skia2/tests/ImageTest.cpp

894 lines
34 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <functional>
#include <initializer_list>
#include "DMGpuSupport.h"
#include "SkAutoPixmapStorage.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkDevice.h"
#include "SkImageEncoder.h"
#include "SkImageGenerator.h"
#include "SkImage_Base.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPixelSerializer.h"
#include "SkRRect.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkUtils.h"
#include "Test.h"
static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA,
SkImage* b) {
const int widthA = subsetA ? subsetA->width() : a->width();
const int heightA = subsetA ? subsetA->height() : a->height();
REPORTER_ASSERT(reporter, widthA == b->width());
REPORTER_ASSERT(reporter, heightA == b->height());
// see https://bug.skia.org/3965
//REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque());
SkImageInfo info = SkImageInfo::MakeN32(widthA, heightA,
a->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType);
SkAutoPixmapStorage pmapA, pmapB;
pmapA.alloc(info);
pmapB.alloc(info);
const int srcX = subsetA ? subsetA->x() : 0;
const int srcY = subsetA ? subsetA->y() : 0;
REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY));
REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0));
const size_t widthBytes = widthA * info.bytesPerPixel();
for (int y = 0; y < heightA; ++y) {
REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes));
}
}
static void draw_image_test_pattern(SkCanvas* canvas) {
canvas->clear(SK_ColorWHITE);
SkPaint paint;
paint.setColor(SK_ColorBLACK);
canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint);
}
static sk_sp<SkImage> create_image() {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
draw_image_test_pattern(surface->getCanvas());
return surface->makeImageSnapshot();
}
static sk_sp<SkImage> create_image_565() {
const SkImageInfo info = SkImageInfo::Make(20, 20, kRGB_565_SkColorType, kOpaque_SkAlphaType);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
draw_image_test_pattern(surface->getCanvas());
return surface->makeImageSnapshot();
}
static sk_sp<SkImage> create_image_ct() {
SkPMColor colors[] = {
SkPreMultiplyARGB(0xFF, 0xFF, 0xFF, 0x00),
SkPreMultiplyARGB(0x80, 0x00, 0xA0, 0xFF),
SkPreMultiplyARGB(0xFF, 0xBB, 0x00, 0xBB)
};
SkAutoTUnref<SkColorTable> colorTable(new SkColorTable(colors, SK_ARRAY_COUNT(colors)));
uint8_t data[] = {
0, 0, 0, 0, 0,
0, 1, 1, 1, 0,
0, 1, 2, 1, 0,
0, 1, 1, 1, 0,
0, 0, 0, 0, 0
};
SkImageInfo info = SkImageInfo::Make(5, 5, kIndex_8_SkColorType, kPremul_SkAlphaType);
return SkImage::MakeRasterCopy(SkPixmap(info, data, 5, colorTable));
}
static SkData* create_image_data(SkImageInfo* info) {
*info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
const size_t rowBytes = info->minRowBytes();
SkAutoTUnref<SkData> data(SkData::NewUninitialized(rowBytes * info->height()));
{
SkBitmap bm;
bm.installPixels(*info, data->writable_data(), rowBytes);
SkCanvas canvas(bm);
draw_image_test_pattern(&canvas);
}
return data.release();
}
static sk_sp<SkImage> create_data_image() {
SkImageInfo info;
sk_sp<SkData> data(create_image_data(&info));
return SkImage::MakeRasterData(info, data, info.minRowBytes());
}
#if SK_SUPPORT_GPU // not gpu-specific but currently only used in GPU tests
static sk_sp<SkImage> create_picture_image() {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clear(SK_ColorCYAN);
return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10),
nullptr, nullptr);
};
#endif
// Want to ensure that our Release is called when the owning image is destroyed
struct RasterDataHolder {
RasterDataHolder() : fReleaseCount(0) {}
SkAutoTUnref<SkData> fData;
int fReleaseCount;
static void Release(const void* pixels, void* context) {
RasterDataHolder* self = static_cast<RasterDataHolder*>(context);
self->fReleaseCount++;
self->fData.reset();
}
};
static sk_sp<SkImage> create_rasterproc_image(RasterDataHolder* dataHolder) {
SkASSERT(dataHolder);
SkImageInfo info;
SkAutoTUnref<SkData> data(create_image_data(&info));
dataHolder->fData.reset(SkRef(data.get()));
return SkImage::MakeFromRaster(SkPixmap(info, data->data(), info.minRowBytes()),
RasterDataHolder::Release, dataHolder);
}
static sk_sp<SkImage> create_codec_image() {
SkImageInfo info;
SkAutoTUnref<SkData> data(create_image_data(&info));
SkBitmap bitmap;
bitmap.installPixels(info, data->writable_data(), info.minRowBytes());
sk_sp<SkData> src(
SkImageEncoder::EncodeData(bitmap, SkImageEncoder::kPNG_Type, 100));
return SkImage::MakeFromEncoded(src);
}
#if SK_SUPPORT_GPU
