skia2/tests/SkSLInterpreterTest.cpp
Brian Osman ebf569004f Support indexing by loop variables in SkVMGenerator
Bug: skia:11096
Change-Id: I25a91bacf1c3455ac67422fb0e59b9b152c2054a
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/354667
Commit-Queue: Brian Osman <brianosman@google.com>
Reviewed-by: Mike Klein <mtklein@google.com>
2021-01-19 20:49:15 +00:00

1062 lines
40 KiB
C++

/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkM44.h"
#include "src/sksl/SkSLByteCode.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLExternalFunction.h"
#include "src/sksl/SkSLVMGenerator.h"
#include "src/utils/SkJSON.h"
#include "tests/Test.h"
#if defined(SK_ENABLE_SKSL_INTERPRETER)
struct ProgramBuilder {
ProgramBuilder(skiatest::Reporter* r, const char* src)
: fCaps(GrContextOptions{}), fCompiler(&fCaps) {
SkSL::Program::Settings settings;
// The SkSL inliner is well tested in other contexts. Here, we disable inlining entirely,
// to stress-test the VM generator's handling of function calls with varying signatures.
settings.fInlineThreshold = 0;
// For convenience, so we can test functions other than (and not called by) main.
settings.fRemoveDeadFunctions = false;
fProgram = fCompiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src),
settings);
if (!fProgram) {
ERRORF(r, "Program failed to compile:\n%s\n%s\n", src, fCompiler.errorText().c_str());
}
}
operator bool() const { return fProgram != nullptr; }
SkSL::Program& operator*() { return *fProgram; }
GrShaderCaps fCaps;
SkSL::Compiler fCompiler;
std::unique_ptr<SkSL::Program> fProgram;
};
struct ByteCodeBuilder {
ByteCodeBuilder(skiatest::Reporter* r, const char* src) : fProgram(r, src), fByteCode(nullptr) {
if (fProgram) {
fByteCode = fProgram.fCompiler.toByteCode(*fProgram);
if (!fByteCode) {
ERRORF(r, "Program failed to compile:\n%s\n%s\n", src,
fProgram.fCompiler.errorText().c_str());
}
}
}
operator bool() const { return fByteCode != nullptr; }
SkSL::ByteCode* operator->() { return fByteCode.get(); }
ProgramBuilder fProgram;
std::unique_ptr<SkSL::ByteCode> fByteCode;
};
static void verify_values(skiatest::Reporter* r,
const char* src,
const float* actual,
const float* expected,
int N,
bool exactCompare) {
auto exact_equiv = [](float x, float y) {
return x == y
|| (isnan(x) && isnan(y));
};
bool valid = true;
for (int i = 0; i < N; ++i) {
if (exactCompare && !exact_equiv(actual[i], expected[i])) {
valid = false;
}
if (!exactCompare && !SkScalarNearlyEqual(actual[i], expected[i])) {
valid = false;
}
}
if (!valid) {
printf("for program: %s\n", src);
printf(" expected (");
const char* separator = "";
for (int i = 0; i < N; ++i) {
printf("%s%f", separator, expected[i]);
separator = ", ";
}
printf("), but received (");
separator = "";
for (int i = 0; i < N; ++i) {
printf("%s%f", separator, actual[i]);
separator = ", ";
}
printf(")\n");
}
REPORTER_ASSERT(r, valid);
}
void test_skvm(skiatest::Reporter* r, const char* src, float* in, const float* expected,
bool exactCompare) {
ProgramBuilder program(r, src);
if (!program) { return; }
const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main");
REPORTER_ASSERT(r, main);
skvm::Builder b;
SkSL::SkVMSignature sig;
SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{}, &sig);
skvm::Program p = b.done();
REPORTER_ASSERT(r, p.nargs() == (int)(sig.fParameterSlots + sig.fReturnSlots));
auto out = std::make_unique<float[]>(sig.fReturnSlots);
auto args = std::make_unique<void*[]>(sig.fParameterSlots + sig.fReturnSlots);
for (size_t i = 0; i < sig.fParameterSlots; ++i) {
args[i] = in + i;
}
for (size_t i = 0; i < sig.fReturnSlots; ++i) {
args[sig.fParameterSlots + i] = out.get() + i;
}
// TODO: Test with and without JIT?
