skia2/bench/SkRasterPipelineBench.cpp
mtklein fe2042e60f SkRasterPipeline: new APIs for fusion
Most visibly this adds a macro SK_RASTER_STAGE that cuts down on the boilerplate of defining a raster pipeline stage function.

Most interestingly, SK_RASTER_STAGE doesn't define a SkRasterPipeline::Fn, but rather a new type EasyFn.  This function is always static and inlined, and the details of interacting with the SkRasterPipeline::Stage are taken care of for you: ctx is just passed as a void*, and st->next() is always called.  All EasyFns have to do is take care of the meat of the work: update r,g,b, etc. and read and write from their context.

The really neat new feature here is that you can either add EasyFns to a pipeline with the new append() functions, _or_ call them directly yourself.  This lets you use the same set of pieces to build either a pipelined version of the function or a custom, fused version.  The bench shows this off.

On my desktop, the pipeline version of the bench takes about 25% more time to run than the fused one.

The old approach to creating stages still works fine.  I haven't updated SkXfermode.cpp or SkArithmeticMode.cpp because they seemed just as clear using Fn directly as they would have using EasyFn.

If this looks okay to you I will rework the comments in SkRasterPipeline to explain SK_RASTER_STAGE and EasyFn a bit as I've done here in the CL description.

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2195853002

Review-Url: https://codereview.chromium.org/2195853002
2016-07-29 14:27:41 -07:00

