74f623d161
Moved method are not used by chromium, google3, or android. SkPoint::setRectIFan isn't used or tested at all. SkPoint::setRectFan and SkPoint::setRectTriStrip are only used internally. These routines pretend that a SkPoint is part of an array of points. Since that's kind of an odd contract to make public, and because they aren't used outside of Skia, relegate them to a priv file. R=bsalomon@google.com,reed@google.com Bug: skia: 6898 Change-Id: I5ec2eb47799f6fd4b2994da962b1fa69ce659931 Reviewed-on: https://skia-review.googlesource.com/68121 Reviewed-by: Brian Salomon <bsalomon@google.com> Commit-Queue: Cary Clark <caryclark@google.com>
632 lines
22 KiB
C++
632 lines
22 KiB
C++
/*
|
|
* Copyright 2013 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
// This test only works with the GPU backend.
|
|
|
|
#include "gm.h"
|
|
|
|
#if SK_SUPPORT_GPU
|
|
|
|
#include "GrContext.h"
|
|
#include "GrOpFlushState.h"
|
|
#include "GrPathUtils.h"
|
|
#include "GrRenderTargetContextPriv.h"
|
|
#include "GrTest.h"
|
|
#include "SkColorPriv.h"
|
|
#include "SkGeometry.h"
|
|
#include "SkPoint3.h"
|
|
#include "SkPointPriv.h"
|
|
#include "effects/GrBezierEffect.h"
|
|
#include "ops/GrMeshDrawOp.h"
|
|
|
|
namespace skiagm {
|
|
|
|
class BezierTestOp : public GrMeshDrawOp {
|
|
public:
|
|
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
|
|
|
|
RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
|
|
GrPixelConfigIsClamped dstIsClamped) override {
|
|
auto analysis = fProcessorSet.finalize(fColor, GrProcessorAnalysisCoverage::kSingleChannel,
|
|
clip, false, caps, dstIsClamped, &fColor);
|
|
return analysis.requiresDstTexture() ? RequiresDstTexture::kYes : RequiresDstTexture::kNo;
|
|
}
|
|
|
|
void visitProxies(const VisitProxyFunc& func) const override {
|
|
fProcessorSet.visitProxies(func);
|
|
}
|
|
|
|
protected:
|
|
BezierTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color, int32_t classID)
|
|
: INHERITED(classID)
|
|
, fRect(rect)
|
|
, fColor(color)
|
|
, fGeometryProcessor(std::move(gp))
|
|
, fProcessorSet(SkBlendMode::kSrc) {
|
|
this->setBounds(rect, HasAABloat::kYes, IsZeroArea::kNo);
|
|
}
|
|
|
|
const GrPipeline* makePipeline(Target* target) {
|
|
return target->makePipeline(0, std::move(fProcessorSet), target->detachAppliedClip());
|
|
}
|
|
|
|
const GrGeometryProcessor* gp() const { return fGeometryProcessor.get(); }
|
|
|
|
const SkRect& rect() const { return fRect; }
|
|
GrColor color() const { return fColor; }
|
|
|
|
private:
|
|
bool onCombineIfPossible(GrOp* op, const GrCaps& caps) override { return false; }
|
|
|
|
SkRect fRect;
|
|
GrColor fColor;
|
|
sk_sp<GrGeometryProcessor> fGeometryProcessor;
|
|
GrProcessorSet fProcessorSet;
|
|
|
|
typedef GrMeshDrawOp INHERITED;
|
|
};
|
|
|
|
class BezierCubicTestOp : public BezierTestOp {
|
|
public:
|
|
DEFINE_OP_CLASS_ID
|
|
|
|
const char* name() const override { return "BezierCubicTestOp"; }
|
|
|
|
static std::unique_ptr<GrDrawOp> Make(sk_sp<GrGeometryProcessor> gp, const SkRect& rect,
|
|
GrColor color) {
|
|
return std::unique_ptr<GrDrawOp>(new BezierCubicTestOp(std::move(gp), rect, color));
|
|
}
|
|
|
|
private:
|
|
BezierCubicTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color)
|
|
: INHERITED(std::move(gp), rect, color, ClassID()) {}
|
|
|
|
void onPrepareDraws(Target* target) override {
|
|
QuadHelper helper;
|
|
size_t vertexStride = this->gp()->getVertexStride();
|
|
SkASSERT(vertexStride == sizeof(SkPoint));
|
|
SkPoint* pts = reinterpret_cast<SkPoint*>(helper.init(target, vertexStride, 1));
|
|
if (!pts) {
|
|
return;
|
|
}
|
|
SkRect rect = this->rect();
|
|
SkPointPriv::SetRectTriStrip(pts, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vertexStride);
|
|
helper.recordDraw(target, this->gp(), this->makePipeline(target));
