5b3e2b9622
R=djsollen@google.com Review URL: https://codereview.chromium.org/19608005 git-svn-id: http://skia.googlecode.com/svn/trunk@10249 2bbb7eff-a529-9590-31e7-b0007b416f81
477 lines
16 KiB
C++
477 lines
16 KiB
C++
#include <cmath>
|
|
|
|
#include "SkBitmap.h"
|
|
#include "skpdiff_util.h"
|
|
#include "SkPMetric.h"
|
|
#include "SkPMetricUtil_generated.h"
|
|
|
|
struct RGB {
|
|
float r, g, b;
|
|
};
|
|
|
|
struct LAB {
|
|
float l, a, b;
|
|
};
|
|
|
|
template<class T>
|
|
struct Image2D {
|
|
int width;
|
|
int height;
|
|
T* image;
|
|
|
|
Image2D(int w, int h)
|
|
: width(w),
|
|
height(h) {
|
|
SkASSERT(w > 0);
|
|
SkASSERT(h > 0);
|
|
image = SkNEW_ARRAY(T, w * h);
|
|
}
|
|
|
|
~Image2D() {
|
|
SkDELETE_ARRAY(image);
|
|
}
|
|
|
|
void readPixel(int x, int y, T* pixel) const {
|
|
SkASSERT(x >= 0);
|
|
SkASSERT(y >= 0);
|
|
SkASSERT(x < width);
|
|
SkASSERT(y < height);
|
|
*pixel = image[y * width + x];
|
|
}
|
|
|
|
T* getRow(int y) const {
|
|
return &image[y * width];
|
|
}
|
|
|
|
void writePixel(int x, int y, const T& pixel) {
|
|
SkASSERT(x >= 0);
|
|
SkASSERT(y >= 0);
|
|
SkASSERT(x < width);
|
|
SkASSERT(y < height);
|
|
image[y * width + x] = pixel;
|
|
}
|
|
};
|
|
|
|
typedef Image2D<float> ImageL;
|
|
typedef Image2D<RGB> ImageRGB;
|
|
typedef Image2D<LAB> ImageLAB;
|
|
|
|
template<class T>
|
|
struct ImageArray
|
|
{
|
|
int slices;
|
|
Image2D<T>** image;
|
|
|
|
ImageArray(int w, int h, int s)
|
|
: slices(s) {
|
|
SkASSERT(s > 0);
|
|
image = SkNEW_ARRAY(Image2D<T>*, s);
|
|
for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
|
|
image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h));
|
|
}
|
|
}
|
|
|
|
~ImageArray() {
|
|
for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
|
|
SkDELETE(image[sliceIndex]);
|
|
}
|
|
SkDELETE_ARRAY(image);
|
|
}
|
|
|
|
Image2D<T>* getLayer(int z) const {
|
|
SkASSERT(z >= 0);
|
|
SkASSERT(z < slices);
|
|
return image[z];
|
|
}
|
|
};
|
|
|
|
typedef ImageArray<float> ImageL3D;
|
|
|
|
|
|
#define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc
|
|
|
|
static void adobergb_to_cielab(float r, float g, float b, LAB* lab) {
|
|
// Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorImage Encoding"
|
|
// URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
|
|
// Section: 4.3.5.3
|
|
// See Also: http://en.wikipedia.org/wiki/Adobe_rgb
|
|
float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f);
|
|
float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f);
|
|
float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f);
|
|
|
|
// The following is the white point in XYZ, so it's simply the row wise addition of the above
|
|
// matrix.