187 lines
5.6 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "SkRasterPipeline.h"
#include "SkSRGB.h"
static const int N = 1023;
static uint32_t dst[N],
src[N];
static uint8_t mask[N];
// We'll build up a somewhat realistic useful pipeline:
// - load srgb src
// - scale src by 8-bit mask
// - load srgb dst
// - src = srcover(dst, src)
// - store src back as srgb
// Every stage except for srcover interacts with memory, and so will need _tail variants.
SK_RASTER_STAGE(load_s_srgb) {
auto ptr = (const uint32_t*)ctx + x;
r = Sk4f{ sk_linear_from_srgb[(ptr[0] >> 0) & 0xff],
sk_linear_from_srgb[(ptr[1] >> 0) & 0xff],
sk_linear_from_srgb[(ptr[2] >> 0) & 0xff],
sk_linear_from_srgb[(ptr[3] >> 0) & 0xff] };
g = Sk4f{ sk_linear_from_srgb[(ptr[0] >> 8) & 0xff],
sk_linear_from_srgb[(ptr[1] >> 8) & 0xff],
sk_linear_from_srgb[(ptr[2] >> 8) & 0xff],
sk_linear_from_srgb[(ptr[3] >> 8) & 0xff] };
b = Sk4f{ sk_linear_from_srgb[(ptr[0] >> 16) & 0xff],
sk_linear_from_srgb[(ptr[1] >> 16) & 0xff],
sk_linear_from_srgb[(ptr[2] >> 16) & 0xff],
sk_linear_from_srgb[(ptr[3] >> 16) & 0xff] };
a = SkNx_cast<float>((Sk4i::Load(ptr) >> 24) & 0xff) * (1/255.0f);
}
SK_RASTER_STAGE(load_s_srgb_tail) {
auto ptr = (const uint32_t*)ctx + x;
r = Sk4f{ sk_linear_from_srgb[(*ptr >> 0) & 0xff], 0,0,0 };
g = Sk4f{ sk_linear_from_srgb[(*ptr >> 8) & 0xff], 0,0,0 };
b = Sk4f{ sk_linear_from_srgb[(*ptr >> 16) & 0xff], 0,0,0 };
a = Sk4f{ (*ptr >> 24) * (1/255.0f), 0,0,0 };
}
SK_RASTER_STAGE(load_d_srgb) {
auto ptr = (const uint32_t*)ctx + x;
dr = Sk4f{ sk_linear_from_srgb[(ptr[0] >> 0) & 0xff],
sk_linear_from_srgb[(ptr[1] >> 0) & 0xff],
sk_linear_from_srgb[(ptr[2] >> 0) & 0xff],
sk_linear_from_srgb[(ptr[3] >> 0) & 0xff] };
dg = Sk4f{ sk_linear_from_srgb[(ptr[0] >> 8) & 0xff],
sk_linear_from_srgb[(ptr[1] >> 8) & 0xff],
sk_linear_from_srgb[(ptr[2] >> 8) & 0xff],
sk_linear_from_srgb[(ptr[3] >> 8) & 0xff] };
db = Sk4f{ sk_linear_from_srgb[(ptr[0] >> 16) & 0xff],
sk_linear_from_srgb[(ptr[1] >> 16) & 0xff],
sk_linear_from_srgb[(ptr[2] >> 16) & 0xff],
sk_linear_from_srgb[(ptr[3] >> 16) & 0xff] };
da = SkNx_cast<float>((Sk4i::Load(ptr) >> 24) & 0xff) * (1/255.0f);
}
SK_RASTER_STAGE(load_d_srgb_tail) {
auto ptr = (const uint32_t*)ctx + x;
dr = Sk4f{ sk_linear_from_srgb[(*ptr >> 0) & 0xff], 0,0,0 };
dg = Sk4f{ sk_linear_from_srgb[(*ptr >> 8) & 0xff], 0,0,0 };
db = Sk4f{ sk_linear_from_srgb[(*ptr >> 16) & 0xff], 0,0,0 };
da = Sk4f{ (*ptr >> 24) * (1/255.0f), 0,0,0 };
}
SK_RASTER_STAGE(scale_u8) {
auto ptr = (const uint8_t*)ctx + x;
auto c = SkNx_cast<float>(Sk4b::Load(ptr)) * (1/255.0f);
r *= c;
g *= c;
b *= c;
a *= c;
}
SK_RASTER_STAGE(scale_u8_tail) {
auto ptr = (const uint8_t*)ctx + x;
auto c = *ptr * (1/255.0f);
r *= c;
g *= c;
b *= c;
a *= c;
}
SK_RASTER_STAGE(srcover) {
auto A = 1.0f - a;
r += dr * A;
g += dg * A;
b += db * A;
a += da * A;
}
SK_RASTER_STAGE(store_srgb) {
auto ptr = (uint32_t*)ctx + x;
( sk_linear_to_srgb(r)
| sk_linear_to_srgb(g) << 8
| sk_linear_to_srgb(b) << 16
| Sk4f_round(255.0f*a) << 24).store(ptr);
}
SK_RASTER_STAGE(store_srgb_tail) {
auto ptr = (uint32_t*)ctx + x;
Sk4i rgba = sk_linear_to_srgb({r[0], g[0], b[0], 0});
rgba = {rgba[0], rgba[1], rgba[2], (int)(255.0f * a[0] + 0.5f)};
SkNx_cast<uint8_t>(rgba).store(ptr);
}
class SkRasterPipelineBench : public Benchmark {
public:
SkRasterPipelineBench(bool fused) : fFused(fused) {}
bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; }
const char* onGetName() override { return fFused ? "SkRasterPipelineBench_fused"
: "SkRasterPipelineBench_pipeline"; }
void onDraw(int loops, SkCanvas*) override {
while (loops --> 0) {
fFused ? this->runFused() : this->runPipeline();
}
}
void runFused() {
Sk4f r,g,b,a, dr,dg,db,da;
size_t x = 0, n = N;
while (n >= 4) {
load_s_srgb(src , x, r,g,b,a, dr,dg,db,da);
scale_u8 (mask , x, r,g,b,a, dr,dg,da,da);
load_d_srgb(dst , x, r,g,b,a, dr,dg,da,da);
srcover (nullptr, x, r,g,b,a, dr,dg,da,da);
store_srgb (dst , x, r,g,b,a, dr,dg,da,da);
x += 4;
n -= 4;
}
while (n > 0) {
load_s_srgb_tail(src , x, r,g,b,a, dr,dg,db,da);
scale_u8_tail (mask , x, r,g,b,a, dr,dg,da,da);
load_d_srgb_tail(dst , x, r,g,b,a, dr,dg,da,da);
srcover (nullptr, x, r,g,b,a, dr,dg,da,da);
store_srgb_tail (dst , x, r,g,b,a, dr,dg,da,da);
x += 1;
n -= 1;
}
}
void runPipeline() {
SkRasterPipeline p;
p.append<load_s_srgb, load_s_srgb_tail>( src);
p.append< scale_u8, scale_u8_tail>(mask);
p.append<load_d_srgb, load_d_srgb_tail>( dst);
p.append<srcover>();
p.append< store_srgb, store_srgb_tail>( dst);
p.run(N);
}
bool fFused;
};
DEF_BENCH( return new SkRasterPipelineBench(true); )
DEF_BENCH( return new SkRasterPipelineBench(false); )