
DEF_TEST(SkVM_bitops, r) {
skvm::Builder b;
{
skvm::Arg ptr = b.varying<int>();
skvm::I32 x = b.load32(ptr);
x = b.bit_and (x, b.splat(0xf1)); // 0x40
x = b.bit_or (x, b.splat(0x80)); // 0xc0
x = b.bit_xor (x, b.splat(0xfe)); // 0x3e
x = b.bit_clear(x, b.splat(0x30)); // 0x0e
x = b.shl(x, 28); // 0xe000'0000
x = b.sra(x, 28); // 0xffff'fffe
x = b.shr(x, 1); // 0x7fff'ffff
b.store32(ptr, x);
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int x = 0x42;
program.eval(1, &x);
REPORTER_ASSERT(r, x == 0x7fff'ffff);
});
}
DEF_TEST(SkVM_f32, r) {
skvm::Builder b;
{
skvm::Arg arg = b.varying<float>();
skvm::F32 x = b.bit_cast(b.load32(arg)),
y = b.add(x,x), // y = 2x
z = b.sub(y,x), // z = 2x-x = x
w = b.div(z,x); // w = x/x = 1
b.store32(arg, b.bit_cast(w));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
float buf[] = { 1,2,3,4,5,6,7,8,9 };
program.eval(SK_ARRAY_COUNT(buf), buf);
for (float v : buf) {
REPORTER_ASSERT(r, v == 1.0f);
}
});
}
DEF_TEST(SkVM_cmp_i32, r) {
skvm::Builder b;
{
skvm::I32 x = b.load32(b.varying<int>());
auto to_bit = [&](int shift, skvm::I32 mask) {
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
};
skvm::I32 m = b.splat(0);
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0))));
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1))));
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2))));
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3))));
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4))));
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5))));
b.store32(b.varying<int>(), m);
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
int in[] = { 0,1,2,3,4,5,6,7,8,9 };
int out[SK_ARRAY_COUNT(in)];
program.eval(SK_ARRAY_COUNT(in), in, out);
REPORTER_ASSERT(r, out[0] == 0b001111);
REPORTER_ASSERT(r, out[1] == 0b001100);
REPORTER_ASSERT(r, out[2] == 0b001010);
REPORTER_ASSERT(r, out[3] == 0b001010);
REPORTER_ASSERT(r, out[4] == 0b000010);
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
REPORTER_ASSERT(r, out[i] == 0b110010);
}
});
}
DEF_TEST(SkVM_cmp_f32, r) {
skvm::Builder b;
{
skvm::F32 x = b.bit_cast(b.load32(b.varying<float>()));
auto to_bit = [&](int shift, skvm::I32 mask) {
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
};
skvm::I32 m = b.splat(0);
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f))));
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f))));
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f))));
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f))));
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f))));
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f))));
b.store32(b.varying<int>(), m);
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
float in[] = { 0,1,2,3,4,5,6,7,8,9 };
int out[SK_ARRAY_COUNT(in)];
program.eval(SK_ARRAY_COUNT(in), in, out);
REPORTER_ASSERT(r, out[0] == 0b001111);
REPORTER_ASSERT(r, out[1] == 0b001100);
REPORTER_ASSERT(r, out[2] == 0b001010);
REPORTER_ASSERT(r, out[3] == 0b001010);
REPORTER_ASSERT(r, out[4] == 0b000010);
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
REPORTER_ASSERT(r, out[i] == 0b110010);
}
});
}
DEF_TEST(SkVM_i16x2, r) {
skvm::Builder b;
{
skvm::Arg buf = b.varying<int>();
skvm::I32 x = b.load32(buf),
y = b.add_16x2(x,x), // y = 2x
z = b.mul_16x2(x,y), // z = 2x^2
w = b.sub_16x2(z,x), // w = x(2x-1)
v = b.shl_16x2(w,7), // These shifts will be a no-op
u = b.sra_16x2(v,7); // for all but x=12 and x=13.
