skia2/src/core/SkPictureShader.cpp

335 lines
12 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPictureShader.h"
#include "SkBitmap.h"
#include "SkBitmapProcShader.h"
#include "SkCanvas.h"
#include "SkImage.h"
#include "SkMatrixUtils.h"
#include "SkPicture.h"
#include "SkReadBuffer.h"
#include "SkResourceCache.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrCaps.h"
#endif
namespace {
static unsigned gBitmapSkaderKeyNamespaceLabel;
struct BitmapShaderKey : public SkResourceCache::Key {
public:
BitmapShaderKey(uint32_t pictureID,
const SkRect& tile,
SkShader::TileMode tmx,
SkShader::TileMode tmy,
const SkSize& scale,
const SkMatrix& localMatrix)
: fPictureID(pictureID)
, fTile(tile)
, fTmx(tmx)
, fTmy(tmy)
, fScale(scale) {
for (int i = 0; i < 9; ++i) {
fLocalMatrixStorage[i] = localMatrix[i];
}
static const size_t keySize = sizeof(fPictureID) +
sizeof(fTile) +
sizeof(fTmx) + sizeof(fTmy) +
sizeof(fScale) +
sizeof(fLocalMatrixStorage);
// This better be packed.
SkASSERT(sizeof(uint32_t) * (&fEndOfStruct - &fPictureID) == keySize);
this->init(&gBitmapSkaderKeyNamespaceLabel, 0, keySize);
}
private:
uint32_t fPictureID;
SkRect fTile;
SkShader::TileMode fTmx, fTmy;
SkSize fScale;
SkScalar fLocalMatrixStorage[9];
SkDEBUGCODE(uint32_t fEndOfStruct;)
};
struct BitmapShaderRec : public SkResourceCache::Rec {
BitmapShaderRec(const BitmapShaderKey& key, SkShader* tileShader, size_t bitmapBytes)
: fKey(key)
, fShader(SkRef(tileShader))
, fBitmapBytes(bitmapBytes) {}
BitmapShaderKey fKey;
SkAutoTUnref<SkShader> fShader;
size_t fBitmapBytes;
const Key& getKey() const override { return fKey; }
size_t bytesUsed() const override {
return sizeof(fKey) + sizeof(SkShader) + fBitmapBytes;
}
const char* getCategory() const override { return "bitmap-shader"; }
SkDiscardableMemory* diagnostic_only_getDiscardable() const override { return nullptr; }
static bool Visitor(const SkResourceCache::Rec& baseRec, void* contextShader) {
const BitmapShaderRec& rec = static_cast<const BitmapShaderRec&>(baseRec);
SkAutoTUnref<SkShader>* result = reinterpret_cast<SkAutoTUnref<SkShader>*>(contextShader);
result->reset(SkRef(rec.fShader.get()));
// The bitmap shader is backed by an image generator, thus it can always re-generate its
// pixels if discarded.
return true;
}
};
} // namespace
SkPictureShader::SkPictureShader(const SkPicture* picture, TileMode tmx, TileMode tmy,
const SkMatrix* localMatrix, const SkRect* tile)
: INHERITED(localMatrix)
, fPicture(SkRef(picture))
, fTile(tile ? *tile : picture->cullRect())
, fTmx(tmx)
, fTmy(tmy) {
}
SkShader* SkPictureShader::Create(const SkPicture* picture, TileMode tmx, TileMode tmy,
const SkMatrix* localMatrix, const SkRect* tile) {
if (!picture || picture->cullRect().isEmpty() || (tile && tile->isEmpty())) {
return SkShader::CreateEmptyShader();
}
return new SkPictureShader(picture, tmx, tmy, localMatrix, tile);
}
SkFlattenable* SkPictureShader::CreateProc(SkReadBuffer& buffer) {
SkMatrix lm;
buffer.readMatrix(&lm);
TileMode mx = (TileMode)buffer.read32();
TileMode my = (TileMode)buffer.read32();
SkRect tile;
buffer.readRect(&tile);
SkAutoTUnref<SkPicture> picture;
if (buffer.isCrossProcess() && SkPicture::PictureIOSecurityPrecautionsEnabled()) {
if (buffer.isVersionLT(SkReadBuffer::kPictureShaderHasPictureBool_Version)) {
// Older code blindly serialized pictures. We don't trust them.
buffer.validate(false);
return nullptr;
}
// Newer code won't serialize pictures in disallow-cross-process-picture mode.