|
|
}
|
|
|
|
static constexpr int kVertsPerCubic = 4;
|
|
static constexpr int kIndicesPerCubic = 6;
|
|
|
|
typedef BezierTestOp INHERITED;
|
|
};
|
|
|
|
/**
|
|
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
|
|
*/
|
|
class BezierCubicEffects : public GM {
|
|
public:
|
|
BezierCubicEffects() {
|
|
this->setBGColor(0xFFFFFFFF);
|
|
}
|
|
|
|
protected:
|
|
SkString onShortName() override {
|
|
return SkString("bezier_cubic_effects");
|
|
}
|
|
|
|
SkISize onISize() override {
|
|
return SkISize::Make(800, 800);
|
|
}
|
|
|
|
void onDraw(SkCanvas* canvas) override {
|
|
GrRenderTargetContext* renderTargetContext =
|
|
canvas->internal_private_accessTopLayerRenderTargetContext();
|
|
if (!renderTargetContext) {
|
|
skiagm::GM::DrawGpuOnlyMessage(canvas);
|
|
return;
|
|
}
|
|
|
|
GrContext* context = canvas->getGrContext();
|
|
if (!context) {
|
|
return;
|
|
}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
constexpr int kNumCubics = 15;
|
|
SkRandom rand;
|
|
|
|
// Mult by 3 for each edge effect type
|
|
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3)));
|
|
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols);
|
|
SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols;
|
|
SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows;
|
|
int row = 0;
|
|
int col = 0;
|
|
constexpr GrColor color = 0xff000000;
|
|
|
|
for (int i = 0; i < kNumCubics; ++i) {
|
|
SkPoint baseControlPts[] = {
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
|
|
};
|
|
for(GrPrimitiveEdgeType edgeType : {kFillBW_GrProcessorEdgeType,
|
|
kFillAA_GrProcessorEdgeType,
|
|
kHairlineAA_GrProcessorEdgeType}) {
|
|
SkScalar x = col * w;
|
|
SkScalar y = row * h;
|
|
SkPoint controlPts[] = {
|
|
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
|
|
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
|
|
{x + baseControlPts[2].fX, y + baseControlPts[2].fY},
|
|
{x + baseControlPts[3].fX, y + baseControlPts[3].fY}
|
|
};
|
|
SkPoint chopped[10];
|
|
SkMatrix klm;
|
|
int loopIndex;
|
|
int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts,
|
|
chopped,
|
|
&klm,
|
|
&loopIndex);
|
|
|
|
SkPaint ctrlPtPaint;
|
|
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
|
|
canvas->drawCircle(controlPts[0], 8.f, ctrlPtPaint);
|
|
for (int i = 1; i < 4; ++i) {
|
|
canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint);
|
|
}
|
|
|
|
SkPaint polyPaint;
|
|
polyPaint.setColor(0xffA0A0A0);
|
|
polyPaint.setStrokeWidth(0);
|
|
polyPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint);
|
|
|
|
SkPaint choppedPtPaint;
|
|
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
|
|
|
|
for (int c = 0; c < cnt; ++c) {
|
|
SkPoint* pts = chopped + 3 * c;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
canvas->drawCircle(pts[i], 3.f, choppedPtPaint);
|
|
}
|
|
|
|
SkRect bounds;
|
|
bounds.set(pts, 4);
|
|
|
|
SkPaint boundsPaint;
|
|
boundsPaint.setColor(0xff808080);
|
|
boundsPaint.setStrokeWidth(0);
|
|
boundsPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawRect(bounds, boundsPaint);
|
|
|
|
|
|
bool flipKL = (c == loopIndex && cnt != 3);
|
|
sk_sp<GrGeometryProcessor> gp = GrCubicEffect::Make(color, SkMatrix::I(), klm,
|
|
flipKL, edgeType,
|
|
*context->caps());
|
|
if (!gp) {
|
|
break;
|
|
}
|
|
|
|
std::unique_ptr<GrDrawOp> op =
|
|
BezierCubicTestOp::Make(std::move(gp), bounds, color);
|
|
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
|
|
}
|
|
++col;
|
|
if (numCols == col) {
|
|
col = 0;
|
|
++row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
typedef GM INHERITED;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
class BezierConicTestOp : public BezierTestOp {
|
|
public:
|
|
DEFINE_OP_CLASS_ID
|
|
|
|