b.store32(buf, u);
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
uint16_t buf[] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13 };
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
for (int i = 0; i < 12; i++) {
REPORTER_ASSERT(r, buf[i] == i*(2*i-1));
}
REPORTER_ASSERT(r, buf[12] == 0xff14); // 12*23 = 0x114
REPORTER_ASSERT(r, buf[13] == 0xff45); // 13*25 = 0x145
});
}
DEF_TEST(SkVM_cmp_i16, r) {
skvm::Builder b;
{
skvm::Arg buf = b.varying<int>();
skvm::I32 x = b.load32(buf);
auto to_bit = [&](int shift, skvm::I32 mask) {
return b.shl_16x2(b.bit_and(mask, b.splat(0x0001'0001)), shift);
};
skvm::I32 m = b.splat(0);
m = b.bit_or(m, to_bit(0, b. eq_16x2(x, b.splat(0x0000'0000))));
m = b.bit_or(m, to_bit(1, b.neq_16x2(x, b.splat(0x0001'0001))));
m = b.bit_or(m, to_bit(2, b. lt_16x2(x, b.splat(0x0002'0002))));
m = b.bit_or(m, to_bit(3, b.lte_16x2(x, b.splat(0x0003'0003))));
m = b.bit_or(m, to_bit(4, b. gt_16x2(x, b.splat(0x0004'0004))));
m = b.bit_or(m, to_bit(5, b.gte_16x2(x, b.splat(0x0005'0005))));
b.store32(buf, m);
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
int16_t buf[] = { 0,1, 2,3, 4,5, 6,7, 8,9 };
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
REPORTER_ASSERT(r, buf[0] == 0b001111);
REPORTER_ASSERT(r, buf[1] == 0b001100);
REPORTER_ASSERT(r, buf[2] == 0b001010);
REPORTER_ASSERT(r, buf[3] == 0b001010);
REPORTER_ASSERT(r, buf[4] == 0b000010);
for (int i = 5; i < (int)SK_ARRAY_COUNT(buf); i++) {
REPORTER_ASSERT(r, buf[i] == 0b110010);
}
});
}
DEF_TEST(SkVM_mad, r) {
// This program is designed to exercise the tricky corners of instruction
// and register selection for Op::mad_f32.
skvm::Builder b;
{
skvm::Arg arg = b.varying<int>();
skvm::F32 x = b.to_f32(b.load32(arg)),
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok.
w = b.mad(z,z,y), // w can alias z but not y.
v = b.mad(w,y,w); // Got to stop somewhere.
b.store32(arg, b.to_i32(v));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int x = 2;
program.eval(1, &x);
// x = 2
// y = 2*2 + 2 = 6
// z = 6*6 + 2 = 38
// w = 38*38 + 6 = 1450
// v = 1450*6 + 1450 = 10150
REPORTER_ASSERT(r, x == 10150);
});
}
DEF_TEST(SkVM_madder, r) {
skvm::Builder b;
{
skvm::Arg arg = b.varying<float>();
skvm::F32 x = b.bit_cast(b.load32(arg)),
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y].
w = b.mad(y,y,z);
b.store32(arg, b.bit_cast(w));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
float x = 2.0f;
// y = 2*2 + 2 = 6
// z = 6*2 + 6 = 18
// w = 6*6 + 18 = 54
program.eval(1, &x);
REPORTER_ASSERT(r, x == 54.0f);
});
}
DEF_TEST(SkVM_hoist, r) {
// This program uses enough constants that it will fail to JIT if we hoist them.
// The JIT will try again without hoisting, and that'll just need 2 registers.
skvm::Builder b;
{
skvm::Arg arg = b.varying<int>();
skvm::I32 x = b.load32(arg);
for (int i = 0; i < 32; i++) {
x = b.add(x, b.splat(i));
}
b.store32(arg, x);
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int x = 4;
program.eval(1, &x);
// x += 0 + 1 + 2 + 3 + ... + 30 + 31
// x += 496
REPORTER_ASSERT(r, x == 500);
});
}
DEF_TEST(SkVM_select, r) {
skvm::Builder b;
{
skvm::Arg buf = b.varying<int>();
skvm::I32 x = b.load32(buf);
x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) );
b.store32(buf, x);
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int buf[] = { 0,1,2,3,4,5,6,7,8 };
program.eval(SK_ARRAY_COUNT(buf), buf);
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42));
}
});
}
DEF_TEST(SkVM_NewOps, r) {
// Exercise a somewhat arbitrary set of new ops.
