722555bebb
I noticed SkMatrix <-> SkMatrix44 conversions were dropping the perspective values on the floor. As we use SkMatrix44 heavily in Chromium, I'm concerned this missing code will cause a bug eventually. It should be correct to simply use the bottom row of the 4x4 matrix excluding the third column. Previously committed and reverted, second attempt with fix for incorrect use of SkMScalar/SkScalar. BUG= R=reed@google.com, caryclark@google.com Author: aelias@chromium.org Review URL: https://codereview.chromium.org/25484006 git-svn-id: http://skia.googlecode.com/svn/trunk@11624 2bbb7eff-a529-9590-31e7-b0007b416f81
422 lines
13 KiB
C++
422 lines
13 KiB
C++
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkMatrix44_DEFINED
|
|
#define SkMatrix44_DEFINED
|
|
|
|
#include "SkMatrix.h"
|
|
#include "SkScalar.h"
|
|
|
|
#ifdef SK_MSCALAR_IS_DOUBLE
|
|
#ifdef SK_MSCALAR_IS_FLOAT
|
|
#error "can't define MSCALAR both as DOUBLE and FLOAT"
|
|
#endif
|
|
typedef double SkMScalar;
|
|
|
|
static inline double SkFloatToMScalar(float x) {
|
|
return static_cast<double>(x);
|
|
}
|
|
static inline float SkMScalarToFloat(double x) {
|
|
return static_cast<float>(x);
|
|
}
|
|
static inline double SkDoubleToMScalar(double x) {
|
|
return x;
|
|
}
|
|
static inline double SkMScalarToDouble(double x) {
|
|
return x;
|
|
}
|
|
static const SkMScalar SK_MScalarPI = 3.141592653589793;
|
|
#elif defined SK_MSCALAR_IS_FLOAT
|
|
#ifdef SK_MSCALAR_IS_DOUBLE
|
|
#error "can't define MSCALAR both as DOUBLE and FLOAT"
|
|
#endif
|
|
typedef float SkMScalar;
|
|
|
|
static inline float SkFloatToMScalar(float x) {
|
|
return x;
|
|
}
|
|
static inline float SkMScalarToFloat(float x) {
|
|
return x;
|
|
}
|
|
static inline float SkDoubleToMScalar(double x) {
|
|
return static_cast<float>(x);
|
|
}
|
|
static inline double SkMScalarToDouble(float x) {
|
|
return static_cast<double>(x);
|
|
}
|
|
static const SkMScalar SK_MScalarPI = 3.14159265f;
|
|
#endif
|
|
|
|
#define SkMScalarToScalar SkMScalarToFloat
|
|
#define SkScalarToMScalar SkFloatToMScalar
|
|
|
|
static const SkMScalar SK_MScalar1 = 1;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct SkVector4 {
|
|
SkScalar fData[4];
|
|
|
|
SkVector4() {
|
|
this->set(0, 0, 0, 1);
|
|
}
|
|
SkVector4(const SkVector4& src) {
|
|
memcpy(fData, src.fData, sizeof(fData));
|
|
}
|
|
SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
|
|
fData[0] = x;
|
|
fData[1] = y;
|
|
fData[2] = z;
|
|
fData[3] = w;
|
|
}
|
|
|
|
SkVector4& operator=(const SkVector4& src) {
|
|
memcpy(fData, src.fData, sizeof(fData));
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const SkVector4& v) {
|
|
return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
|
|
fData[2] == v.fData[2] && fData[3] == v.fData[3];
|
|
}
|
|
bool operator!=(const SkVector4& v) {
|
|
return !(*this == v);
|
|
}
|
|
bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
|
|
return fData[0] == x && fData[1] == y &&