const char* name() const override { return "BezierConicTestOp"; }
|
|
|
|
static std::unique_ptr<GrDrawOp> Make(sk_sp<GrGeometryProcessor> gp, const SkRect& rect,
|
|
GrColor color, const SkMatrix& klm) {
|
|
return std::unique_ptr<GrMeshDrawOp>(
|
|
new BezierConicTestOp(std::move(gp), rect, color, klm));
|
|
}
|
|
|
|
private:
|
|
BezierConicTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color,
|
|
const SkMatrix& klm)
|
|
: INHERITED(std::move(gp), rect, color, ClassID()), fKLM(klm) {}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
void onPrepareDraws(Target* target) override {
|
|
QuadHelper helper;
|
|
size_t vertexStride = this->gp()->getVertexStride();
|
|
SkASSERT(vertexStride == sizeof(Vertex));
|
|
Vertex* verts = reinterpret_cast<Vertex*>(helper.init(target, vertexStride, 1));
|
|
if (!verts) {
|
|
return;
|
|
}
|
|
SkRect rect = this->rect();
|
|
SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect.fLeft, rect.fTop, rect.fRight,
|
|
rect.fBottom, sizeof(Vertex));
|
|
for (int v = 0; v < 4; ++v) {
|
|
SkPoint3 pt3 = {verts[v].fPosition.x(), verts[v].fPosition.y(), 1.f};
|
|
fKLM.mapHomogeneousPoints((SkPoint3* ) verts[v].fKLM, &pt3, 1);
|
|
}
|
|
helper.recordDraw(target, this->gp(), this->makePipeline(target));
|
|
}
|
|
|
|
SkMatrix fKLM;
|
|
|
|
static constexpr int kVertsPerCubic = 4;
|
|
static constexpr int kIndicesPerCubic = 6;
|
|
|
|
typedef BezierTestOp INHERITED;
|
|
};
|
|
|
|
|
|
/**
|
|
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
|
|
*/
|
|
class BezierConicEffects : public GM {
|
|
public:
|
|
BezierConicEffects() {
|
|
this->setBGColor(0xFFFFFFFF);
|
|
}
|
|
|
|
protected:
|
|
SkString onShortName() override {
|
|
return SkString("bezier_conic_effects");
|
|
}
|
|
|
|
SkISize onISize() override {
|
|
return SkISize::Make(800, 800);
|
|
}
|
|
|
|
|
|
void onDraw(SkCanvas* canvas) override {
|
|
GrRenderTargetContext* renderTargetContext =
|
|
canvas->internal_private_accessTopLayerRenderTargetContext();
|
|
if (!renderTargetContext) {
|
|
skiagm::GM::DrawGpuOnlyMessage(canvas);
|
|
return;
|
|
}
|
|
|
|
GrContext* context = canvas->getGrContext();
|
|
if (!context) {
|
|
return;
|
|
}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
constexpr int kNumConics = 10;
|
|
SkRandom rand;
|
|
|
|
// Mult by 3 for each edge effect type
|
|
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3)));
|
|
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols);
|
|
SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols;
|
|
SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows;
|
|
int row = 0;
|
|
int col = 0;
|
|
constexpr GrColor color = 0xff000000;
|
|
|
|
for (int i = 0; i < kNumConics; ++i) {
|
|
SkPoint baseControlPts[] = {
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
|
|
};
|
|
SkScalar weight = rand.nextRangeF(0.f, 2.f);
|
|
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
|
|
sk_sp<GrGeometryProcessor> gp;
|
|
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
|
|
gp = GrConicEffect::Make(color, SkMatrix::I(), et,
|
|
*context->caps(), SkMatrix::I(), false);
|
|
if (!gp) {
|
|
continue;
|
|
}
|
|
|
|
SkScalar x = col * w;
|
|
SkScalar y = row * h;
|
|
SkPoint controlPts[] = {
|
|
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
|
|
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
|
|
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
|
|
};
|
|
SkConic dst[4];
|
|
SkMatrix klm;
|
|
int cnt = chop_conic(controlPts, dst, weight);
|
|
GrPathUtils::getConicKLM(controlPts, weight, &klm);
|
|
|
|
SkPaint ctrlPtPaint;
|
|
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint);
|
|
}
|
|
|
|
SkPaint polyPaint;
|
|
polyPaint.setColor(0xffA0A0A0);
|
|
polyPaint.setStrokeWidth(0);
|
|
polyPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