skvm::Builder b;
{
skvm::Arg buf = b.varying<int16_t>(),
img = b.uniform(),
uniforms = b.uniform();
skvm::I32 x = b.load16(buf);
x = b.add(x, b.uniform32(uniforms, 0));
x = b.mul(x, b.uniform8 (uniforms, 4));
x = b.sub(x, b.uniform16(uniforms, 6));
skvm::I32 limit = b.uniform32(uniforms, 8);
x = b.select(b.lt(x, b.splat(0)), b.splat(0), x);
x = b.select(b.gt(x, limit ), limit , x);
x = b.gather8(img, x);
b.store16(buf, x);
}
if ((false)) {
SkDynamicMemoryWStream buf;
dump(b, &buf);
sk_sp<SkData> blob = buf.detachAsData();
SkDebugf("%.*s\n", blob->size(), blob->data());
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
const int N = 31;
int16_t buf[N];
for (int i = 0; i < N; i++) {
buf[i] = i;
}
const int M = 16;
uint8_t img[M];
for (int i = 0; i < M; i++) {
img[i] = i*i;
}
struct {
int add = 5;
uint8_t mul = 3;
uint16_t sub = 18;
int limit = M-1;
} uniforms;
program.eval(N, buf, img, &uniforms);
for (int i = 0; i < N; i++) {
// Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1).
int x = 3*(i-1);
// Then that's pinned to the limits of img.
if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly...
if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly
REPORTER_ASSERT(r, buf[i] == img[x]);
}
});
}
template <typename Fn>
static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) {
uint8_t buf[4096];
skvm::Assembler a{buf};
fn(a);
REPORTER_ASSERT(r, a.size() == expected.size());
auto got = (const uint8_t*)buf,
want = expected.begin();
for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) {
REPORTER_ASSERT(r, got[i] == want[i],
"byte %d was %02x, want %02x", i, got[i], want[i]);
}
}
DEF_TEST(SkVM_Assembler, r) {
// Easiest way to generate test cases is
//
// echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel
//
// The -x86-asm-syntax=intel bit is optional, controlling the
// input syntax only; the output will always be AT&T op x,y,dst style.
// Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find
// that a bit easier to use here, despite maybe favoring AT&T overall.
using A = skvm::Assembler;
// Our exit strategy from AVX code.
test_asm(r, [&](A& a) {
a.vzeroupper();
a.ret();
},{
0xc5, 0xf8, 0x77,
0xc3,
});
// Align should pad with zero
test_asm(r, [&](A& a) {
a.ret();
a.align(4);
},{
0xc3,
0x00, 0x00, 0x00,
});
test_asm(r, [&](A& a) {
a.add(A::rax, 8); // Always good to test rax.
a.sub(A::rax, 32);
a.add(A::rdi, 12); // Last 0x48 REX
a.sub(A::rdi, 8);
a.add(A::r8 , 7); // First 0x49 REX
a.sub(A::r8 , 4);
a.add(A::rsi, 128); // Requires 4 byte immediate.
a.sub(A::r8 , 1000000);
},{
0x48, 0x83, 0b11'000'000, 0x08,
0x48, 0x83, 0b11'101'000, 0x20,
0x48, 0x83, 0b11'000'111, 0x0c,
0x48, 0x83, 0b11'101'111, 0x08,
0x49, 0x83, 0b11'000'000, 0x07,
0x49, 0x83, 0b11'101'000, 0x04,
0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00,
0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00,
});
test_asm(r, [&](A& a) {
a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX.
a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX.
a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX.
a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX.
a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX.
a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right.