|
|
const float xw = 0.5767f + 0.185556f + 0.188212f;
|
|
const float yw = 0.297361f + 0.627355f + 0.0752847f;
|
|
const float zw = 0.0270328f + 0.0706879f + 0.991248f;
|
|
|
|
// This is the XYZ color point relative to the white point
|
|
float f[3] = { x / xw, y / yw, z / zw };
|
|
|
|
// Conversion from XYZ to LAB taken from
|
|
// http://en.wikipedia.org/wiki/CIELAB#Forward_transformation
|
|
for (int i = 0; i < 3; i++) {
|
|
if (f[i] >= 0.008856f) {
|
|
f[i] = SkPMetricUtil::get_cube_root(f[i]);
|
|
} else {
|
|
f[i] = 7.787f * f[i] + 4.0f / 29.0f;
|
|
}
|
|
}
|
|
lab->l = 116.0f * f[1] - 16.0f;
|
|
lab->a = 500.0f * (f[0] - f[1]);
|
|
lab->b = 200.0f * (f[1] - f[2]);
|
|
}
|
|
|
|
/// Converts a 8888 bitmap to LAB color space and puts it into the output
|
|
static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) {
|
|
SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config);
|
|
|
|
int width = bitmap->width();
|
|
int height = bitmap->height();
|
|
SkASSERT(outImageLAB->width == width);
|
|
SkASSERT(outImageLAB->height == height);
|
|
|
|
bitmap->lockPixels();
|
|
RGB rgb;
|
|
LAB lab;
|
|
for (int y = 0; y < height; y++) {
|
|
unsigned char* row = (unsigned char*)bitmap->getAddr(0, y);
|
|
for (int x = 0; x < width; x++) {
|
|
// Perform gamma correction which is assumed to be 2.2
|
|
rgb.r = SkPMetricUtil::get_gamma(row[x * 4 + 2]);
|
|
rgb.g = SkPMetricUtil::get_gamma(row[x * 4 + 1]);
|
|
rgb.b = SkPMetricUtil::get_gamma(row[x * 4 + 0]);
|
|
adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab);
|
|
outImageLAB->writePixel(x, y, lab);
|
|
}
|
|
}
|
|
bitmap->unlockPixels();
|
|
}
|
|
|
|
// From Barten SPIE 1989
|
|
static float contrast_sensitivity(float cyclesPerDegree, float luminance) {
|
|
float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f);
|
|
float b = 0.3f * powf(1.0f + 100.0f / luminance, 0.15f);
|
|
return a *
|
|
cyclesPerDegree *
|
|
expf(-b * cyclesPerDegree) *
|
|
sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree));
|
|
}
|
|
|
|
#if 0
|
|
// We're keeping these around for reference and in case the lookup tables are no longer desired.
|
|
// They are no longer called by any code in this file.
|
|
|
|
// From Daly 1993
|
|
static float visual_mask(float contrast) {
|
|
float x = powf(392.498f * contrast, 0.7f);
|
|
x = powf(0.0153f * x, 4.0f);
|
|
return powf(1.0f + x, 0.25f);
|
|
}
|
|
|
|
// From Ward Larson Siggraph 1997
|
|
static float threshold_vs_intensity(float adaptationLuminance) {
|
|
float logLum = log10f(adaptationLuminance);
|
|
float x;
|
|
if (logLum < -3.94f) {
|
|
x = -2.86f;
|
|
} else if (logLum < -1.44f) {
|
|
x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f;
|
|
} else if (logLum < -0.0184f) {
|
|
x = logLum - 0.395f;
|
|
} else if (logLum < 1.9f) {
|
|
x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f;
|
|
} else {
|
|
x = logLum - 1.255f;
|
|
}
|
|
return powf(10.0f, x);
|
|
}
|
|
|
|
#endif
|
|
|
|
/// Simply takes the L channel from the input and puts it into the output
|
|
static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) {
|
|
for (int y = 0; y < imageLAB->height; y++) {
|
|
for (int x = 0; x < imageLAB->width; x++) {
|
|
LAB lab;
|
|
imageLAB->readPixel(x, y, &lab);
|
|
outImageL->writePixel(x, y, lab.l);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Convolves an image with the given filter in one direction and saves it to the output image
|
|
static void convolve(const ImageL* imageL, bool vertical, ImageL* outImageL) {
|
|
SkASSERT(imageL->width == outImageL->width);
|
|
SkASSERT(imageL->height == outImageL->height);
|
|
|
|
const float matrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f };
|
|
const int matrixCount = sizeof(matrix) / sizeof(float);
|
|
const int radius = matrixCount / 2;
|
|
|
|
// Keep track of what rows are being operated on for quick access.
|
|
float* rowPtrs[matrixCount]; // Because matrixCount is constant, this won't create a VLA
|
|
for (int y = radius; y < matrixCount; y++) {
|
|
rowPtrs[y] = imageL->getRow(y - radius);
|
|
}
|
|
float* writeRow = outImageL->getRow(0);
|
|
|
|
for (int y = 0; y < imageL->height; y++) {
|
|
for (int x = 0; x < imageL->width; x++) {
|
|
float lSum = 0.0f;
|
|
for (int xx = -radius; xx <= radius; xx++) {
|
|
int nx = x;
|
|
int ny = y;
|
|
|
|
// We mirror at edges so that edge pixels that the filter weighting still makes
|
|
// sense.