p.eval(1, args.get());
verify_values(r, src, out.get(), expected, sig.fReturnSlots, exactCompare);
}
void test(skiatest::Reporter* r, const char* src, float* in, const float* expected,
bool exactCompare = true) {
test_skvm(r, src, in, expected, exactCompare);
ByteCodeBuilder byteCode(r, src);
if (!byteCode) { return; }
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
int returnCount = main->getReturnCount();
std::unique_ptr<float[]> out = std::unique_ptr<float[]>(new float[returnCount]);
SkAssertResult(byteCode->run(main, in, main->getParameterCount(), out.get(), returnCount,
nullptr, 0));
verify_values(r, src, out.get(), expected, returnCount, exactCompare);
}
void vec_test(skiatest::Reporter* r, const char* src) {
ByteCodeBuilder byteCode(r, src);
if (!byteCode) { return; }
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
// Test on four different vectors (with varying orderings to get divergent control flow)
const float input[16] = { 1, 2, 3, 4,
4, 3, 2, 1,
7, 5, 8, 6,
6, 8, 5, 7 };
float out_s[16], out_v[16];
memcpy(out_s, input, sizeof(out_s));
memcpy(out_v, input, sizeof(out_v));
// First run in scalar mode to determine the expected output
for (int i = 0; i < 4; ++i) {
SkAssertResult(byteCode->run(main, out_s + i * 4, 4, nullptr, 0, nullptr, 0));
}
// Need to transpose input vectors for striped execution
auto transpose = [](float* v) {
for (int r = 0; r < 4; ++r)
for (int c = 0; c < r; ++c)
std::swap(v[r*4 + c], v[c*4 + r]);
};
// Need to transpose input vectors for striped execution
transpose(out_v);
float* args[] = { out_v, out_v + 4, out_v + 8, out_v + 12 };
// Now run in parallel and compare results
SkAssertResult(byteCode->runStriped(main, 4, args, 4, nullptr, 0, nullptr, 0));
// Transpose striped outputs back
transpose(out_v);
if (0 != memcmp(out_s, out_v, sizeof(out_s))) {
printf("for program: %s\n", src);
for (int i = 0; i < 4; ++i) {
printf("(%g %g %g %g) -> (%g %g %g %g), expected (%g %g %g %g)\n",
input[4*i + 0], input[4*i + 1], input[4*i + 2], input[4*i + 3],
out_v[4*i + 0], out_v[4*i + 1], out_v[4*i + 2], out_v[4*i + 3],
out_s[4*i + 0], out_s[4*i + 1], out_s[4*i + 2], out_s[4*i + 3]);
}
main->disassemble();
REPORT_FAILURE(r, "VecInterpreter mismatch", SkString());
}
}
void test_skvm(skiatest::Reporter* r, const char* src,
float inR, float inG, float inB, float inA,
float exR, float exG, float exB, float exA) {
ProgramBuilder program(r, src);
if (!program) { return; }
const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main");
REPORTER_ASSERT(r, main);
skvm::Builder b;
SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{});
skvm::Program p = b.done();
// TODO: Test with and without JIT?
p.eval(1, &inR, &inG, &inB, &inA);
float actual[4] = { inR, inG, inB, inA };
float expected[4] = { exR, exG, exB, exA };
verify_values(r, src, actual, expected, 4, /*exactCompare=*/true);
// TODO: vec_test with skvm
}
void test(skiatest::Reporter* r, const char* src,
float inR, float inG, float inB, float inA,
float exR, float exG, float exB, float exA) {
test_skvm(r, src, inR, inG, inB, inA, exR, exG, exB, exA);
ByteCodeBuilder byteCode(r, src);
if (!byteCode) { return; }
float inoutColor[4] = { inR, inG, inB, inA };
float expected[4] = { exR, exG, exB, exA };
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
SkAssertResult(byteCode->run(main, inoutColor, 4, nullptr, 0, nullptr, 0));
verify_values(r, src, inoutColor, expected, 4, /*exactCompare=*/true);
// Do additional testing of 4x1 vs 1x4 to stress divergent control flow, etc.
vec_test(r, src);
}
DEF_TEST(SkSLInterpreterAdd, r) {
test(r, "void main(inout half4 color) { color.r = color.r + color.g; }", 0.25, 0.75, 0, 0, 1,
0.75, 0, 0);
test(r, "void main(inout half4 color) { color += half4(1, 2, 3, 4); }", 4, 3, 2, 1, 5, 5, 5, 5);
test(r, "void main(inout half4 color) { half4 c = color; color += c; }", 0.25, 0.5, 0.75, 1,
0.5, 1, 1.5, 2);
test(r, "void main(inout half4 color) { color.r = half(int(color.r) + int(color.g)); }", 1, 3, 0, 0,
4, 3, 0, 0);
}
DEF_TEST(SkSLInterpreterSubtract, r) {
test(r, "void main(inout half4 color) { color.r = color.r - color.g; }", 1, 0.75, 0, 0, 0.25,
0.75, 0, 0);
test(r, "void main(inout half4 color) { color -= half4(1, 2, 3, 4); }", 5, 5, 5, 5, 4, 3, 2, 1);