static sk_sp<SkImage> create_gpu_image(GrContext* context) {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTarget(context, SkBudgeted::kNo,
info));
draw_image_test_pattern(surface->getCanvas());
return surface->makeImageSnapshot();
}
#endif
static void test_encode(skiatest::Reporter* reporter, SkImage* image) {
const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10);
sk_sp<SkData> origEncoded(image->encode());
REPORTER_ASSERT(reporter, origEncoded);
REPORTER_ASSERT(reporter, origEncoded->size() > 0);
sk_sp<SkImage> decoded(SkImage::MakeFromEncoded(origEncoded));
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, nullptr, decoded.get());
// Now see if we can instantiate an image from a subset of the surface/origEncoded
decoded = SkImage::MakeFromEncoded(origEncoded, &ir);
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, &ir, decoded.get());
}
DEF_TEST(ImageEncode, reporter) {
test_encode(reporter, create_image().get());
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, context) {
test_encode(reporter, create_gpu_image(context).get());
}
#endif
namespace {
const char* kSerializedData = "serialized";
class MockSerializer : public SkPixelSerializer {
public:
MockSerializer(SkData* (*func)()) : fFunc(func), fDidEncode(false) { }
bool didEncode() const { return fDidEncode; }
protected:
bool onUseEncodedData(const void*, size_t) override {
return false;
}
SkData* onEncode(const SkPixmap&) override {
fDidEncode = true;
return fFunc();
}
private:
SkData* (*fFunc)();
bool fDidEncode;
typedef SkPixelSerializer INHERITED;
};
} // anonymous namespace
// Test that SkImage encoding observes custom pixel serializers.
DEF_TEST(Image_Encode_Serializer, reporter) {
MockSerializer serializer([]() -> SkData* { return SkData::NewWithCString(kSerializedData); });
sk_sp<SkImage> image(create_image());
SkAutoTUnref<SkData> encoded(image->encode(&serializer));
SkAutoTUnref<SkData> reference(SkData::NewWithCString(kSerializedData));
REPORTER_ASSERT(reporter, serializer.didEncode());
REPORTER_ASSERT(reporter, encoded);
REPORTER_ASSERT(reporter, encoded->size() > 0);
REPORTER_ASSERT(reporter, encoded->equals(reference));
}
// Test that image encoding failures do not break picture serialization/deserialization.
DEF_TEST(Image_Serialize_Encoding_Failure, reporter) {
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(100, 100));
surface->getCanvas()->clear(SK_ColorGREEN);
sk_sp<SkImage> image(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image);
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->drawImage(image, 0, 0);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
REPORTER_ASSERT(reporter, picture);
REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0);
MockSerializer emptySerializer([]() -> SkData* { return SkData::NewEmpty(); });
MockSerializer nullSerializer([]() -> SkData* { return nullptr; });
MockSerializer* serializers[] = { &emptySerializer, &nullSerializer };
for (size_t i = 0; i < SK_ARRAY_COUNT(serializers); ++i) {
SkDynamicMemoryWStream wstream;
REPORTER_ASSERT(reporter, !serializers[i]->didEncode());
picture->serialize(&wstream, serializers[i]);
REPORTER_ASSERT(reporter, serializers[i]->didEncode());
SkAutoTDelete<SkStream> rstream(wstream.detachAsStream());
sk_sp<SkPicture> deserialized(SkPicture::MakeFromStream(rstream));
REPORTER_ASSERT(reporter, deserialized);
REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0);
}
}
DEF_TEST(Image_NewRasterCopy, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
const SkPMColor blue = SkPackARGB32(0xFF, 0, 0, 0xFF);
SkPMColor colors[] = { red, green, blue, 0 };
SkAutoTUnref<SkColorTable> ctable(new SkColorTable(colors, SK_ARRAY_COUNT(colors)));
// The colortable made a copy, so we can trash the original colors
memset(colors, 0xFF, sizeof(colors));
const SkImageInfo srcInfo = SkImageInfo::Make(2, 2, kIndex_8_SkColorType, kPremul_SkAlphaType);
const size_t srcRowBytes = 2 * sizeof(uint8_t);
uint8_t indices[] = { 0, 1, 2, 3 };
sk_sp<SkImage> image(SkImage::MakeRasterCopy(SkPixmap(srcInfo, indices, srcRowBytes, ctable)));
// The image made a copy, so we can trash the original indices
memset(indices, 0xFF, sizeof(indices));
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
image->readPixels(dstInfo, pixels, dstRowBytes, 0, 0);
REPORTER_ASSERT(reporter, red == pixels[0]);
REPORTER_ASSERT(reporter, green == pixels[1]);
REPORTER_ASSERT(reporter, blue == pixels[2]);
REPORTER_ASSERT(reporter, 0 == pixels[3]);
}
// Test that a draw that only partially covers the drawing surface isn't
// interpreted as covering the entire drawing surface (i.e., exercise one of the
// conditions of SkCanvas::wouldOverwriteEntireSurface()).