},{
/* VEX */ /*op*/ /*modRM*/
0xc5, 0xf5, 0xfe, 0xc2,
0xc5, 0x75, 0xfe, 0xc2,
0xc5, 0xbd, 0xfe, 0xc2,
0xc4, 0xc1, 0x75, 0xfe, 0xc0,
0xc4, 0xe2, 0x75, 0x40, 0xc2,
0xc5, 0xf5, 0xfa, 0xc2,
});
test_asm(r, [&](A& a) {
a.vpcmpeqd(A::ymm0, A::ymm1, A::ymm2);
a.vpcmpgtd(A::ymm0, A::ymm1, A::ymm2);
},{
0xc5,0xf5,0x76,0xc2,
0xc5,0xf5,0x66,0xc2,
});
test_asm(r, [&](A& a) {
a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3);
},{
0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30,
});
test_asm(r, [&](A& a) {
a.vpsrld(A::ymm15, A::ymm2, 8);
a.vpsrld(A::ymm0 , A::ymm8, 5);
},{
0xc5, 0x85, 0x72,0xd2, 0x08,
0xc4,0xc1,0x7d, 0x72,0xd0, 0x05,
});
test_asm(r, [&](A& a) {
a.vpermq(A::ymm1, A::ymm2, 5);
},{
0xc4,0xe3,0xfd, 0x00,0xca, 0x05,
});
test_asm(r, [&](A& a) {
A::Label l = a.here();
a.byte(1);
a.byte(2);
a.byte(3);
a.byte(4);
a.vbroadcastss(A::ymm0 , &l);
a.vbroadcastss(A::ymm1 , &l);
a.vbroadcastss(A::ymm8 , &l);
a.vbroadcastss(A::ymm15, &l);
a.vpshufb(A::ymm4, A::ymm3, &l);
},{
0x01, 0x02, 0x03, 0x4,
/* VEX */ /*op*/ /* ModRM */ /* offset */
0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13
0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22
0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31
0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40
0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49
});
test_asm(r, [&](A& a) {
a.vbroadcastss(A::ymm0, A::rdi, 0);
a.vbroadcastss(A::ymm13, A::r14, 7);
a.vbroadcastss(A::ymm8, A::rdx, -12);
a.vbroadcastss(A::ymm8, A::rdx, 400);
a.vbroadcastss(A::ymm8, A::xmm0);
a.vbroadcastss(A::ymm0, A::xmm13);
},{
/* VEX */ /*op*/ /*ModRM*/ /*offset*/
0xc4,0xe2,0x7d, 0x18, 0b00'000'111,
0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07,
0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4,
0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00,
0xc4,0x62,0x7d, 0x18, 0b11'000'000,
0xc4,0xc2,0x7d, 0x18, 0b11'000'101,
});
test_asm(r, [&](A& a) {
A::Label l = a.here();
a.jne(&l);
a.jne(&l);
a.je (&l);
a.jmp(&l);
a.jl (&l);
a.cmp(A::rdx, 0);
a.cmp(A::rax, 12);
a.cmp(A::r14, 2000000000);
},{
0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes
0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes
0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes
0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes
0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes
0x48,0x83,0xfa,0x00,
0x48,0x83,0xf8,0x0c,
0x49,0x81,0xfe,0x00,0x94,0x35,0x77,
});
test_asm(r, [&](A& a) {
a.vmovups(A::ymm5, A::rsi);
a.vmovups(A::rsi, A::ymm5);
a.vmovups(A::rsi, A::xmm5);
a.vpmovzxwd(A::ymm4, A::rsi);
a.vpmovzxbd(A::ymm4, A::rsi);
a.vmovq(A::rdx, A::xmm15);
},{
/* VEX */ /*Op*/ /* ModRM */
0xc5, 0xfc, 0x10, 0b00'101'110,
0xc5, 0xfc, 0x11, 0b00'101'110,
0xc5, 0xf8, 0x11, 0b00'101'110,
0xc4,0xe2,0x7d, 0x33, 0b00'100'110,
0xc4,0xe2,0x7d, 0x31, 0b00'100'110,
0xc5, 0x79, 0xd6, 0b00'111'010,
});
test_asm(r, [&](A& a) {
a.movzbl(A::rax, A::rsi, 0); // Low registers for src and dst.
a.movzbl(A::rax, A::r8, 0); // High src register.
a.movzbl(A::r8 , A::rsi, 0); // High dst register.