test(r, "void main(inout half4 color) { half4 c = color; color -= c; }", 4, 3, 2, 1,
0, 0, 0, 0);
test(r, "void main(inout half4 color) { color.x = -color.x; }", 4, 3, 2, 1, -4, 3, 2, 1);
test(r, "void main(inout half4 color) { color = -color; }", 4, 3, 2, 1, -4, -3, -2, -1);
test(r, "void main(inout half4 color) { color.r = half(int(color.r) - int(color.g)); }", 3, 1, 0, 0,
2, 1, 0, 0);
}
DEF_TEST(SkSLInterpreterMultiply, r) {
test(r, "void main(inout half4 color) { color.r = color.r * color.g; }", 2, 3, 0, 0, 6, 3, 0,
0);
test(r, "void main(inout half4 color) { color *= half4(1, 2, 3, 4); }", 2, 3, 4, 5, 2, 6, 12,
20);
test(r, "void main(inout half4 color) { half4 c = color; color *= c; }", 4, 3, 2, 1,
16, 9, 4, 1);
test(r, "void main(inout half4 color) { color.r = half(int(color.r) * int(color.g)); }", 3, -2, 0, 0,
-6, -2, 0, 0);
}
DEF_TEST(SkSLInterpreterDivide, r) {
test(r, "void main(inout half4 color) { color.r = color.r / color.g; }", 1, 2, 0, 0, 0.5, 2, 0,
0);
test(r, "void main(inout half4 color) { color /= half4(1, 2, 3, 4); }", 12, 12, 12, 12, 12, 6,
4, 3);
test(r, "void main(inout half4 color) { half4 c = color; color /= c; }", 4, 3, 2, 1,
1, 1, 1, 1);
test(r, "void main(inout half4 color) { color.r = half(int(color.r) / int(color.g)); }", 8, -2, 0, 0,
-4, -2, 0, 0);
}
DEF_TEST(SkSLInterpreterAnd, r) {
test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) "
"color = half4(color.a); }", 2, 1, 0, 3, 3, 3, 3, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) "
"color = half4(color.a); }", 1, 1, 0, 3, 1, 1, 0, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) "
"color = half4(color.a); }", 2, 1, 1, 3, 2, 1, 1, 3);
test(r, "half global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g && update()) "
"color = half4(color.a); color.a = global; }", 2, 1, 1, 3, 3, 3, 3, 123);
test(r, "half global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g && update()) "
"color = half4(color.a); color.a = global; }", 1, 1, 1, 3, 1, 1, 1, 0);
}
DEF_TEST(SkSLInterpreterOr, r) {
test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) "
"color = half4(color.a); }", 2, 1, 0, 3, 3, 3, 3, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) "
"color = half4(color.a); }", 1, 1, 0, 3, 3, 3, 3, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) "
"color = half4(color.a); }", 1, 1, 1, 3, 1, 1, 1, 3);
test(r, "half global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g || update()) "
"color = half4(color.a); color.a = global; }", 1, 1, 1, 3, 3, 3, 3, 123);
test(r, "half global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g || update()) "
"color = half4(color.a); color.a = global; }", 2, 1, 1, 3, 3, 3, 3, 0);
}
DEF_TEST(SkSLInterpreterMatrix, r) {
float in[16];
float expected[16];
// Constructing matrix from scalar produces a diagonal matrix
in[0] = 2.0f;
expected[0] = 4.0f;
test(r, "float main(float x) { float4x4 m = float4x4(x); return m[1][1] + m[1][2] + m[2][2]; }",
in, expected);
// Constructing from a different-sized matrix fills the remaining space with the identity matrix
expected[0] = 3.0f;
test(r, "float main(float x) {"
"float2x2 m = float2x2(x);"
"float4x4 m2 = float4x4(m);"
"return m2[0][0] + m2[3][3]; }",
in, expected);
// Constructing a matrix from vectors or scalars fills in values in column-major order
in[0] = 1.0f;
in[1] = 2.0f;
in[2] = 4.0f;
in[3] = 8.0f;
expected[0] = 6.0f;
test(r, "float main(float4 v) { float2x2 m = float2x2(v); return m[0][1] + m[1][0]; }",
in, expected);
expected[0] = 10.0f;
test(r, "float main(float4 v) {"
"float2x2 m = float2x2(v.x, v.y, v.w, v.z);"
"return m[0][1] + m[1][0]; }",
in, expected);
// Initialize 16 values to be used as inputs to matrix tests
for (int i = 0; i < 16; ++i) { in[i] = (float)i; }
// M+M, M-S, S-M
for (int i = 0; i < 16; ++i) { expected[i] = (float)(2 * i); }
test(r, "float4x4 main(float4x4 m) { return m + m; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i + 3); }
test(r, "float4x4 main(float4x4 m) { return m + 3.0; }", in, expected);
test(r, "float4x4 main(float4x4 m) { return 3.0 + m; }", in, expected);
// M-M, M-S, S-M
for (int i = 0; i < 4; ++i) { expected[i] = 4.0f; }
