d30937a499
It appears to be unused, and exploits undefined behavior. Change-Id: I935de36cd2f07e811958b1696afa62d410e1cb5f Reviewed-on: https://skia-review.googlesource.com/152123 Commit-Queue: Mike Klein <mtklein@google.com> Commit-Queue: Cary Clark <caryclark@google.com> Auto-Submit: Mike Klein <mtklein@google.com> Reviewed-by: Cary Clark <caryclark@google.com>
170 lines
4.8 KiB
C++
170 lines
4.8 KiB
C++
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkRandom_DEFINED
|
|
#define SkRandom_DEFINED
|
|
|
|
#include "../private/SkFixed.h"
|
|
#include "../private/SkFloatBits.h"
|
|
#include "SkScalar.h"
|
|
|
|
/** \class SkRandom
|
|
|
|
Utility class that implements pseudo random 32bit numbers using Marsaglia's
|
|
multiply-with-carry "mother of all" algorithm. Unlike rand(), this class holds
|
|
its own state, so that multiple instances can be used with no side-effects.
|
|
|
|
Has a large period and all bits are well-randomized.
|
|
*/
|
|
class SkRandom {
|
|
public:
|
|
SkRandom() { init(0); }
|
|
SkRandom(uint32_t seed) { init(seed); }
|
|
SkRandom(const SkRandom& rand) : fK(rand.fK), fJ(rand.fJ) {}
|
|
|
|
SkRandom& operator=(const SkRandom& rand) {
|
|
fK = rand.fK;
|
|
fJ = rand.fJ;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/** Return the next pseudo random number as an unsigned 32bit value.
|
|
*/
|
|
uint32_t nextU() {
|
|
fK = kKMul*(fK & 0xffff) + (fK >> 16);
|
|
fJ = kJMul*(fJ & 0xffff) + (fJ >> 16);
|
|
return (((fK << 16) | (fK >> 16)) + fJ);
|
|
}
|
|
|
|
/** Return the next pseudo random number as a signed 32bit value.
|
|
*/
|
|
int32_t nextS() { return (int32_t)this->nextU(); }
|
|
|
|
/**
|
|
* Returns value [0...1) as an IEEE float
|
|
*/
|
|
float nextF() {
|
|
unsigned int floatint = 0x3f800000 | (this->nextU() >> 9);
|
|
float f = SkBits2Float(floatint) - 1.0f;
|
|
return f;
|
|
}
|
|
|
|
/**
|
|
* Returns value [min...max) as a float
|
|
*/
|
|
float nextRangeF(float min, float max) {
|
|
return min + this->nextF() * (max - min);
|
|
}
|
|
|
|
/** Return the next pseudo random number, as an unsigned value of
|
|
at most bitCount bits.
|
|
@param bitCount The maximum number of bits to be returned
|
|
*/
|
|
uint32_t nextBits(unsigned bitCount) {
|
|
SkASSERT(bitCount > 0 && bitCount <= 32);
|
|
return this->nextU() >> (32 - bitCount);
|
|
}
|
|
|
|
/** Return the next pseudo random unsigned number, mapped to lie within
|
|
[min, max] inclusive.
|
|
*/
|
|
uint32_t nextRangeU(uint32_t min, uint32_t max) {
|
|
SkASSERT(min <= max);
|
|
uint32_t range = max - min + 1;
|
|
if (0 == range) {
|
|
return this->nextU();
|
|
} else {
|
|
return min + this->nextU() % range;
|
|
}
|
|
}
|
|
|
|
/** Return the next pseudo random unsigned number, mapped to lie within
|
|
[0, count).
|
|
*/
|
|
uint32_t nextULessThan(uint32_t count) {
|
|
SkASSERT(count > 0);
|
|
return this->nextRangeU(0, count - 1);
|
|
}
|
|
|
|
/** Return the next pseudo random number expressed as a SkScalar
|
|
in the range [0..SK_Scalar1).
|
|
*/
|
|
SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); }
|
|
|
|
/** Return the next pseudo random number expressed as a SkScalar
|
|
in the range [min..max).
|
|
*/
|
|
SkScalar nextRangeScalar(SkScalar min, SkScalar max) {
|
|
return this->nextUScalar1() * (max - min) + min;
|
|
}
|
|
|
|
/** Return the next pseudo random number expressed as a SkScalar
|
|
in the range [-SK_Scalar1..SK_Scalar1).
|
|
*/
|
|
SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); }
|
|
|
|
/** Return the next pseudo random number as a bool.
|
|
*/
|
|
bool nextBool() { return this->nextU() >= 0x80000000; }
|
|
|
|
/** A biased version of nextBool().
|
|
*/
|
|
bool nextBiasedBool(SkScalar fractionTrue) {
|
|
SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1);
|
|
return this->nextUScalar1() <= fractionTrue;
|
|
}
|
|
|
|
/** Reset the random object.
|
|
*/
|
|
void setSeed(uint32_t seed) { init(seed); }
|
|
|
|
private:
|
|
// Initialize state variables with LCG.
|
|
// We must ensure that both J and K are non-zero, otherwise the
|
|
// multiply-with-carry step will forevermore return zero.
|
|
void init(uint32_t seed) {
|
|
fK = NextLCG(seed);
|
|
if (0 == fK) {
|
|
fK = NextLCG(fK);
|
|
}
|
|
fJ = NextLCG(fK);
|
|
if (0 == fJ) {
|
|
fJ = NextLCG(fJ);
|
|
}
|
|
SkASSERT(0 != fK && 0 != fJ);
|
|
}
|
|
static uint32_t NextLCG(uint32_t seed) { return kMul*seed + kAdd; }
|
|
|
|
/** Return the next pseudo random number expressed as an unsigned SkFixed
|
|
in the range [0..SK_Fixed1).
|
|
*/
|
|
SkFixed nextUFixed1() { return this->nextU() >> 16; }
|
|
|
|
/** Return the next pseudo random number expressed as a signed SkFixed
|
|
in the range [-SK_Fixed1..SK_Fixed1).
|
|
*/
|
|
SkFixed nextSFixed1() { return this->nextS() >> 15; }
|
|
|
|
// See "Numerical Recipes in C", 1992 page 284 for these constants
|
|
// For the LCG that sets the initial state from a seed
|
|
enum {
|
|
kMul = 1664525,
|
|
kAdd = 1013904223
|
|
};
|
|
// Constants for the multiply-with-carry steps
|
|
enum {
|
|
kKMul = 30345,
|
|
kJMul = 18000,
|
|
};
|
|
|
|
uint32_t fK;
|
|
uint32_t fJ;
|
|
};
|
|
|
|
#endif
|