a.movzbl(A::r8, A::rsi, 12);
a.movzbl(A::r8, A::rsi, 400);
a.vmovd(A::rax, A::xmm0);
a.vmovd(A::rax, A::xmm8);
a.vmovd(A::r8, A::xmm0);
a.vmovd(A::xmm0, A::rax);
a.vmovd(A::xmm8, A::rax);
a.vmovd(A::xmm0, A::r8);
a.vmovd_direct(A::rax, A::xmm0);
a.vmovd_direct(A::rax, A::xmm8);
a.vmovd_direct(A::r8, A::xmm0);
a.vmovd_direct(A::xmm0, A::rax);
a.vmovd_direct(A::xmm8, A::rax);
a.vmovd_direct(A::xmm0, A::r8);
a.movb(A::rdx, A::rax);
a.movb(A::rdx, A::r8);
a.movb(A::r8 , A::rax);
},{
0x0f,0xb6,0x06,
0x41,0x0f,0xb6,0x00,
0x44,0x0f,0xb6,0x06,
0x44,0x0f,0xb6,0x46, 12,
0x44,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00,
0xc5,0xf9,0x7e,0x00,
0xc5,0x79,0x7e,0x00,
0xc4,0xc1,0x79,0x7e,0x00,
0xc5,0xf9,0x6e,0x00,
0xc5,0x79,0x6e,0x00,
0xc4,0xc1,0x79,0x6e,0x00,
0xc5,0xf9,0x7e,0xc0,
0xc5,0x79,0x7e,0xc0,
0xc4,0xc1,0x79,0x7e,0xc0,
0xc5,0xf9,0x6e,0xc0,
0xc5,0x79,0x6e,0xc0,
0xc4,0xc1,0x79,0x6e,0xc0,
0x88, 0x02,
0x44, 0x88, 0x02,
0x41, 0x88, 0x00,
});
test_asm(r, [&](A& a) {
a.vpinsrw(A::xmm1, A::xmm8, A::rsi, 4);
a.vpinsrw(A::xmm8, A::xmm1, A::r8, 12);
a.vpinsrb(A::xmm1, A::xmm8, A::rsi, 4);
a.vpinsrb(A::xmm8, A::xmm1, A::r8, 12);
a.vpextrw(A::rsi, A::xmm8, 7);
a.vpextrw(A::r8, A::xmm1, 15);
a.vpextrb(A::rsi, A::xmm8, 7);
a.vpextrb(A::r8, A::xmm1, 15);
},{
0xc5,0xb9, 0xc4, 0x0e, 4,
0xc4,0x41,0x71, 0xc4, 0x00, 12,
0xc4,0xe3,0x39, 0x20, 0x0e, 4,
0xc4,0x43,0x71, 0x20, 0x00, 12,
0xc4,0x63,0x79, 0x15, 0x06, 7,
0xc4,0xc3,0x79, 0x15, 0x08, 15,
0xc4,0x63,0x79, 0x14, 0x06, 7,
0xc4,0xc3,0x79, 0x14, 0x08, 15,
});
test_asm(r, [&](A& a) {
a.vpandn(A::ymm3, A::ymm12, A::ymm2);
},{
0xc5, 0x9d, 0xdf, 0xda,
});
test_asm(r, [&](A& a) {
a.vmovdqa (A::ymm3, A::ymm2);
a.vcvttps2dq(A::ymm3, A::ymm2);
a.vcvtdq2ps (A::ymm3, A::ymm2);
},{
0xc5,0xfd,0x6f,0xda,
0xc5,0xfe,0x5b,0xda,
0xc5,0xfc,0x5b,0xda,
});
// echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64
test_asm(r, [&](A& a) {
a.and16b(A::v4, A::v3, A::v1);
a.orr16b(A::v4, A::v3, A::v1);
a.eor16b(A::v4, A::v3, A::v1);
a.bic16b(A::v4, A::v3, A::v1);
a.bsl16b(A::v4, A::v3, A::v1);
a.add4s(A::v4, A::v3, A::v1);
a.sub4s(A::v4, A::v3, A::v1);
a.mul4s(A::v4, A::v3, A::v1);