test(r, "float2x2 main(float2x2 m1, float2x2 m2) { return m2 - m1; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i - 3); }
test(r, "float4x4 main(float4x4 m) { return m - 3.0; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(3 - i); }
test(r, "float4x4 main(float4x4 m) { return 3.0 - m; }", in, expected);
// M*S, S*M, M/S, S/M
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i * 3); }
test(r, "float4x4 main(float4x4 m) { return m * 3.0; }", in, expected);
test(r, "float4x4 main(float4x4 m) { return 3.0 * m; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i) / 2.0f; }
test(r, "float4x4 main(float4x4 m) { return m / 2.0; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = 1.0f / (float)(i + 1); }
test(r, "float4x4 main(float4x4 m) { return 1.0 / (m + 1); }", in, expected);
// Matrix negation
for (int i = 0; i < 16; ++i) { expected[i] = (float)(-i); }
test(r, "float4x4 main(float4x4 m) { return -m; }", in, expected);
// M*V, V*M
for (int i = 0; i < 3; ++i) {
expected[i] = 9.0f*i + 10.0f*(i+3) + 11.0f*(i+6);
}
test(r, "float3 main(float3x3 m, float3 v) { return m * v; }", in, expected);
for (int i = 0; i < 3; ++i) {
expected[i] = 9.0f*(3*i) + 10.0f*(3*i+1) + 11.0f*(3*i+2);
}
test(r, "float3 main(float3x3 m, float3 v) { return v * m; }", in, expected);
// M*M
{
SkM44 m = SkM44::ColMajor(in);
SkM44 m2;
float in2[16];
for (int i = 0; i < 16; ++i) {
in2[i] = (i + 4) % 16;
}
m2 = SkM44::ColMajor(in2);
m.setConcat(m, m2);
// Rearrange the columns on the RHS so we detect left-hand/right-hand errors
test(r, "float4x4 main(float4x4 m) { return m * float4x4(m[1], m[2], m[3], m[0]); }",
in, (float*)&m);
}
}
DEF_TEST(SkSLInterpreterTernary, r) {
test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }",
0, 1, 2, 0, 2, 1, 2, 0);
test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }",
0, 3, 2, 0, 3, 3, 2, 0);
}
DEF_TEST(SkSLInterpreterCast, r) {
union Val {
float f;
int32_t s;
};
Val input[2];
Val expected[2];
input[0].s = 3;
input[1].s = -5;
expected[0].f = 3.0f;
expected[1].f = -5.0f;
test(r, "float main(int x) { return float (x); }", (float*)input, (float*)expected);
test(r, "float2 main(int2 x) { return float2(x); }", (float*)input, (float*)expected);
input[0].f = 3.0f;
input[1].f = -5.0f;
expected[0].s = 3;
expected[1].s = -5;
test(r, "int main(float x) { return int (x); }", (float*)input, (float*)expected);
test(r, "int2 main(float2 x) { return int2(x); }", (float*)input, (float*)expected);
input[0].s = 3;
expected[0].f = 3.0f;
expected[1].f = 3.0f;
test(r, "float2 main(int x) { return float2(x); }", (float*)input, (float*)expected);
}
DEF_TEST(SkSLInterpreterIf, r) {
test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 3, 0, 0,
5, 3, 0, 1);
test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 6, 0, 0,
5, 6, 0, 0);
test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 3, 5, 0, 0,
3, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 6, 5, 0, 0,
6, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 3, 0, 0,
5, 3, 0, 1);
test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 6, 0, 0,
5, 6, 0, 0);
test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 3, 5, 0, 0,
3, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 6, 5, 0, 0,
6, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, 2, 0, 0,
2, 2, 0, 1);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, -2, 0, 0,
2, -2, 0, 0);
test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, 2, 0, 0,
2, 2, 0, 0);
test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, -2, 0, 0,
2, -2, 0, 1);
test(r, "void main(inout half4 color) { if (!(color.r == color.g)) color.a = 1; }", 2, 2, 0, 0,
2, 2, 0, 0);
test(r, "void main(inout half4 color) { if (!(color.r == color.g)) color.a = 1; }", 2, -2, 0, 0,
2, -2, 0, 1);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else "
"color.a = 2; }", 1, 1, 0, 0, 1, 1, 0, 1);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else "
"color.a = 2; }", 2, -2, 0, 0, 2, -2, 0, 2);
}
DEF_TEST(SkSLInterpreterIfVector, r) {
test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }",
1, 2, 1, 2, 1, 2, 1, 1);
test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }",
1, 2, 3, 2, 1, 2, 3, 2);
test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }",
1, 2, 1, 2, 1, 2, 1, 2);
