skia2/include/gpu/GrPaint.h
commit-bot@chromium.org a34995e18b Implement SkColorFilter as a GrGLEffect
Adds GrEffect::willUseInputColor() which indicates whether or not the
input color affects the output of the effect. This is needed for
certain Xfermodes, such as kSrc_Mode. For these modes the color filter
will not use the input color.

An effect with GrEffect::willUseInputColor() true will cause all color
or coverage effects before it to be discarded, as their computations
cannot affect the output. In these cases program is marked as having
white input color.

This fixes an assert when Skia is compiled in a mode that prefers
using uniforms instead of attributes for constants. (Flags
GR_GL_USE_NV_PATH_RENDERING or GR_GL_NO_CONSTANT_ATTRIBUTES). Using
attributes hides the problem where the fragment shader does not need
input color for color filters that ignore DST part of the filter. The
assert would be hit when uniform manager tries to bind an uniform which
has been optimized away by the shader compiler.

Adds specific GrGLSLExpr4 and GrGLSLExpr1 classes. This way the GLSL
expressions like "(v - src.a)" can remain somewhat readable in form of
"(v - src.a())". The GrGLSLExpr<typename> template implements the
generic functionality, GrGLSLExprX is the specialization that exposes
the type-safe interface to this functionality.

Also adds operators so that GLSL binary operators of the form
"(float * vecX)" can be expressed in C++. Before only the equivalent
"(vecX * float)" was possible. This reverts the common blending
calculations to more conventional order, such as "(1-a) * c" instead of
"c * (1-a)".

Changes GrGLSLExpr1::OnesStr from 1 to 1.0 in order to preserve the
color filter blending formula string the same (with the exception of
variable name change).

Shaders change in case of input color being needed:
 -   vec4 filteredColor;
 -   filteredColor = (((1.0 - uFilterColor.a) * output_Stage0) + uFilterColor);
 -   fsColorOut = filteredColor;
 +   vec4 output_Stage1;
 +   { // Stage 1: ModeColorFilterEffect
 +   output_Stage1 = (((1.0 - uFilterColor_Stage1.a) * output_Stage0) + uFilterColor_Stage1);
 +   }
 +   fsColorOut = output_Stage1;

Shaders change in case of input color being not needed:
 -uniform vec4 uFilterColor;
 -in vec4 vColor;
 +uniform vec4 uFilterColor_Stage0;
  out vec4 fsColorOut;
  void main() {
 -   vec4 filteredColor;
 -   filteredColor = uFilterColor;
 -   fsColorOut = filteredColor;
 +   vec4 output_Stage0;
 +   { // Stage 0: ModeColorFilterEffect
 +   output_Stage0 = uFilterColor_Stage0;
 +   }
 +   fsColorOut = output_Stage0;
  }

R=bsalomon@google.com, robertphillips@google.com, jvanverth@google.com

Author: kkinnunen@nvidia.com

Review URL: https://codereview.chromium.org/25023003

git-svn-id: http://skia.googlecode.com/svn/trunk@11912 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-10-23 05:42:03 +00:00