|
|
fData[2] == z && fData[3] == w;
|
|
}
|
|
|
|
void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
|
|
fData[0] = x;
|
|
fData[1] = y;
|
|
fData[2] = z;
|
|
fData[3] = w;
|
|
}
|
|
};
|
|
|
|
class SK_API SkMatrix44 {
|
|
public:
|
|
|
|
enum Uninitialized_Constructor {
|
|
kUninitialized_Constructor
|
|
};
|
|
enum Identity_Constructor {
|
|
kIdentity_Constructor
|
|
};
|
|
|
|
SkMatrix44(Uninitialized_Constructor) { }
|
|
SkMatrix44(Identity_Constructor) { this->setIdentity(); }
|
|
|
|
// DEPRECATED: use the constructors that take an enum
|
|
SkMatrix44() { this->setIdentity(); }
|
|
|
|
SkMatrix44(const SkMatrix44& src) {
|
|
memcpy(fMat, src.fMat, sizeof(fMat));
|
|
fTypeMask = src.fTypeMask;
|
|
}
|
|
|
|
SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
|
|
this->setConcat(a, b);
|
|
}
|
|
|
|
SkMatrix44& operator=(const SkMatrix44& src) {
|
|
if (&src != this) {
|
|
memcpy(fMat, src.fMat, sizeof(fMat));
|
|
fTypeMask = src.fTypeMask;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const SkMatrix44& other) const;
|
|
bool operator!=(const SkMatrix44& other) const {
|
|
return !(other == *this);
|
|
}
|
|
|
|
/* When converting from SkMatrix44 to SkMatrix, the third row and
|
|
* column is dropped. When converting from SkMatrix to SkMatrix44
|
|
* the third row and column remain as identity:
|
|
* [ a b c ] [ a b 0 c ]
|
|
* [ d e f ] -> [ d e 0 f ]
|
|
* [ g h i ] [ 0 0 1 0 ]
|
|
* [ g h 0 i ]
|
|
*/
|
|
SkMatrix44(const SkMatrix&);
|
|
SkMatrix44& operator=(const SkMatrix& src);
|
|
operator SkMatrix() const;
|
|
|
|
/**
|
|
* Return a reference to a const identity matrix
|
|
*/
|
|
static const SkMatrix44& I();
|
|
|
|
enum TypeMask {
|
|
kIdentity_Mask = 0,
|
|
kTranslate_Mask = 0x01, //!< set if the matrix has translation
|
|
kScale_Mask = 0x02, //!< set if the matrix has any scale != 1
|
|
kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
|
|
kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
|
|
};
|
|
|
|
/**
|
|
* Returns a bitfield describing the transformations the matrix may
|
|
* perform. The bitfield is computed conservatively, so it may include
|
|
* false positives. For example, when kPerspective_Mask is true, all
|
|
* other bits may be set to true even in the case of a pure perspective
|
|
* transform.
|
|
*/
|
|
inline TypeMask getType() const {
|
|
if (fTypeMask & kUnknown_Mask) {
|
|
fTypeMask = this->computeTypeMask();
|
|
}
|
|
SkASSERT(!(fTypeMask & kUnknown_Mask));
|
|
return (TypeMask)fTypeMask;
|
|
}
|
|
|
|
/**
|
|
* Return true if the matrix is identity.
|
|
*/
|
|
inline bool isIdentity() const {
|
|
return kIdentity_Mask == this->getType();
|
|
}
|
|
|
|
/**
|
|
* Return true if the matrix contains translate or is identity.
|
|
*/
|
|
inline bool isTranslate() const {
|
|
return !(this->getType() & ~kTranslate_Mask);
|
|
}
|
|
|
|
/**
|
|
* Return true if the matrix only contains scale or translate or is identity.