test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }",
1, 2, 3, 2, 1, 2, 3, 1);
}
DEF_TEST(SkSLInterpreterFor, r) {
test(r, "void main(inout half4 color) { for (int i = 1; i <= 10; ++i) color.r += half(i); }",
0, 0, 0, 0,
55, 0, 0, 0);
test(r,
"void main(inout half4 color) {"
" for (int i = 1; i <= 10; ++i)"
" for (int j = 1; j <= 10; ++j)"
" if (j >= i) { color.r += half(j); }"
"}",
0, 0, 0, 0,
385, 0, 0, 0);
test(r,
"void main(inout half4 color) {"
" for (int i = 1; i <= 10; ++i)"
" for (int j = 1; j < 20 ; ++j) {"
" if (i == j) continue;"
" if (j > 10) break;"
" color.r += half(j);"
" }"
"}",
0, 0, 0, 0,
495, 0, 0, 0);
}
DEF_TEST(SkSLInterpreterPrefixPostfix, r) {
test(r, "void main(inout half4 color) { color.r = ++color.g; }", 1, 2, 3, 4, 3, 3, 3, 4);
test(r, "void main(inout half4 color) { color.r = color.g++; }", 1, 2, 3, 4, 2, 3, 3, 4);
}
DEF_TEST(SkSLInterpreterSwizzle, r) {
test(r, "void main(inout half4 color) { color = color.abgr; }", 1, 2, 3, 4, 4, 3, 2, 1);
test(r, "void main(inout half4 color) { color.rgb = half4(5, 6, 7, 8).bbg; }", 1, 2, 3, 4, 7, 7,
6, 4);
test(r, "void main(inout half4 color) { color.bgr = half3(5, 6, 7); }", 1, 2, 3, 4, 7, 6,
5, 4);
}
DEF_TEST(SkSLInterpreterGlobal, r) {
test(r, "int x; void main(inout half4 color) { x = 10; color.b = half(x); }", 1, 2, 3, 4, 1, 2,
10, 4);
test(r, "float4 x; void main(inout float4 color) { x = color * 2; color = x; }",
1, 2, 3, 4, 2, 4, 6, 8);
test(r, "float4 x; void main(inout float4 color) { x = float4(5, 6, 7, 8); color = x.wzyx; }",
1, 2, 3, 4, 8, 7, 6, 5);
test(r, "float4 x; void main(inout float4 color) { x.wzyx = float4(5, 6, 7, 8); color = x; }",
1, 2, 3, 4, 8, 7, 6, 5);
}
DEF_TEST(SkSLInterpreterGeneric, r) {
float value1 = 5;
float expected1 = 25;
test(r, "float main(float x) { return x * x; }", &value1, &expected1);
float value2[2] = { 5, 25 };
float expected2[2] = { 25, 625 };
test(r, "float2 main(float x, float y) { return float2(x * x, y * y); }", value2, expected2);
}
DEF_TEST(SkSLInterpreterCompound, r) {
struct RectAndColor { SkIRect fRect; SkColor4f fColor; };
struct ManyRects { int fNumRects; RectAndColor fRects[4]; };
const char* src =
// Some struct definitions
"struct Point { int x; int y; };\n"
"struct Rect { Point p0; Point p1; };\n"
"struct RectAndColor { Rect r; float4 color; };\n"
// Structs as globals, parameters, return values
"RectAndColor temp;\n"
"int rect_height(Rect r) { return r.p1.y - r.p0.y; }\n"
"RectAndColor make_blue_rect(int w, int h) {\n"
" temp.r.p0.x = temp.r.p0.y = 0;\n"
" temp.r.p1.x = w; temp.r.p1.y = h;\n"
" temp.color = float4(0, 1, 0, 1);\n"
" return temp;\n"
"}\n"
// Initialization and assignment of types larger than 4 slots
"RectAndColor init_big(RectAndColor r) { RectAndColor s = r; return s; }\n"
"RectAndColor copy_big(RectAndColor r) { RectAndColor s; s = r; return s; }\n"
// Same for arrays, including some non-constant indexing
"int median(int a[15]) { return a[7]; }\n"
"float tempFloats[8];\n"
"float sums(float a[8]) {\n"
" tempFloats[0] = a[0];\n"
" for (int i = 1; i < 8; ++i) { tempFloats[i] = tempFloats[i - 1] + a[i]; }\n"
" return tempFloats[7];\n"
"}\n"
// Uniforms, array-of-structs
"uniform Rect gRects[4];\n"
"Rect get_rect_2() { return gRects[2]; }\n"
// Kitchen sink (swizzles, inout, SoAoS)
"struct ManyRects { int numRects; RectAndColor rects[4]; };\n"
"void fill_rects(inout ManyRects mr) {\n"
" for (int i = 0; i < 4; ++i) {\n"
" if (i >= mr.numRects) { break; }\n"
" mr.rects[i].r = gRects[i];\n"
" float b = float(mr.rects[i].r.p1.y);\n"
" mr.rects[i].color = float4(b, b, b, b);\n"
" }\n"
"}\n";
ProgramBuilder program(r, src);
auto rect_height = SkSL::Program_GetFunction(*program, "rect_height"),
make_blue_rect = SkSL::Program_GetFunction(*program, "make_blue_rect"),
median = SkSL::Program_GetFunction(*program, "median"),
sums = SkSL::Program_GetFunction(*program, "sums"),
get_rect_2 = SkSL::Program_GetFunction(*program, "get_rect_2"),
fill_rects = SkSL::Program_GetFunction(*program, "fill_rects");
SkIRect gRects[4] = { { 1,2,3,4 }, { 5,6,7,8 }, { 9,10,11,12 }, { 13,14,15,16 } };
auto build = [&](const SkSL::FunctionDefinition* fn) {
skvm::Builder b;
skvm::Ptr uniformPtr = b.uniform();
skvm::Val uniforms[16];
for (int i = 0; i < 16; ++i) {