|
|
|
|
SkPaint choppedPtPaint;
|
|
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
|
|
|
|
for (int c = 0; c < cnt; ++c) {
|
|
SkPoint* pts = dst[c].fPts;
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(pts[i], 3.f, choppedPtPaint);
|
|
}
|
|
|
|
SkRect bounds;
|
|
//SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}};
|
|
//bounds.set(bPts, 2);
|
|
bounds.set(pts, 3);
|
|
|
|
SkPaint boundsPaint;
|
|
boundsPaint.setColor(0xff808080);
|
|
boundsPaint.setStrokeWidth(0);
|
|
boundsPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawRect(bounds, boundsPaint);
|
|
|
|
std::unique_ptr<GrDrawOp> op = BezierConicTestOp::Make(gp, bounds, color, klm);
|
|
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
|
|
}
|
|
++col;
|
|
if (numCols == col) {
|
|
col = 0;
|
|
++row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Uses the max curvature function for quads to estimate
|
|
// where to chop the conic. If the max curvature is not
|
|
// found along the curve segment it will return 1 and
|
|
// dst[0] is the original conic. If it returns 2 the dst[0]
|
|
// and dst[1] are the two new conics.
|
|
int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
|
|
SkScalar t = SkFindQuadMaxCurvature(src);
|
|
if (t == 0) {
|
|
if (dst) {
|
|
dst[0].set(src, weight);
|
|
}
|
|
return 1;
|
|
} else {
|
|
if (dst) {
|
|
SkConic conic;
|
|
conic.set(src, weight);
|
|
if (!conic.chopAt(t, dst)) {
|
|
dst[0].set(src, weight);
|
|
return 1;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
// Calls split_conic on the entire conic and then once more on each subsection.
|
|
// Most cases will result in either 1 conic (chop point is not within t range)
|
|
// or 3 points (split once and then one subsection is split again).
|
|
int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
|
|
SkConic dstTemp[2];
|
|
int conicCnt = split_conic(src, dstTemp, weight);
|
|
if (2 == conicCnt) {
|
|
int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
|
|
conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
|
|
} else {
|
|
dst[0] = dstTemp[0];
|
|
}
|
|
return conicCnt;
|
|
}
|
|
|
|
typedef GM INHERITED;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
class BezierQuadTestOp : public BezierTestOp {
|
|
public:
|
|
DEFINE_OP_CLASS_ID
|
|
const char* name() const override { return "BezierQuadTestOp"; }
|
|
|
|
static std::unique_ptr<GrDrawOp> Make(sk_sp<GrGeometryProcessor> gp, const SkRect& rect,
|
|
GrColor color, const GrPathUtils::QuadUVMatrix& devToUV) {
|
|
return std::unique_ptr<GrDrawOp>(new BezierQuadTestOp(std::move(gp), rect, color, devToUV));
|
|
}
|
|
|
|
private:
|
|
BezierQuadTestOp(sk_sp<GrGeometryProcessor> gp, const SkRect& rect, GrColor color,
|
|
const GrPathUtils::QuadUVMatrix& devToUV)
|
|
: INHERITED(std::move(gp), rect, color, ClassID()), fDevToUV(devToUV) {}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
void onPrepareDraws(Target* target) override {
|
|
QuadHelper helper;
|
|
size_t vertexStride = this->gp()->getVertexStride();
|
|
SkASSERT(vertexStride == sizeof(Vertex));
|
|
Vertex* verts = reinterpret_cast<Vertex*>(helper.init(target, vertexStride, 1));
|
|
if (!verts) {
|
|
return;
|
|
}
|
|
SkRect rect = this->rect();
|
|
SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect.fLeft, rect.fTop, rect.fRight,
|
|
rect.fBottom, sizeof(Vertex));
|
|
fDevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts);
|
|
helper.recordDraw(target, this->gp(), this->makePipeline(target));
|
|
}
|
|
|
|
GrPathUtils::QuadUVMatrix fDevToUV;
|
|
|
|
static constexpr int kVertsPerCubic = 4;
|
|
static constexpr int kIndicesPerCubic = 6;
|
|
|
|
typedef BezierTestOp INHERITED;
|
|
};
|
|
|
|
/**
|
|
* This GM directly exercises effects that draw Bezier quad curves in the GPU backend.