|
|
if (vertical) {
|
|
ny += xx;
|
|
if (ny < 0) {
|
|
ny = -ny;
|
|
}
|
|
if (ny >= imageL->height) {
|
|
ny = imageL->height + (imageL->height - ny - 1);
|
|
}
|
|
} else {
|
|
nx += xx;
|
|
if (nx < 0) {
|
|
nx = -nx;
|
|
}
|
|
if (nx >= imageL->width) {
|
|
nx = imageL->width + (imageL->width - nx - 1);
|
|
}
|
|
}
|
|
|
|
float weight = matrix[xx + radius];
|
|
lSum += rowPtrs[ny - y + radius][nx] * weight;
|
|
}
|
|
writeRow[x] = lSum;
|
|
}
|
|
// As we move down, scroll the row pointers down with us
|
|
for (int y = 0; y < matrixCount - 1; y++)
|
|
{
|
|
rowPtrs[y] = rowPtrs[y + 1];
|
|
}
|
|
rowPtrs[matrixCount - 1] += imageL->width;
|
|
writeRow += imageL->width;
|
|
}
|
|
}
|
|
|
|
static double pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB, SkTDArray<SkIPoint>* poi) {
|
|
int width = baselineLAB->width;
|
|
int height = baselineLAB->height;
|
|
int maxLevels = 0;
|
|
|
|
// Calculates how many levels to make by how many times the image can be divided in two
|
|
int smallerDimension = width < height ? width : height;
|
|
for ( ; smallerDimension > 1; smallerDimension /= 2) {
|
|
maxLevels++;
|
|
}
|
|
|
|
const float fov = SK_ScalarPI / 180.0f * 45.0f;
|
|
float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f);
|
|
float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / SK_ScalarPI);
|
|
|
|
ImageL3D baselineL(width, height, maxLevels);
|
|
ImageL3D testL(width, height, maxLevels);
|
|
ImageL scratchImageL(width, height);
|
|
float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels);
|
|
float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2);
|
|
float* contrast = SkNEW_ARRAY(float, maxLevels - 2);
|
|
|
|
lab_to_l(baselineLAB, baselineL.getLayer(0));
|
|
lab_to_l(testLAB, testL.getLayer(0));
|
|
|
|
// Compute cpd - Cycles per degree on the pyramid
|
|
cyclesPerDegree[0] = 0.5f * pixelsPerDegree;
|
|
for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
|
|
cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f;
|
|
}
|
|
|
|
// Contrast sensitivity is based on image dimensions. Therefore it cannot be statically
|
|
// generated.
|
|
float* contrastSensitivityTable = SkNEW_ARRAY(float, maxLevels * 1000);
|
|
for (int levelIndex = 0; levelIndex < maxLevels; levelIndex++) {
|
|
for (int csLum = 0; csLum < 1000; csLum++) {
|
|
contrastSensitivityTable[levelIndex * 1000 + csLum] =
|
|
contrast_sensitivity(cyclesPerDegree[levelIndex], (float)csLum / 10.0f + 1e-5f);
|
|
}
|
|
}
|
|
|
|
// Compute G - The convolved lum for the baseline
|
|
for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
|
|
convolve(baselineL.getLayer(levelIndex - 1), false, &scratchImageL);
|
|
convolve(&scratchImageL, true, baselineL.getLayer(levelIndex));
|
|
}
|
|
for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
|
|
convolve(testL.getLayer(levelIndex - 1), false, &scratchImageL);
|
|
convolve(&scratchImageL, true, testL.getLayer(levelIndex));
|
|
}
|
|
|
|
// Compute F_freq - The elevation f
|
|
for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
|
|
float cpd = cyclesPerDegree[levelIndex];
|
|
thresholdFactorFrequency[levelIndex] = contrastSensitivityMax /
|
|
contrast_sensitivity(cpd, 100.0f);
|
|
}
|
|
|
|
int failures = 0;
|
|
// Calculate F
|
|
for (int y = 0; y < height; y++) {
|
|
for (int x = 0; x < width; x++) {
|
|
float lBaseline;
|
|
float lTest;
|
|
baselineL.getLayer(0)->readPixel(x, y, &lBaseline);
|
|
testL.getLayer(0)->readPixel(x, y, &lTest);
|
|
|
|
float avgLBaseline;
|
|
float avgLTest;
|
|
baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline);
|
|
testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest);
|
|
|
|
float lAdapt = 0.5f * (avgLBaseline + avgLTest);
|
|
if (lAdapt < 1e-5f) {
|
|
lAdapt = 1e-5f;
|
|
}
|
|
|
|
float contrastSum = 0.0f;
|
|
for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
|
|
float baselineL0, baselineL1, baselineL2;
|
|
float testL0, testL1, testL2;
|
|
baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0);
|
|
testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0);
|
|
baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1);
|
|
testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1);
|
|
baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2);
|
|
testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2);
|
|
|
|
float baselineContrast1 = fabsf(baselineL0 - baselineL1);
|
|
float testContrast1 = fabsf(testL0 - testL1);
|
|
float numerator = (baselineContrast1 > testContrast1) ?