uniforms[i] = b.uniform32(uniformPtr, i * sizeof(int)).id;
}
SkSL::ProgramToSkVM(*program, *fn, &b, uniforms);
return b.done();
};
struct Args {
Args(void* uniformData) { fArgs.push_back(uniformData); }
void add(void* base, int n) {
for (int i = 0; i < n; ++i) {
fArgs.push_back(SkTAddOffset<void>(base, i * sizeof(float)));
}
}
std::vector<void*> fArgs;
};
{
SkIRect in = SkIRect::MakeXYWH(10, 10, 20, 30);
int out = 0;
skvm::Program p = build(rect_height);
Args args(gRects);
args.add(&in, 4);
args.add(&out, 1);
p.eval(1, args.fArgs.data());
REPORTER_ASSERT(r, out == 30);
}
{
int in[2] = { 15, 25 };
RectAndColor out;
skvm::Program p = build(make_blue_rect);
Args args(gRects);
args.add(&in, 2);
args.add(&out, 8);
p.eval(1, args.fArgs.data());
REPORTER_ASSERT(r, out.fRect.width() == 15);
REPORTER_ASSERT(r, out.fRect.height() == 25);
SkColor4f blue = { 0.0f, 1.0f, 0.0f, 1.0f };
REPORTER_ASSERT(r, out.fColor == blue);
}
{
int in[15] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
int out = 0;
skvm::Program p = build(median);
Args args(gRects);
args.add(&in, 15);
args.add(&out, 1);
p.eval(1, args.fArgs.data());
REPORTER_ASSERT(r, out == 8);
}
{
float in[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
float out = 0;
skvm::Program p = build(sums);
Args args(gRects);
args.add(&in, 8);
args.add(&out, 1);
p.eval(1, args.fArgs.data());
REPORTER_ASSERT(r, out == static_cast<float>((7 + 1) * (7 + 2) / 2));
}
{
SkIRect out = SkIRect::MakeEmpty();
skvm::Program p = build(get_rect_2);
Args args(gRects);
args.add(&out, 4);
p.eval(1, args.fArgs.data());
REPORTER_ASSERT(r, out == gRects[2]);
}
{
ManyRects in;
memset(&in, 0, sizeof(in));
in.fNumRects = 2;
skvm::Program p = build(fill_rects);
Args args(gRects);
args.add(&in, 33);
p.eval(1, args.fArgs.data());
ManyRects expected;
memset(&expected, 0, sizeof(expected));
expected.fNumRects = 2;
for (int i = 0; i < 2; ++i) {
expected.fRects[i].fRect = gRects[i];
float c = gRects[i].fBottom;
expected.fRects[i].fColor = { c, c, c, c };
}
REPORTER_ASSERT(r, memcmp(&in, &expected, sizeof(in)) == 0);
}
}
static void expect_failure(skiatest::Reporter* r, const char* src) {
GrShaderCaps caps(GrContextOptions{});
SkSL::Compiler compiler(&caps);
SkSL::Program::Settings settings;
auto program = compiler.convertProgram(SkSL::Program::kGeneric_Kind,
SkSL::String(src), settings);
REPORTER_ASSERT(r, !program);
}
DEF_TEST(SkSLInterpreterRestrictLoops, r) {
// while and do-while loops are not allowed
expect_failure(r, "void main(inout float x) { while (x < 1) { x++; } }");
expect_failure(r, "void main(inout float x) { do { x++; } while (x < 1); }");
}
DEF_TEST(SkSLInterpreterRestrictFunctionCalls, r) {
// Ensure that simple recursion is not allowed
expect_failure(r, "float main() { return main() + 1; }");
// Ensure that calls to undefined functions are not allowed (to prevent mutual recursion)
expect_failure(r, "float foo(); float bar() { return foo(); } float foo() { return bar(); }");
}
DEF_TEST(SkSLInterpreterReturnThenCall, r) {
// Test that early returns disable execution in subsequently called functions
const char* src = R"(
float y;
void inc () { ++y; }
void maybe_inc() { if (y < 0) return; inc(); }
void main(inout float x) { y = x; maybe_inc(); x = y; }
)";
ProgramBuilder program(r, src);
const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main");
REPORTER_ASSERT(r, main);
skvm::Builder b;
SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{});
skvm::Program p = b.done();
float xs[] = { -2.0f, 0.0f, 3.0f, -1.0f };
p.eval(4, xs);
REPORTER_ASSERT(r, xs[0] == -2.0f);
REPORTER_ASSERT(r, xs[1] == 1.0f);
REPORTER_ASSERT(r, xs[2] == 4.0f);
REPORTER_ASSERT(r, xs[3] == -1.0f);
}
DEF_TEST(SkSLInterpreterEarlyReturn, r) {
// Test early returns with divergent control flow
const char* src = "float main(float x, float y) { if (x < y) { return x; } return y; }";
ProgramBuilder program(r, src);
const SkSL::FunctionDefinition* main = SkSL::Program_GetFunction(*program, "main");
REPORTER_ASSERT(r, main);
skvm::Builder b;
SkSL::ProgramToSkVM(*program, *main, &b, /*uniforms=*/{});
skvm::Program p = b.done();
float xs[] = { 1.0f, 3.0f },
ys[] = { 2.0f, 2.0f };
float rets[2];
p.eval(2, xs, ys, rets);
REPORTER_ASSERT(r, rets[0] == 1.0f);