254 lines
8.5 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrPaint_DEFINED
#define GrPaint_DEFINED
#include "GrColor.h"
#include "GrEffectStage.h"
#include "SkXfermode.h"
/**
* The paint describes how color and coverage are computed at each pixel by GrContext draw
* functions and the how color is blended with the destination pixel.
*
* The paint allows installation of custom color and coverage stages. New types of stages are
* created by subclassing GrEffect.
*
* The primitive color computation starts with the color specified by setColor(). This color is the
* input to the first color stage. Each color stage feeds its output to the next color stage. The
* final color stage's output color is input to the color filter specified by
* setXfermodeColorFilter which produces the final source color, S.
*
* Fractional pixel coverage follows a similar flow. The coverage is initially the value specified
* by setCoverage(). This is input to the first coverage stage. Coverage stages are chained
* together in the same manner as color stages. The output of the last stage is modulated by any
* fractional coverage produced by anti-aliasing. This last step produces the final coverage, C.
*
* setBlendFunc() specifies blending coefficients for S (described above) and D, the initial value
* of the destination pixel, labeled Bs and Bd respectively. The final value of the destination
* pixel is then D' = (1-C)*D + C*(Bd*D + Bs*S).
*
* Note that the coverage is applied after the blend. This is why they are computed as distinct
* values.
*
* TODO: Encapsulate setXfermodeColorFilter in a GrEffect and remove from GrPaint.
*/
class GrPaint {
public:
GrPaint() { this->reset(); }
GrPaint(const GrPaint& paint) { *this = paint; }
~GrPaint() {}
/**
* Sets the blending coefficients to use to blend the final primitive color with the
* destination color. Defaults to kOne for src and kZero for dst (i.e. src mode).
*/
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
fSrcBlendCoeff = srcCoeff;
fDstBlendCoeff = dstCoeff;
}
GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlendCoeff; }
GrBlendCoeff getDstBlendCoeff() const { return fDstBlendCoeff; }
/**
* The initial color of the drawn primitive. Defaults to solid white.
*/
void setColor(GrColor color) { fColor = color; }
GrColor getColor() const { return fColor; }
/**
* Applies fractional coverage to the entire drawn primitive. Defaults to 0xff.
*/
void setCoverage(uint8_t coverage) { fCoverage = coverage; }
uint8_t getCoverage() const { return fCoverage; }
/**
* Should primitives be anti-aliased or not. Defaults to false.
*/
void setAntiAlias(bool aa) { fAntiAlias = aa; }
bool isAntiAlias() const { return fAntiAlias; }
/**
* Should dithering be applied. Defaults to false.
*/
void setDither(bool dither) { fDither = dither; }
bool isDither() const { return fDither; }
/**
* Appends an additional color effect to the color computation.
*/
const GrEffectRef* addColorEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
SkASSERT(NULL != effect);
if (!(*effect)->willUseInputColor()) {
fColorStages.reset();
}
SkNEW_APPEND_TO_TARRAY(&fColorStages, GrEffectStage, (effect, attr0, attr1));
return effect;
}
/**
* Appends an additional coverage effect to the coverage computation.
*/
const GrEffectRef* addCoverageEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
SkASSERT(NULL != effect);
if (!(*effect)->willUseInputColor()) {
fCoverageStages.reset();
}
SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrEffectStage, (effect, attr0, attr1));
return effect;
}
/**
* Helpers for adding color or coverage effects that sample a texture. The matrix is applied
* to the src space position to compute texture coordinates.
*/
void addColorTextureEffect(GrTexture* texture, const SkMatrix& matrix);
void addCoverageTextureEffect(GrTexture* texture, const SkMatrix& matrix);
void addColorTextureEffect(GrTexture* texture,
const SkMatrix& matrix,
const GrTextureParams& params);
void addCoverageTextureEffect(GrTexture* texture,
const SkMatrix& matrix,
const GrTextureParams& params);
int numColorStages() const { return fColorStages.count(); }
int numCoverageStages() const { return fCoverageStages.count(); }
int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }
const GrEffectStage& getColorStage(int s) const { return fColorStages[s]; }
const GrEffectStage& getCoverageStage(int s) const { return fCoverageStages[s]; }
GrPaint& operator=(const GrPaint& paint) {
fSrcBlendCoeff = paint.fSrcBlendCoeff;
fDstBlendCoeff = paint.fDstBlendCoeff;
fAntiAlias = paint.fAntiAlias;
fDither = paint.fDither;
fColor = paint.fColor;
fCoverage = paint.fCoverage;
fColorStages = paint.fColorStages;
fCoverageStages = paint.fCoverageStages;
return *this;
}
/**
* Resets the paint to the defaults.
*/
void reset() {
this->resetBlend();
this->resetOptions();
this->resetColor();
this->resetCoverage();
this->resetStages();
}
/**
* Determines whether the drawing with this paint is opaque with respect to both color blending
* and fractional coverage. It does not consider whether AA has been enabled on the paint or
* not. Depending upon whether multisampling or coverage-based AA is in use, AA may make the
* result only apply to the interior of primitives.
*
*/
bool isOpaque() const;
/**
* Returns true if isOpaque would return true and the paint represents a solid constant color
* draw. If the result is true, constantColor will be updated to contain the constant color.
*/
bool isOpaqueAndConstantColor(GrColor* constantColor) const;
private:
/**
* Helper for isOpaque and isOpaqueAndConstantColor.
*/
bool getOpaqueAndKnownColor(GrColor* solidColor, uint32_t* solidColorKnownComponents) const;
/**
* Called when the source coord system from which geometry is rendered changes. It ensures that
* the local coordinates seen by effects remains unchanged. oldToNew gives the transformation
* from the previous coord system to the new coord system.
*/
void localCoordChange(const SkMatrix& oldToNew) {
for (int i = 0; i < fColorStages.count(); ++i) {
fColorStages[i].localCoordChange(oldToNew);
}
for (int i = 0; i < fCoverageStages.count(); ++i) {
fCoverageStages[i].localCoordChange(oldToNew);
}
}
bool localCoordChangeInverse(const SkMatrix& newToOld) {
SkMatrix oldToNew;
bool computed = false;
for (int i = 0; i < fColorStages.count(); ++i) {
if (!computed && !newToOld.invert(&oldToNew)) {
return false;
} else {
computed = true;
}
fColorStages[i].localCoordChange(oldToNew);
}
for (int i = 0; i < fCoverageStages.count(); ++i) {
if (!computed && !newToOld.invert(&oldToNew)) {
return false;
} else {
computed = true;
}
fCoverageStages[i].localCoordChange(oldToNew);
}
return true;
}
friend class GrContext; // To access above two functions
SkSTArray<4, GrEffectStage> fColorStages;
SkSTArray<2, GrEffectStage> fCoverageStages;
GrBlendCoeff fSrcBlendCoeff;
GrBlendCoeff fDstBlendCoeff;
bool fAntiAlias;
bool fDither;
GrColor fColor;
uint8_t fCoverage;
void resetBlend() {
fSrcBlendCoeff = kOne_GrBlendCoeff;
fDstBlendCoeff = kZero_GrBlendCoeff;
}
void resetOptions() {
fAntiAlias = false;
fDither = false;
}
void resetColor() {
fColor = GrColorPackRGBA(0xff, 0xff, 0xff, 0xff);
}
void resetCoverage() {
fCoverage = 0xff;
}
void resetStages() {
fColorStages.reset();
fCoverageStages.reset();
}
};
#endif