|
|
*/
|
|
class BezierQuadEffects : public GM {
|
|
public:
|
|
BezierQuadEffects() {
|
|
this->setBGColor(0xFFFFFFFF);
|
|
}
|
|
|
|
protected:
|
|
SkString onShortName() override {
|
|
return SkString("bezier_quad_effects");
|
|
}
|
|
|
|
SkISize onISize() override {
|
|
return SkISize::Make(800, 800);
|
|
}
|
|
|
|
|
|
void onDraw(SkCanvas* canvas) override {
|
|
GrRenderTargetContext* renderTargetContext =
|
|
canvas->internal_private_accessTopLayerRenderTargetContext();
|
|
if (!renderTargetContext) {
|
|
skiagm::GM::DrawGpuOnlyMessage(canvas);
|
|
return;
|
|
}
|
|
|
|
GrContext* context = canvas->getGrContext();
|
|
if (!context) {
|
|
return;
|
|
}
|
|
|
|
struct Vertex {
|
|
SkPoint fPosition;
|
|
float fUV[4]; // The last two values are ignored. The effect expects a vec4f.
|
|
};
|
|
|
|
constexpr int kNumQuads = 5;
|
|
SkRandom rand;
|
|
|
|
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3)));
|
|
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols);
|
|
SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols;
|
|
SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows;
|
|
int row = 0;
|
|
int col = 0;
|
|
constexpr GrColor color = 0xff000000;
|
|
|
|
for (int i = 0; i < kNumQuads; ++i) {
|
|
SkPoint baseControlPts[] = {
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
|
|
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
|
|
};
|
|
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
|
|
sk_sp<GrGeometryProcessor> gp;
|
|
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
|
|
gp = GrQuadEffect::Make(color, SkMatrix::I(), et,
|
|
*context->caps(), SkMatrix::I(), false);
|
|
if (!gp) {
|
|
continue;
|
|
}
|
|
|
|
SkScalar x = col * w;
|
|
SkScalar y = row * h;
|
|
SkPoint controlPts[] = {
|
|
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
|
|
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
|
|
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
|
|
};
|
|
SkPoint chopped[5];
|
|
int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped);
|
|
|
|
SkPaint ctrlPtPaint;
|
|
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint);
|
|
}
|
|
|
|
SkPaint polyPaint;
|
|
polyPaint.setColor(0xffA0A0A0);
|
|
polyPaint.setStrokeWidth(0);
|
|
polyPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
|
|
|
|
SkPaint choppedPtPaint;
|
|
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
|
|
|
|
for (int c = 0; c < cnt; ++c) {
|
|
SkPoint* pts = chopped + 2 * c;
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
canvas->drawCircle(pts[i], 3.f, choppedPtPaint);
|
|
}
|
|
|
|
SkRect bounds;
|
|
bounds.set(pts, 3);
|
|
|
|
SkPaint boundsPaint;
|
|
boundsPaint.setColor(0xff808080);
|
|
boundsPaint.setStrokeWidth(0);
|
|
boundsPaint.setStyle(SkPaint::kStroke_Style);
|
|
canvas->drawRect(bounds, boundsPaint);
|
|
|
|
GrPaint grPaint;
|
|
grPaint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc));
|
|
|
|
GrPathUtils::QuadUVMatrix DevToUV(pts);
|
|
|
|
std::unique_ptr<GrDrawOp> op =
|
|
BezierQuadTestOp::Make(gp, bounds, color, DevToUV);
|
|
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
|
|
}
|
|
++col;
|
|
if (numCols == col) {
|
|
col = 0;
|
|
++row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
typedef GM INHERITED;
|
|
};
|
|
|
|
DEF_GM(return new BezierCubicEffects;)
|
|
DEF_GM(return new BezierConicEffects;)
|
|
DEF_GM(return new BezierQuadEffects;)
|
|
}
|
|
|
|
#endif
|