REPORTER_ASSERT(r, rets[1] == 2.0f);
}
DEF_TEST(SkSLInterpreterFunctions, r) {
const char* src =
"float sqr(float x) { return x * x; }\n"
"float sub(float x, float y) { return x - y; }\n"
"float main(float x) { return sub(sqr(x), x); }\n"
// Different signatures
"float dot(float2 a, float2 b) { return a.x*b.x + a.y*b.y; }\n"
"float dot(float3 a, float3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; }\n"
"float dot3_test(float x) { return dot(float3(x, x + 1, x + 2), float3(1, -1, 2)); }\n"
"float dot2_test(float x) { return dot(float2(x, x + 1), float2(1, -1)); }\n";
ProgramBuilder program(r, src);
auto sub = SkSL::Program_GetFunction(*program, "sub");
auto sqr = SkSL::Program_GetFunction(*program, "sqr");
auto main = SkSL::Program_GetFunction(*program, "main");
auto tan = SkSL::Program_GetFunction(*program, "tan");
auto dot3 = SkSL::Program_GetFunction(*program, "dot3_test");
auto dot2 = SkSL::Program_GetFunction(*program, "dot2_test");
REPORTER_ASSERT(r, sub);
REPORTER_ASSERT(r, sqr);
REPORTER_ASSERT(r, main);
REPORTER_ASSERT(r, !tan); // Getting a non-existent function should return nullptr
REPORTER_ASSERT(r, dot3);
REPORTER_ASSERT(r, dot2);
auto test_fn = [&](const SkSL::FunctionDefinition* fn, float in, float expected) {
skvm::Builder b;
SkSL::ProgramToSkVM(*program, *fn, &b, /*uniforms=*/{});
skvm::Program p = b.done();
float out = 0.0f;
p.eval(1, &in, &out);
REPORTER_ASSERT(r, out == expected);
};
test_fn(main, 3.0f, 6.0f);
test_fn(dot3, 3.0f, 9.0f);
test_fn(dot2, 3.0f, -1.0f);
}
DEF_TEST(SkSLInterpreterOutParams, r) {
test(r,
"void oneAlpha(inout half4 color) { color.a = 1; }"
"void main(inout half4 color) { oneAlpha(color); }",
0, 0, 0, 0, 0, 0, 0, 1);
test(r,
"half2 tricky(half x, half y, inout half2 color, half z) {"
" color.xy = color.yx;"
" return half2(x + y, z);"
"}"
"void main(inout half4 color) {"
" half2 t = tricky(1, 2, color.rb, 5);"
" color.ga = t;"
"}",
1, 2, 3, 4, 3, 3, 1, 5);
}
DEF_TEST(SkSLInterpreterSwizzleSingleLvalue, r) {
// Add in your SkSL here.
test(r,
"void main(inout half4 color) { color.xywz = half4(1,2,3,4); }",
0, 0, 0, 0, 1, 2, 4, 3);
}
DEF_TEST(SkSLInterpreterSwizzleDoubleLvalue, r) {
// Add in your SkSL here.
test(r,
"void main(inout half4 color) { color.xywz.yxzw = half4(1,2,3,4); }",
0, 0, 0, 0, 2, 1, 4, 3);
}
DEF_TEST(SkSLInterpreterMathFunctions, r) {
float value[4], expected[4];
value[0] = 0.0f; expected[0] = 0.0f;
test(r, "float main(float x) { return sin(x); }", value, expected);
test(r, "float main(float x) { return tan(x); }", value, expected);
value[0] = 0.0f; expected[0] = 1.0f;
test(r, "float main(float x) { return cos(x); }", value, expected);
value[0] = 25.0f; expected[0] = 5.0f;
test(r, "float main(float x) { return sqrt(x); }", value, expected);
value[0] = 90.0f; expected[0] = sk_float_degrees_to_radians(value[0]);
test(r, "float main(float x) { return radians(x); }", value, expected);
value[0] = 1.0f; value[1] = -1.0f;
expected[0] = 1.0f / SK_FloatSqrt2; expected[1] = -1.0f / SK_FloatSqrt2;
test(r, "float2 main(float2 x) { return normalize(x); }", value, expected);
}
DEF_TEST(SkSLInterpreterVoidFunction, r) {
test(r,
"half x; void foo() { x = 1.0; }"
"void main(inout half4 color) { foo(); color.r = x; }",
0, 0, 0, 0, 1, 0, 0, 0);
}
DEF_TEST(SkSLInterpreterMix, r) {
float value, expected;
value = 0.5f; expected = 0.0f;
test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected);
value = 0.75f; expected = 5.0f;
test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected);
value = 2.0f; expected = 30.0f;
test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected);
float valueVectors[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f },
expectedVector[] = { 3.0f, 4.0f, 5.0f, 6.0f };
test(r, "float4 main(float4 x, float4 y) { return mix(x, y, 0.5); }", valueVectors,
expectedVector);
}
DEF_TEST(SkSLInterpreterCross, r) {
float args[] = { 1.0f, 4.0f, -6.0f, -2.0f, 7.0f, -3.0f };
SkV3 cross = SkV3::Cross({args[0], args[1], args[2]},
{args[3], args[4], args[5]});
float expected[] = { cross.x, cross.y, cross.z };
test(r, "float3 main(float3 x, float3 y) { return cross(x, y); }", args, expected);
}
DEF_TEST(SkSLInterpreterInverse, r) {
{
SkMatrix m;
