skia2/gm/convexpaths.cpp
scroggo f9d610179d There can be only one (SkRandom)!
Remove SkLCGRandom. We already decided the new one was better, which is
why we wrote the new SkRandom.

Convert GMs that were using SkLCGRandom to use the improved SkRandom.
Motivated by the fact that these GMs draw differently on some runs. We
believe this to be a result of using the old SkLCGRandom.

Add each of the tests that were using SkLCGRandom to ignore-tests.txt,
since we expect they'll draw differently using SkRandom.

Move a trimmed down version of SkLCGRandom into SkDiscretePathEffect.
In order to preserve the old behavior, trim down SkLCGRandom to only
the methods used by SkDiscretePathEffect, and hide it in
SkDiscretePathEffect's cpp file.

BUG=skia:3241

Review URL: https://codereview.chromium.org/805963002
2014-12-15 12:54:51 -08:00

302 lines
12 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm.h"
#include "SkRandom.h"
#include "SkTArray.h"
class SkDoOnce : SkNoncopyable {
public:
SkDoOnce() { fDidOnce = false; }
bool needToDo() const { return !fDidOnce; }
bool alreadyDone() const { return fDidOnce; }
void accomplished() {
SkASSERT(!fDidOnce);
fDidOnce = true;
}
private:
bool fDidOnce;
};
namespace skiagm {
class ConvexPathsGM : public GM {
SkDoOnce fOnce;
public:
ConvexPathsGM() {
this->setBGColor(0xFF000000);
}
protected:
virtual uint32_t onGetFlags() const SK_OVERRIDE {
return kSkipTiled_Flag;
}
virtual SkString onShortName() {
return SkString("convexpaths");
}
virtual SkISize onISize() {
return SkISize::Make(1200, 1100);
}
void makePaths() {
if (fOnce.alreadyDone()) {
return;
}
fOnce.accomplished();
fPaths.push_back().moveTo(0, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 100 * SK_Scalar1);
fPaths.back().lineTo(0, 0);
fPaths.push_back().moveTo(0, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 0,
100 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 50 * SK_Scalar1);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCW_Direction);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCCW_Direction);
fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
100 * SK_Scalar1,
5 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0,
SK_Scalar1 * 100,
SK_Scalar1 * 100),
40 * SK_Scalar1, 20 * SK_Scalar1,
SkPath::kCW_Direction);
// large number of points
enum {
kLength = 100,
kPtsPerSide = (1 << 12),
};
fPaths.push_back().moveTo(0, 0);
for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo.
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0);
}
for (int i = 0; i < kPtsPerSide; ++i) {
fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide);
}
// shallow diagonals
fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1);
fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1);
fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
25 * SK_Scalar1, 130 * SK_Scalar1, false);
// cubics
fPaths.push_back().cubicTo( 1 * SK_Scalar1, 1 * SK_Scalar1,
10 * SK_Scalar1, 90 * SK_Scalar1,
0 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(100 * SK_Scalar1, 50 * SK_Scalar1,
20 * SK_Scalar1, 100 * SK_Scalar1,
0 * SK_Scalar1, 0 * SK_Scalar1);
// path that has a cubic with a repeated first control point and
// a repeated last control point.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(40 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// path that has two cubics with repeated middle control points.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 0,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// cubic where last three points are almost a line
fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8);
fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8,
1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8,
1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8);
// flat cubic where the at end point tangents both point outward.
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is in, end tangent out
fPaths.push_back().moveTo(0, 0 * SK_Scalar1);
fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is out, end tangent in
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
20 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, 0);
// triangle where one edge is a degenerate quad
fPaths.push_back().moveTo(8.59375f, 45 * SK_Scalar1);
fPaths.back().quadTo(16.9921875f, 45 * SK_Scalar1,
31.25f, 45 * SK_Scalar1);
fPaths.back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(8.59375f, 45 * SK_Scalar1);
// triangle where one edge is a quad with a repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 2x repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a quad with a nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 3x nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 49.97f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where there is a point degenerate cubic at one corner
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point line
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
// point quad
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point cubic
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// moveTo only paths
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1);
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
// line degenerate
fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(0, 0,
0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1);
// small circle. This is listed last so that it has device coords far
// from the origin (small area relative to x,y values).
fPaths.push_back().addCircle(0, 0, 1.2f);
}
virtual void onDraw(SkCanvas* canvas) {
this->makePaths();
SkPaint paint;
paint.setAntiAlias(true);
SkRandom rand;
canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1);
// As we've added more paths this has gotten pretty big. Scale the whole thing down.
canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3);
for (int i = 0; i < fPaths.count(); ++i) {
canvas->save();
// position the path, and make it at off-integer coords.
canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10,
SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10);
SkColor color = rand.nextU();
color |= 0xff000000;
paint.setColor(color);
#if 0 // This hitting on 32bit Linux builds for some paths. Temporarily disabling while it is
// debugged.
SkASSERT(fPaths[i].isConvex());
#endif
canvas->drawPath(fPaths[i], paint);
canvas->restore();
}
}
private:
typedef GM INHERITED;
SkTArray<SkPath> fPaths;
};
//////////////////////////////////////////////////////////////////////////////
static GM* MyFactory(void*) { return new ConvexPathsGM; }
static GMRegistry reg(MyFactory);
}