a.cmeq4s(A::v4, A::v3, A::v1);
a.cmgt4s(A::v4, A::v3, A::v1);
a.sub8h(A::v4, A::v3, A::v1);
a.mul8h(A::v4, A::v3, A::v1);
a.fadd4s(A::v4, A::v3, A::v1);
a.fsub4s(A::v4, A::v3, A::v1);
a.fmul4s(A::v4, A::v3, A::v1);
a.fdiv4s(A::v4, A::v3, A::v1);
a.fmla4s(A::v4, A::v3, A::v1);
},{
0x64,0x1c,0x21,0x4e,
0x64,0x1c,0xa1,0x4e,
0x64,0x1c,0x21,0x6e,
0x64,0x1c,0x61,0x4e,
0x64,0x1c,0x61,0x6e,
0x64,0x84,0xa1,0x4e,
0x64,0x84,0xa1,0x6e,
0x64,0x9c,0xa1,0x4e,
0x64,0x8c,0xa1,0x6e,
0x64,0x34,0xa1,0x4e,
0x64,0x84,0x61,0x6e,
0x64,0x9c,0x61,0x4e,
0x64,0xd4,0x21,0x4e,
0x64,0xd4,0xa1,0x4e,
0x64,0xdc,0x21,0x6e,
0x64,0xfc,0x21,0x6e,
0x64,0xcc,0x21,0x4e,
});
test_asm(r, [&](A& a) {
a.shl4s(A::v4, A::v3, 0);
a.shl4s(A::v4, A::v3, 1);
a.shl4s(A::v4, A::v3, 8);
a.shl4s(A::v4, A::v3, 16);
a.shl4s(A::v4, A::v3, 31);
a.sshr4s(A::v4, A::v3, 1);
a.sshr4s(A::v4, A::v3, 8);
a.sshr4s(A::v4, A::v3, 31);
a.ushr4s(A::v4, A::v3, 1);
a.ushr4s(A::v4, A::v3, 8);
a.ushr4s(A::v4, A::v3, 31);
a.ushr8h(A::v4, A::v3, 1);
a.ushr8h(A::v4, A::v3, 8);
a.ushr8h(A::v4, A::v3, 15);
},{
0x64,0x54,0x20,0x4f,
0x64,0x54,0x21,0x4f,
0x64,0x54,0x28,0x4f,
0x64,0x54,0x30,0x4f,
0x64,0x54,0x3f,0x4f,
0x64,0x04,0x3f,0x4f,
0x64,0x04,0x38,0x4f,
0x64,0x04,0x21,0x4f,
0x64,0x04,0x3f,0x6f,
0x64,0x04,0x38,0x6f,
0x64,0x04,0x21,0x6f,
0x64,0x04,0x1f,0x6f,
0x64,0x04,0x18,0x6f,
0x64,0x04,0x11,0x6f,
});
test_asm(r, [&](A& a) {
a.sli4s(A::v4, A::v3, 0);
a.sli4s(A::v4, A::v3, 1);
a.sli4s(A::v4, A::v3, 8);
a.sli4s(A::v4, A::v3, 16);
a.sli4s(A::v4, A::v3, 31);
},{
0x64,0x54,0x20,0x6f,
0x64,0x54,0x21,0x6f,
0x64,0x54,0x28,0x6f,
0x64,0x54,0x30,0x6f,
0x64,0x54,0x3f,0x6f,
});
test_asm(r, [&](A& a) {
a.scvtf4s (A::v4, A::v3);
a.fcvtzs4s(A::v4, A::v3);
},{
0x64,0xd8,0x21,0x4e,
0x64,0xb8,0xa1,0x4e,
});
test_asm(r, [&](A& a) {
a.ret(A::x30); // Conventional ret using link register.
a.ret(A::x13); // Can really return using any register if we like.
a.add(A::x2, A::x2, 4);
a.add(A::x3, A::x2, 32);
a.sub(A::x2, A::x2, 4);
a.sub(A::x3, A::x2, 32);
a.subs(A::x2, A::x2, 4);
a.subs(A::x3, A::x2, 32);
a.subs(A::xzr, A::x2, 4); // These are actually the same instruction!