m.setRotate(30).postScale(1, 2);
float args[4] = { m[0], m[3], m[1], m[4] };
SkAssertResult(m.invert(&m));
float expt[4] = { m[0], m[3], m[1], m[4] };
test(r, "float2x2 main(float2x2 m) { return inverse(m); }", args, expt, false);
}
{
SkMatrix m;
m.setRotate(30).postScale(1, 2).postTranslate(1, 2);
float args[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
SkAssertResult(m.invert(&m));
float expt[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
test(r, "float3x3 main(float3x3 m) { return inverse(m); }", args, expt, false);
}
{
float args[16], expt[16];
// just some crazy thing that is invertible
SkM44 m = {1, 2, 3, 4, 1, 2, 0, 3, 1, 0, 1, 4, 1, 3, 2, 0};
m.getColMajor(args);
SkAssertResult(m.invert(&m));
m.getColMajor(expt);
test(r, "float4x4 main(float4x4 m) { return inverse(m); }", args, expt, false);
}
}
DEF_TEST(SkSLInterpreterDot, r) {
float args[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
float expected = args[0] * args[2] +
args[1] * args[3];
test(r, "float main(float2 x, float2 y) { return dot(x, y); }", args, &expected);
expected = args[0] * args[3] +
args[1] * args[4] +
args[2] * args[5];
test(r, "float main(float3 x, float3 y) { return dot(x, y); }", args, &expected);
expected = args[0] * args[4] +
args[1] * args[5] +
args[2] * args[6] +
args[3] * args[7];
test(r, "float main(float4 x, float4 y) { return dot(x, y); }", args, &expected);
}
class ExternalSqrt : public SkSL::ExternalFunction {
public:
ExternalSqrt(const char* name, SkSL::Compiler& compiler)
: INHERITED(name, *compiler.context().fTypes.fFloat)
, fCompiler(compiler) {}
int callParameterCount() const override { return 1; }
void getCallParameterTypes(const SkSL::Type** outTypes) const override {
outTypes[0] = fCompiler.context().fTypes.fFloat.get();
}
void call(int /*unusedIndex*/, float* arguments, float* outReturn) const override {
outReturn[0] = sqrt(arguments[0]);
}
private:
SkSL::Compiler& fCompiler;
using INHERITED = SkSL::ExternalFunction;
};
DEF_TEST(SkSLInterpreterExternalFunction, r) {
GrShaderCaps caps(GrContextOptions{});
SkSL::Compiler compiler(&caps);
SkSL::Program::Settings settings;
const char* src = "float main() {"
" return external(25);"
"}";
std::vector<std::unique_ptr<SkSL::ExternalFunction>> externalFunctions;
externalFunctions.push_back(std::make_unique<ExternalSqrt>("external", compiler));
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind, SkSL::String(src), settings, &externalFunctions);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
float out;
SkAssertResult(byteCode->run(main, nullptr, 0, &out, 1, nullptr, 0));
REPORTER_ASSERT(r, out == 5.0);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
}
class ExternalSqrt4 : public SkSL::ExternalFunction {
public:
ExternalSqrt4(const char* name, SkSL::Compiler& compiler)
: INHERITED(name, *compiler.context().fTypes.fFloat4)
, fCompiler(compiler) {}
int callParameterCount() const override { return 1; }
void getCallParameterTypes(const SkSL::Type** outTypes) const override {
outTypes[0] = fCompiler.context().fTypes.fFloat4.get();
}
void call(int /*unusedIndex*/, float* arguments, float* outReturn) const override {
outReturn[0] = sqrt(arguments[0]);
outReturn[1] = sqrt(arguments[1]);
outReturn[2] = sqrt(arguments[2]);
outReturn[3] = sqrt(arguments[3]);
}
private:
SkSL::Compiler& fCompiler;
using INHERITED = SkSL::ExternalFunction;
};
DEF_TEST(SkSLInterpreterExternalFunctionVector, r) {
GrShaderCaps caps(GrContextOptions{});
SkSL::Compiler compiler(&caps);
SkSL::Program::Settings settings;
const char* src =
"float4 main() {"
" return external(float4(1, 4, 9, 16));"
"}";
std::vector<std::unique_ptr<SkSL::ExternalFunction>> externalFunctions;
externalFunctions.push_back(std::make_unique<ExternalSqrt4>("external", compiler));
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind, SkSL::String(src), settings, &externalFunctions);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
float out[4];
SkAssertResult(byteCode->run(main, nullptr, 0, out, 4, nullptr, 0));
REPORTER_ASSERT(r, out[0] == 1.0);
REPORTER_ASSERT(r, out[1] == 2.0);
REPORTER_ASSERT(r, out[2] == 3.0);
REPORTER_ASSERT(r, out[3] == 4.0);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
}
#endif // SK_ENABLE_SKSL_INTERPRETER