a8c7f7702f
BUG=skia: R=mtklein@google.com Author: reed@google.com Review URL: https://codereview.chromium.org/147053003 git-svn-id: http://skia.googlecode.com/svn/trunk@13178 2bbb7eff-a529-9590-31e7-b0007b416f81
280 lines
8.9 KiB
C++
280 lines
8.9 KiB
C++
|
|
/*
|
|
* Copyright 2008 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#ifndef SkWriter32_DEFINED
|
|
#define SkWriter32_DEFINED
|
|
|
|
#include "SkMatrix.h"
|
|
#include "SkPath.h"
|
|
#include "SkPoint.h"
|
|
#include "SkRRect.h"
|
|
#include "SkRect.h"
|
|
#include "SkRegion.h"
|
|
#include "SkScalar.h"
|
|
#include "SkStream.h"
|
|
#include "SkTDArray.h"
|
|
#include "SkTypes.h"
|
|
|
|
class SkWriter32 : SkNoncopyable {
|
|
public:
|
|
/**
|
|
* The caller can specify an initial block of storage, which the caller manages.
|
|
*
|
|
* SkWriter32 will try to back reserve and write calls with this external storage until the
|
|
* first time an allocation doesn't fit. From then it will use dynamically allocated storage.
|
|
* This used to be optional behavior, but pipe now relies on it.
|
|
*/
|
|
SkWriter32(void* external = NULL, size_t externalBytes = 0) {
|
|
this->reset(external, externalBytes);
|
|
}
|
|
|
|
// return the current offset (will always be a multiple of 4)
|
|
size_t bytesWritten() const { return fCount * 4; }
|
|
|
|
SK_ATTR_DEPRECATED("use bytesWritten")
|
|
size_t size() const { return this->bytesWritten(); }
|
|
|
|
void reset(void* external = NULL, size_t externalBytes = 0) {
|
|
SkASSERT(SkIsAlign4((uintptr_t)external));
|
|
SkASSERT(SkIsAlign4(externalBytes));
|
|
fExternal = (uint32_t*)external;
|
|
fExternalLimit = SkToInt(externalBytes/4);
|
|
fCount = 0;
|
|
fInternal.rewind();
|
|
}
|
|
|
|
// If all data written is contiguous, then this returns a pointer to it, otherwise NULL.
|
|
// This will work if we've only written to the externally supplied block of storage, or if we've
|
|
// only written to our internal dynamic storage, but will fail if we have written into both.
|
|
const uint32_t* contiguousArray() const {
|
|
if (this->externalCount() == 0) {
|
|
return fInternal.begin();
|
|
} else if (fInternal.isEmpty()) {
|
|
return fExternal;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// size MUST be multiple of 4
|
|
uint32_t* reserve(size_t size) {
|
|
SkASSERT(SkAlign4(size) == size);
|
|
const int count = SkToInt(size/4);
|
|
|
|
uint32_t* p;
|
|
// Once we start writing to fInternal, we never write to fExternal again.
|
|
// This simplifies tracking what data is where.
|
|
if (fInternal.isEmpty() && this->externalCount() + count <= fExternalLimit) {
|
|
p = fExternal + fCount;
|
|
} else {
|
|
p = fInternal.append(count);
|
|
}
|
|
|
|
fCount += count;
|
|
return p;
|
|
}
|
|
|
|
// return the address of the 4byte int at the specified offset (which must
|
|
// be a multiple of 4. This does not allocate any new space, so the returned
|
|
// address is only valid for 1 int.
|
|
uint32_t* peek32(size_t offset) {
|
|
SkASSERT(SkAlign4(offset) == offset);
|
|
const int count = SkToInt(offset/4);
|
|
SkASSERT(count < fCount);
|
|
|
|
if (count < this->externalCount()) {
|
|
return fExternal + count;
|
|
}
|
|
return &fInternal[count - this->externalCount()];
|
|
}
|
|
|
|
bool writeBool(bool value) {
|
|
this->write32(value);
|
|
return value;
|
|
}
|
|
|
|
void writeInt(int32_t value) {
|
|
this->write32(value);
|
|
}
|
|
|
|
void write8(int32_t value) {
|
|
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
|
|
}
|
|
|
|
void write16(int32_t value) {
|
|
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
|
|
}
|
|
|
|
void write32(int32_t value) {
|
|
*(int32_t*)this->reserve(sizeof(value)) = value;
|
|
}
|
|
|
|
void writePtr(void* value) {
|
|
*(void**)this->reserve(sizeof(value)) = value;
|
|
}
|
|
|
|
void writeScalar(SkScalar value) {
|
|
*(SkScalar*)this->reserve(sizeof(value)) = value;
|
|
}
|
|
|
|
void writePoint(const SkPoint& pt) {
|
|
*(SkPoint*)this->reserve(sizeof(pt)) = pt;
|
|
}
|
|
|
|
void writeRect(const SkRect& rect) {
|
|
*(SkRect*)this->reserve(sizeof(rect)) = rect;
|
|
}
|
|
|
|
void writeIRect(const SkIRect& rect) {
|
|
*(SkIRect*)this->reserve(sizeof(rect)) = rect;
|
|
}
|
|
|
|
void writeRRect(const SkRRect& rrect) {
|
|
rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
|
|
}
|
|
|
|
void writePath(const SkPath& path) {
|
|
size_t size = path.writeToMemory(NULL);
|
|
SkASSERT(SkAlign4(size) == size);
|
|
path.writeToMemory(this->reserve(size));
|
|
}
|
|
|
|
void writeMatrix(const SkMatrix& matrix) {
|
|
size_t size = matrix.writeToMemory(NULL);
|
|
SkASSERT(SkAlign4(size) == size);
|
|
matrix.writeToMemory(this->reserve(size));
|
|
}
|
|
|
|
void writeRegion(const SkRegion& rgn) {
|
|
size_t size = rgn.writeToMemory(NULL);
|
|
SkASSERT(SkAlign4(size) == size);
|
|
rgn.writeToMemory(this->reserve(size));
|
|
}
|
|
|
|
// write count bytes (must be a multiple of 4)
|
|
void writeMul4(const void* values, size_t size) {
|
|
this->write(values, size);
|
|
}
|
|
|
|
/**
|
|
* Write size bytes from values. size must be a multiple of 4, though
|
|
* values need not be 4-byte aligned.