a.cmp(A::x2, 4);
A::Label l = a.here();
a.bne(&l);
a.bne(&l);
a.blt(&l);
a.b(&l);
a.cbnz(A::x2, &l);
a.cbz(A::x2, &l);
},{
0xc0,0x03,0x5f,0xd6,
0xa0,0x01,0x5f,0xd6,
0x42,0x10,0x00,0x91,
0x43,0x80,0x00,0x91,
0x42,0x10,0x00,0xd1,
0x43,0x80,0x00,0xd1,
0x42,0x10,0x00,0xf1,
0x43,0x80,0x00,0xf1,
0x5f,0x10,0x00,0xf1,
0x5f,0x10,0x00,0xf1,
0x01,0x00,0x00,0x54, // b.ne #0
0xe1,0xff,0xff,0x54, // b.ne #-4
0xcb,0xff,0xff,0x54, // b.lt #-8
0xae,0xff,0xff,0x54, // b.al #-12
0x82,0xff,0xff,0xb5, // cbnz x2, #-16
0x62,0xff,0xff,0xb4, // cbz x2, #-20
});
// Can we cbz() to a not-yet-defined label?
test_asm(r, [&](A& a) {
A::Label l;
a.cbz(A::x2, &l);
a.add(A::x3, A::x2, 32);
a.label(&l);
a.ret(A::x30);
},{
0x42,0x00,0x00,0xb4, // cbz x2, #8
0x43,0x80,0x00,0x91, // add x3, x2, #32
0xc0,0x03,0x5f,0xd6, // ret
});
// If we start a label as a backward label,
// can we redefine it to be a future label?
// (Not sure this is useful... just want to test it works.)
test_asm(r, [&](A& a) {
A::Label l1 = a.here();
a.add(A::x3, A::x2, 32);
a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky.
A::Label l2 = a.here(); // Start off the same...
a.add(A::x3, A::x2, 32);
a.cbz(A::x2, &l2); // Looks like this will go backward...
a.add(A::x2, A::x2, 4);
a.add(A::x3, A::x2, 32);
a.label(&l2); // But no... actually forward! What a switcheroo!
},{
0x43,0x80,0x00,0x91, // add x3, x2, #32
0xe2,0xff,0xff,0xb4, // cbz x2, #-4
0x43,0x80,0x00,0x91, // add x3, x2, #32
0x62,0x00,0x00,0xb4, // cbz x2, #12
0x42,0x10,0x00,0x91, // add x2, x2, #4
0x43,0x80,0x00,0x91, // add x3, x2, #32
});
// Loading from a label on ARM.
test_asm(r, [&](A& a) {
A::Label fore,aft;
a.label(&fore);
a.word(0x01234567);
a.ldrq(A::v1, &fore);
a.ldrq(A::v2, &aft);
a.label(&aft);
a.word(0x76543210);
},{
0x67,0x45,0x23,0x01,
0xe1,0xff,0xff,0x9c, // ldr q1, #-4
0x22,0x00,0x00,0x9c, // ldr q2, #4
0x10,0x32,0x54,0x76,
});
test_asm(r, [&](A& a) {
a.ldrq(A::v0, A::x8);
a.strq(A::v0, A::x8);
},{
0x00,0x01,0xc0,0x3d,
0x00,0x01,0x80,0x3d,
});
test_asm(r, [&](A& a) {
a.xtns2h(A::v0, A::v0);
a.xtnh2b(A::v0, A::v0);
a.strs (A::v0, A::x0);
a.ldrs (A::v0, A::x0);
a.uxtlb2h(A::v0, A::v0);
a.uxtlh2s(A::v0, A::v0);
},{
0x00,0x28,0x61,0x0e,
0x00,0x28,0x21,0x0e,
0x00,0x00,0x00,0xbd,
0x00,0x00,0x40,0xbd,
0x00,0xa4,0x08,0x2f,
0x00,0xa4,0x10,0x2f,
});
test_asm(r, [&](A& a) {
a.ldrb(A::v0, A::x8);
a.strb(A::v0, A::x8);
},{
0x00,0x01,0x40,0x3d,
0x00,0x01,0x00,0x3d,
});
test_asm(r, [&](A& a) {
a.tbl(A::v0, A::v1, A::v2);
},{
0x20,0x00,0x02,0x4e,
});
}