// Assert that they didn't serialize anything except a false here.
buffer.validate(!buffer.readBool());
} else {
// Old code always serialized the picture. New code writes a 'true' first if it did.
if (buffer.isVersionLT(SkReadBuffer::kPictureShaderHasPictureBool_Version) ||
buffer.readBool()) {
picture.reset(SkPicture::CreateFromBuffer(buffer));
}
}
return SkPictureShader::Create(picture, mx, my, &lm, &tile);
}
void SkPictureShader::flatten(SkWriteBuffer& buffer) const {
buffer.writeMatrix(this->getLocalMatrix());
buffer.write32(fTmx);
buffer.write32(fTmy);
buffer.writeRect(fTile);
// The deserialization code won't trust that our serialized picture is safe to deserialize.
// So write a 'false' telling it that we're not serializing a picture.
if (buffer.isCrossProcess() && SkPicture::PictureIOSecurityPrecautionsEnabled()) {
buffer.writeBool(false);
} else {
buffer.writeBool(true);
fPicture->flatten(buffer);
}
}
SkShader* SkPictureShader::refBitmapShader(const SkMatrix& viewMatrix, const SkMatrix* localM,
const int maxTextureSize) const {
SkASSERT(fPicture && !fPicture->cullRect().isEmpty());
SkMatrix m;
m.setConcat(viewMatrix, this->getLocalMatrix());
if (localM) {
m.preConcat(*localM);
}
// Use a rotation-invariant scale
SkPoint scale;
//
// TODO: replace this with decomposeScale() -- but beware LayoutTest rebaselines!
//
if (!SkDecomposeUpper2x2(m, nullptr, &scale, nullptr)) {
// Decomposition failed, use an approximation.
scale.set(SkScalarSqrt(m.getScaleX() * m.getScaleX() + m.getSkewX() * m.getSkewX()),
SkScalarSqrt(m.getScaleY() * m.getScaleY() + m.getSkewY() * m.getSkewY()));
}
SkSize scaledSize = SkSize::Make(SkScalarAbs(scale.x() * fTile.width()),
SkScalarAbs(scale.y() * fTile.height()));
// Clamp the tile size to about 4M pixels
static const SkScalar kMaxTileArea = 2048 * 2048;
SkScalar tileArea = SkScalarMul(scaledSize.width(), scaledSize.height());
if (tileArea > kMaxTileArea) {
SkScalar clampScale = SkScalarSqrt(kMaxTileArea / tileArea);
scaledSize.set(SkScalarMul(scaledSize.width(), clampScale),
SkScalarMul(scaledSize.height(), clampScale));
}
#if SK_SUPPORT_GPU
// Scale down the tile size if larger than maxTextureSize for GPU Path or it should fail on create texture
if (maxTextureSize) {
if (scaledSize.width() > maxTextureSize || scaledSize.height() > maxTextureSize) {
SkScalar downScale = maxTextureSize / SkMaxScalar(scaledSize.width(), scaledSize.height());
scaledSize.set(SkScalarFloorToScalar(SkScalarMul(scaledSize.width(), downScale)),
SkScalarFloorToScalar(SkScalarMul(scaledSize.height(), downScale)));
}
}
#endif
#ifdef SK_SUPPORT_LEGACY_PICTURESHADER_ROUNDING
const SkISize tileSize = scaledSize.toRound();
#else
const SkISize tileSize = scaledSize.toCeil();
#endif
if (tileSize.isEmpty()) {
return SkShader::CreateEmptyShader();
}
// The actual scale, compensating for rounding & clamping.