|
|
*/
|
|
inline bool isScaleTranslate() const {
|
|
return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
|
|
}
|
|
|
|
void setIdentity();
|
|
inline void reset() { this->setIdentity();}
|
|
|
|
/**
|
|
* get a value from the matrix. The row,col parameters work as follows:
|
|
* (0, 0) scale-x
|
|
* (0, 3) translate-x
|
|
* (3, 0) perspective-x
|
|
*/
|
|
inline SkMScalar get(int row, int col) const {
|
|
SkASSERT((unsigned)row <= 3);
|
|
SkASSERT((unsigned)col <= 3);
|
|
return fMat[col][row];
|
|
}
|
|
|
|
/**
|
|
* set a value in the matrix. The row,col parameters work as follows:
|
|
* (0, 0) scale-x
|
|
* (0, 3) translate-x
|
|
* (3, 0) perspective-x
|
|
*/
|
|
inline void set(int row, int col, SkMScalar value) {
|
|
SkASSERT((unsigned)row <= 3);
|
|
SkASSERT((unsigned)col <= 3);
|
|
fMat[col][row] = value;
|
|
this->dirtyTypeMask();
|
|
}
|
|
|
|
inline double getDouble(int row, int col) const {
|
|
return SkMScalarToDouble(this->get(row, col));
|
|
}
|
|
inline void setDouble(int row, int col, double value) {
|
|
this->set(row, col, SkDoubleToMScalar(value));
|
|
}
|
|
inline float getFloat(int row, int col) const {
|
|
return SkMScalarToFloat(this->get(row, col));
|
|
}
|
|
inline void setFloat(int row, int col, float value) {
|
|
this->set(row, col, SkFloatToMScalar(value));
|
|
}
|
|
|
|
/** These methods allow one to efficiently read matrix entries into an
|
|
* array. The given array must have room for exactly 16 entries. Whenever
|
|
* possible, they will try to use memcpy rather than an entry-by-entry
|
|
* copy.
|
|
*/
|
|
void asColMajorf(float[]) const;
|
|
void asColMajord(double[]) const;
|
|
void asRowMajorf(float[]) const;
|
|
void asRowMajord(double[]) const;
|
|
|
|
/** These methods allow one to efficiently set all matrix entries from an
|
|
* array. The given array must have room for exactly 16 entries. Whenever
|
|
* possible, they will try to use memcpy rather than an entry-by-entry
|
|
* copy.
|
|
*/
|
|
void setColMajorf(const float[]);
|
|
void setColMajord(const double[]);
|
|
void setRowMajorf(const float[]);
|
|
void setRowMajord(const double[]);
|
|
|
|
#ifdef SK_MSCALAR_IS_FLOAT
|
|
void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
|
|
void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
|
|
#else
|
|
void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
|
|
void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
|
|
#endif
|
|
|
|
/* This sets the top-left of the matrix and clears the translation and
|
|
* perspective components (with [3][3] set to 1). */
|
|
void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
|
|
SkMScalar m10, SkMScalar m11, SkMScalar m12,
|
|
SkMScalar m20, SkMScalar m21, SkMScalar m22);
|
|
|
|
void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
|
|
void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
|
|
void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
|
|
|
|
void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
|
|
void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
|
|
void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
|
|
|
|
inline void setScale(SkMScalar scale) {
|
|
this->setScale(scale, scale, scale);
|
|
}
|
|
inline void preScale(SkMScalar scale) {
|
|
this->preScale(scale, scale, scale);
|
|
}
|
|
inline void postScale(SkMScalar scale) {
|
|
this->postScale(scale, scale, scale);
|
|
}
|
|
|
|
void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
|
|
SkMScalar degrees) {
|
|
this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
|
|
}
|
|
|
|
/** Rotate about the vector [x,y,z]. If that vector is not unit-length,
|
|
it will be automatically resized.
|
|
*/
|
|
void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
|
|
SkMScalar radians);
|
|
/** Rotate about the vector [x,y,z]. Does not check the length of the
|
|
vector, assuming it is unit-length.