|
|
baselineContrast1 : testContrast1;
|
|
|
|
float baselineContrast2 = fabsf(baselineL2);
|
|
float testContrast2 = fabsf(testL2);
|
|
float denominator = (baselineContrast2 > testContrast2) ?
|
|
baselineContrast2 : testContrast2;
|
|
|
|
// Avoid divides by close to zero
|
|
if (denominator < 1e-5f) {
|
|
denominator = 1e-5f;
|
|
}
|
|
contrast[levelIndex] = numerator / denominator;
|
|
contrastSum += contrast[levelIndex];
|
|
}
|
|
|
|
if (contrastSum < 1e-5f) {
|
|
contrastSum = 1e-5f;
|
|
}
|
|
|
|
float F = 0.0f;
|
|
for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
|
|
float contrastSensitivity = contrastSensitivityTable[levelIndex * 1000 +
|
|
(int)(lAdapt * 10.0)];
|
|
float mask = SkPMetricUtil::get_visual_mask(contrast[levelIndex] *
|
|
contrastSensitivity);
|
|
|
|
F += contrast[levelIndex] +
|
|
thresholdFactorFrequency[levelIndex] * mask / contrastSum;
|
|
}
|
|
|
|
if (F < 1.0f) {
|
|
F = 1.0f;
|
|
}
|
|
|
|
if (F > 10.0f) {
|
|
F = 10.0f;
|
|
}
|
|
|
|
|
|
bool isFailure = false;
|
|
if (fabsf(lBaseline - lTest) > F * SkPMetricUtil::get_threshold_vs_intensity(lAdapt)) {
|
|
isFailure = true;
|
|
} else {
|
|
LAB baselineColor;
|
|
LAB testColor;
|
|
baselineLAB->readPixel(x, y, &baselineColor);
|
|
testLAB->readPixel(x, y, &testColor);
|
|
float contrastA = baselineColor.a - testColor.a;
|
|
float contrastB = baselineColor.b - testColor.b;
|
|
float colorScale = 1.0f;
|
|
if (lAdapt < 10.0f) {
|
|
colorScale = lAdapt / 10.0f;
|
|
}
|
|
colorScale *= colorScale;
|
|
|
|
if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F)
|
|
{
|
|
isFailure = true;
|
|
}
|
|
}
|
|
|
|
if (isFailure) {
|
|
failures++;
|
|
poi->push()->set(x, y);
|
|
}
|
|
}
|
|
}
|
|
|
|
SkDELETE_ARRAY(cyclesPerDegree);
|
|
SkDELETE_ARRAY(contrast);
|
|
SkDELETE_ARRAY(thresholdFactorFrequency);
|
|
SkDELETE_ARRAY(contrastSensitivityTable);
|
|
return 1.0 - (double)failures / (width * height);
|
|
}
|
|
|
|
const char* SkPMetric::getName() {
|
|
return "perceptual";
|
|
}
|
|
|
|
int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) {
|
|
double startTime = get_seconds();
|
|
int diffID = fQueuedDiffs.count();
|
|
QueuedDiff& diff = fQueuedDiffs.push_back();
|
|
diff.result = 0.0;
|
|
|
|
// Ensure the images are comparable
|
|
if (baseline->width() != test->width() || baseline->height() != test->height() ||
|
|
baseline->width() <= 0 || baseline->height() <= 0) {
|
|
diff.finished = true;
|
|
return diffID;
|
|
}
|
|
|
|
ImageLAB baselineLAB(baseline->width(), baseline->height());
|
|
ImageLAB testLAB(baseline->width(), baseline->height());
|
|
|
|
bitmap_to_cielab(baseline, &baselineLAB);
|
|
bitmap_to_cielab(test, &testLAB);
|
|
|
|
diff.result = pmetric(&baselineLAB, &testLAB, &diff.poi);
|
|
|
|
SkDebugf("Time: %f\n", (get_seconds() - startTime));
|
|
|
|
return diffID;
|
|
}
|
|
|
|
|
|
void SkPMetric::deleteDiff(int id) {
|
|
|
|
}
|
|
|
|
bool SkPMetric::isFinished(int id) {
|
|
return fQueuedDiffs[id].finished;
|
|
}
|
|
|
|
double SkPMetric::getResult(int id) {
|
|
return fQueuedDiffs[id].result;
|
|
}
|
|
|
|
int SkPMetric::getPointsOfInterestCount(int id) {
|
|
return fQueuedDiffs[id].poi.count();
|
|
}
|
|
|
|
SkIPoint* SkPMetric::getPointsOfInterest(int id) {
|
|
return fQueuedDiffs[id].poi.begin();
|
|
}
|