const SkSize tileScale = SkSize::Make(SkIntToScalar(tileSize.width()) / fTile.width(),
SkIntToScalar(tileSize.height()) / fTile.height());
SkAutoTUnref<SkShader> tileShader;
BitmapShaderKey key(fPicture->uniqueID(),
fTile,
fTmx,
fTmy,
tileScale,
this->getLocalMatrix());
if (!SkResourceCache::Find(key, BitmapShaderRec::Visitor, &tileShader)) {
SkMatrix tileMatrix;
tileMatrix.setRectToRect(fTile, SkRect::MakeIWH(tileSize.width(), tileSize.height()),
SkMatrix::kFill_ScaleToFit);
SkAutoTUnref<SkImage> tileImage(
SkImage::NewFromPicture(fPicture, tileSize, &tileMatrix, nullptr));
if (!tileImage) {
return nullptr;
}
SkMatrix shaderMatrix = this->getLocalMatrix();
shaderMatrix.preScale(1 / tileScale.width(), 1 / tileScale.height());
tileShader.reset(tileImage->newShader(fTmx, fTmy, &shaderMatrix));
const SkImageInfo tileInfo = SkImageInfo::MakeN32Premul(tileSize);
SkResourceCache::Add(new BitmapShaderRec(key, tileShader.get(),
tileInfo.getSafeSize(tileInfo.minRowBytes())));
}
return tileShader.detach();
}
size_t SkPictureShader::onContextSize(const ContextRec&) const {
return SkAlign16(sizeof(PictureShaderContext));
}
SkShader::Context* SkPictureShader::onCreateContext(const ContextRec& rec, void* storage) const {
SkAutoTUnref<SkShader> bitmapShader(this->refBitmapShader(*rec.fMatrix, rec.fLocalMatrix));
if (nullptr == bitmapShader.get()) {
return nullptr;
}
return PictureShaderContext::Create(storage, *this, rec, bitmapShader);
}
/////////////////////////////////////////////////////////////////////////////////////////
SkShader::Context* SkPictureShader::PictureShaderContext::Create(void* storage,
const SkPictureShader& shader, const ContextRec& rec, SkShader* bitmapShader) {
PictureShaderContext* ctx = new (storage) PictureShaderContext(shader, rec, bitmapShader);
if (nullptr == ctx->fBitmapShaderContext) {
ctx->~PictureShaderContext();
ctx = nullptr;
}
return ctx;
}
SkPictureShader::PictureShaderContext::PictureShaderContext(
const SkPictureShader& shader, const ContextRec& rec, SkShader* bitmapShader)
: INHERITED(shader, rec)
, fBitmapShader(SkRef(bitmapShader))
{
fBitmapShaderContextStorage = sk_malloc_throw(bitmapShader->contextSize(rec));
fBitmapShaderContext = bitmapShader->createContext(rec, fBitmapShaderContextStorage);
//if fBitmapShaderContext is null, we are invalid
}
SkPictureShader::PictureShaderContext::~PictureShaderContext() {
if (fBitmapShaderContext) {
fBitmapShaderContext->~Context();
}
sk_free(fBitmapShaderContextStorage);
}
uint32_t SkPictureShader::PictureShaderContext::getFlags() const {
SkASSERT(fBitmapShaderContext);
return fBitmapShaderContext->getFlags();
}
SkShader::Context::ShadeProc SkPictureShader::PictureShaderContext::asAShadeProc(void** ctx) {
SkASSERT(fBitmapShaderContext);
return fBitmapShaderContext->asAShadeProc(ctx);
}
void SkPictureShader::PictureShaderContext::shadeSpan(int x, int y, SkPMColor dstC[], int count) {
SkASSERT(fBitmapShaderContext);
fBitmapShaderContext->shadeSpan(x, y, dstC, count);
}
#ifndef SK_IGNORE_TO_STRING
void SkPictureShader::toString(SkString* str) const {
static const char* gTileModeName[SkShader::kTileModeCount] = {
"clamp", "repeat", "mirror"
};
str->appendf("PictureShader: [%f:%f:%f:%f] ",
fPicture->cullRect().fLeft,
fPicture->cullRect().fTop,
fPicture->cullRect().fRight,
fPicture->cullRect().fBottom);
str->appendf("(%s, %s)", gTileModeName[fTmx], gTileModeName[fTmy]);
this->INHERITED::toString(str);
}
#endif
#if SK_SUPPORT_GPU
const GrFragmentProcessor* SkPictureShader::asFragmentProcessor(
GrContext* context,
const SkMatrix& viewM,
const SkMatrix* localMatrix,
SkFilterQuality fq) const {
int maxTextureSize = 0;
if (context) {
maxTextureSize = context->caps()->maxTextureSize();
}
SkAutoTUnref<SkShader> bitmapShader(this->refBitmapShader(viewM, localMatrix, maxTextureSize));
if (!bitmapShader) {
return nullptr;
}
return bitmapShader->asFragmentProcessor(context, viewM, nullptr, fq);
}
#endif