|
|
*/
|
|
void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
|
|
SkMScalar radians);
|
|
|
|
void setConcat(const SkMatrix44& a, const SkMatrix44& b);
|
|
inline void preConcat(const SkMatrix44& m) {
|
|
this->setConcat(*this, m);
|
|
}
|
|
inline void postConcat(const SkMatrix44& m) {
|
|
this->setConcat(m, *this);
|
|
}
|
|
|
|
friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
|
|
return SkMatrix44(a, b);
|
|
}
|
|
|
|
/** If this is invertible, return that in inverse and return true. If it is
|
|
not invertible, return false and ignore the inverse parameter.
|
|
*/
|
|
bool invert(SkMatrix44* inverse) const;
|
|
|
|
/** Transpose this matrix in place. */
|
|
void transpose();
|
|
|
|
/** Apply the matrix to the src vector, returning the new vector in dst.
|
|
It is legal for src and dst to point to the same memory.
|
|
*/
|
|
void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
|
|
inline void mapScalars(SkScalar vec[4]) const {
|
|
this->mapScalars(vec, vec);
|
|
}
|
|
|
|
// DEPRECATED: call mapScalars()
|
|
void map(const SkScalar src[4], SkScalar dst[4]) const {
|
|
this->mapScalars(src, dst);
|
|
}
|
|
// DEPRECATED: call mapScalars()
|
|
void map(SkScalar vec[4]) const {
|
|
this->mapScalars(vec, vec);
|
|
}
|
|
|
|
#ifdef SK_MSCALAR_IS_DOUBLE
|
|
void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
|
|
#elif defined SK_MSCALAR_IS_FLOAT
|
|
inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
|
|
this->mapScalars(src, dst);
|
|
}
|
|
#endif
|
|
inline void mapMScalars(SkMScalar vec[4]) const {
|
|
this->mapMScalars(vec, vec);
|
|
}
|
|
|
|
friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
|
|
SkVector4 dst;
|
|
m.map(src.fData, dst.fData);
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* map an array of [x, y, 0, 1] through the matrix, returning an array
|
|
* of [x', y', z', w'].
|
|
*
|
|
* @param src2 array of [x, y] pairs, with implied z=0 and w=1
|
|
* @param count number of [x, y] pairs in src2
|
|
* @param dst4 array of [x', y', z', w'] quads as the output.
|
|
*/
|
|
void map2(const float src2[], int count, float dst4[]) const;
|
|
void map2(const double src2[], int count, double dst4[]) const;
|
|
|
|
void dump() const;
|
|
|
|
double determinant() const;
|
|
|
|
private:
|
|
SkMScalar fMat[4][4];
|
|
mutable unsigned fTypeMask;
|
|
|
|
enum {
|
|
kUnknown_Mask = 0x80,
|
|
|
|
kAllPublic_Masks = 0xF
|
|
};
|
|
|
|
SkMScalar transX() const { return fMat[3][0]; }
|
|
SkMScalar transY() const { return fMat[3][1]; }
|
|
SkMScalar transZ() const { return fMat[3][2]; }
|
|
|
|
SkMScalar scaleX() const { return fMat[0][0]; }
|
|
SkMScalar scaleY() const { return fMat[1][1]; }
|
|
SkMScalar scaleZ() const { return fMat[2][2]; }
|
|
|
|
SkMScalar perspX() const { return fMat[0][3]; }
|
|
SkMScalar perspY() const { return fMat[1][3]; }
|
|
SkMScalar perspZ() const { return fMat[2][3]; }
|
|
|
|
int computeTypeMask() const;
|
|
|
|
inline void dirtyTypeMask() {
|
|
fTypeMask = kUnknown_Mask;
|
|
}
|
|
|
|
inline void setTypeMask(int mask) {
|
|
SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
|
|
fTypeMask = mask;
|
|
}
|
|
|
|
/**
|
|
* Does not take the time to 'compute' the typemask. Only returns true if
|
|
* we already know that this matrix is identity.
|
|
*/
|
|
inline bool isTriviallyIdentity() const {
|
|
return 0 == fTypeMask;
|
|
}
|
|
};
|
|
|
|
#endif
|