|
|
*/
|
|
void write(const void* values, size_t size) {
|
|
SkASSERT(SkAlign4(size) == size);
|
|
// TODO: If we're going to spill from fExternal to fInternal, we might want to fill
|
|
// fExternal as much as possible before writing to fInternal.
|
|
memcpy(this->reserve(size), values, size);
|
|
}
|
|
|
|
/**
|
|
* Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
|
|
* filled in with zeroes.
|
|
*/
|
|
uint32_t* reservePad(size_t size) {
|
|
uint32_t* p = this->reserve(SkAlign4(size));
|
|
uint8_t* tail = (uint8_t*)p + size;
|
|
switch (SkAlign4(size) - size) {
|
|
default: SkDEBUGFAIL("SkAlign4(x) - x should always be 0, 1, 2, or 3.");
|
|
case 3: *tail++ = 0x00; // fallthrough is intentional
|
|
case 2: *tail++ = 0x00; // fallthrough is intentional
|
|
case 1: *tail++ = 0x00;
|
|
case 0: ;/*nothing to do*/
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Write size bytes from src, and pad to 4 byte alignment with zeroes.
|
|
*/
|
|
void writePad(const void* src, size_t size) {
|
|
memcpy(this->reservePad(size), src, size);
|
|
}
|
|
|
|
/**
|
|
* Writes a string to the writer, which can be retrieved with
|
|
* SkReader32::readString().
|
|
* The length can be specified, or if -1 is passed, it will be computed by
|
|
* calling strlen(). The length must be < max size_t.
|
|
*
|
|
* If you write NULL, it will be read as "".
|
|
*/
|
|
void writeString(const char* str, size_t len = (size_t)-1);
|
|
|
|
/**
|
|
* Computes the size (aligned to multiple of 4) need to write the string
|
|
* in a call to writeString(). If the length is not specified, it will be
|
|
* computed by calling strlen().
|
|
*/
|
|
static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
|
|
|
|
/**
|
|
* Move the cursor back to offset bytes from the beginning.
|
|
* This has the same restrictions as peek32: offset must be <= size() and
|
|
* offset must be a multiple of 4.
|
|
*/
|
|
void rewindToOffset(size_t offset) {
|
|
SkASSERT(SkAlign4(offset) == offset);
|
|
const int count = SkToInt(offset/4);
|
|
if (count < this->externalCount()) {
|
|
fInternal.setCount(0);
|
|
} else {
|
|
fInternal.setCount(count - this->externalCount());
|
|
}
|
|
fCount = count;
|
|
}
|
|
|
|
// copy into a single buffer (allocated by caller). Must be at least size()
|
|
void flatten(void* dst) const {
|
|
const size_t externalBytes = this->externalCount()*4;
|
|
memcpy(dst, fExternal, externalBytes);
|
|
dst = (uint8_t*)dst + externalBytes;
|
|
memcpy(dst, fInternal.begin(), fInternal.bytes());
|
|
}
|
|
|
|
bool writeToStream(SkWStream* stream) const {
|
|
return stream->write(fExternal, this->externalCount()*4)
|
|
&& stream->write(fInternal.begin(), fInternal.bytes());
|
|
}
|
|
|
|
// read from the stream, and write up to length bytes. Return the actual
|
|
// number of bytes written.
|
|
size_t readFromStream(SkStream* stream, size_t length) {
|
|
return stream->read(this->reservePad(length), length);
|
|
}
|
|
|
|
private:
|
|
// Number of uint32_t written into fExternal. <= fExternalLimit.
|
|
int externalCount() const { return fCount - fInternal.count(); }
|
|
|
|
int fCount; // Total number of uint32_t written.
|
|
int fExternalLimit; // Number of uint32_t we can write to fExternal.
|
|
uint32_t* fExternal; // Unmanaged memory block.
|
|
SkTDArray<uint32_t> fInternal; // Managed memory block.
|
|
};
|
|
|
|
/**
|
|
* Helper class to allocated SIZE bytes as part of the writer, and to provide
|
|
* that storage to the constructor as its initial storage buffer.
|
|
*
|
|
* This wrapper ensures proper alignment rules are met for the storage.
|
|
*/
|
|
template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
|
|
public:
|
|
SkSWriter32() : SkWriter32(fData.fStorage, SIZE) {}
|
|
|
|
private:
|
|
union {
|
|
void* fPtrAlignment;
|
|
double fDoubleAlignment;
|
|
char fStorage[SIZE];
|
|
} fData;
|
|
};
|
|
|
|
#endif
|