DEF_TEST(Image_RetainSnapshot, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
surface->getCanvas()->clear(0xFF00FF00);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
sk_sp<SkImage> image1(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) {
REPORTER_ASSERT(reporter, pixels[i] == green);
}
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
paint.setColor(SK_ColorRED);
surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint);
sk_sp<SkImage> image2(surface->makeImageSnapshot());
REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
REPORTER_ASSERT(reporter, pixels[0] == green);
REPORTER_ASSERT(reporter, pixels[1] == green);
REPORTER_ASSERT(reporter, pixels[2] == green);
REPORTER_ASSERT(reporter, pixels[3] == red);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
static void make_bitmap_mutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
}
static void make_bitmap_immutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
bm->setImmutable();
}
DEF_TEST(image_newfrombitmap, reporter) {
const struct {
void (*fMakeProc)(SkBitmap*);
bool fExpectPeekSuccess;
bool fExpectSharedID;
bool fExpectLazy;
} rec[] = {
{ make_bitmap_mutable, true, false, false },
{ make_bitmap_immutable, true, true, false },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) {
SkBitmap bm;
rec[i].fMakeProc(&bm);
sk_sp<SkImage> image(SkImage::MakeFromBitmap(bm));
SkPixmap pmap;
const bool sharedID = (image->uniqueID() == bm.getGenerationID());
REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID);
const bool peekSuccess = image->peekPixels(&pmap);
REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess);
const bool lazy = image->isLazyGenerated();
REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "SkBitmapCache.h"
/*
* This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image.
* We cache it for performance when drawing into a raster surface.
*
* A cleaner test would know if each drawImage call triggered a read-back from the gpu,
* but we don't have that facility (at the moment) so we use a little internal knowledge
* of *how* the raster version is cached, and look for that.
*/
DEF_GPUTEST_FOR_NATIVE_CONTEXT(SkImage_Gpu2Cpu, reporter, context) {
SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
sk_sp<SkImage> image(create_gpu_image(context));
const uint32_t uniqueID = image->uniqueID();
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
// now we can test drawing a gpu-backed image into a cpu-backed surface
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
surface->getCanvas()->drawImage(image, 0, 0);
{
SkBitmap cachedBitmap;
if (SkBitmapCache::Find(uniqueID, &cachedBitmap)) {
REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID);
REPORTER_ASSERT(reporter, cachedBitmap.isImmutable());
REPORTER_ASSERT(reporter, cachedBitmap.getPixels());
} else {
// unexpected, but not really a bug, since the cache is global and this test may be
// run w/ other threads competing for its budget.
SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n");
}
}
image.reset(nullptr);
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
}
DEF_GPUTEST_FOR_NATIVE_CONTEXT(SkImage_newTextureImage, reporter, context, glContext) {
GrContextFactory otherFactory;
GrContextFactory::ContextInfo otherContextInfo =
otherFactory.getContextInfo(GrContextFactory::kNative_GLContextType);
glContext->makeCurrent();
std::function<sk_sp<SkImage>()> imageFactories[] = {
create_image,
create_codec_image,
create_data_image,
// Create an image from a picture.
create_picture_image,
// Create a texture image.
[context] { return create_gpu_image(context); },
// Create a texture image in a another GrContext.
[glContext, otherContextInfo] {
otherContextInfo.fGLContext->makeCurrent();
sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.fGrContext);
glContext->makeCurrent();
return otherContextImage;
}
};
for (auto factory : imageFactories) {
sk_sp<SkImage> image(factory());
if (!image) {
ERRORF(reporter, "Error creating image.");
continue;
}
GrTexture* origTexture = as_IB(image)->peekTexture();
sk_sp<SkImage> texImage(image->makeTextureImage(context));
if (!texImage) {
// We execpt to fail if image comes from a different GrContext.
if (!origTexture || origTexture->getContext() == context) {
ERRORF(reporter, "newTextureImage failed.");
}
continue;
}
GrTexture* copyTexture = as_IB(texImage)->peekTexture();
if (!copyTexture) {
ERRORF(reporter, "newTextureImage returned non-texture image.");
continue;
}
if (origTexture) {
if (origTexture != copyTexture) {
ERRORF(reporter, "newTextureImage made unnecessary texture copy.");
}
}
if (image->width() != texImage->width() || image->height() != texImage->height()) {
ERRORF(reporter, "newTextureImage changed the image size.");
}
if (image->isOpaque() != texImage->isOpaque()) {
ERRORF(reporter, "newTextureImage changed image opaqueness.");
}
}
}
#endif
// https://bug.skia.org/4390
DEF_TEST(ImageFromIndex8Bitmap, r) {
SkPMColor pmColors[1] = {SkPreMultiplyColor(SK_ColorWHITE)};
SkBitmap bm;
SkAutoTUnref<SkColorTable> ctable(
new SkColorTable(pmColors, SK_ARRAY_COUNT(pmColors)));
SkImageInfo info =
SkImageInfo::Make(1, 1, kIndex_8_SkColorType, kPremul_SkAlphaType);
bm.allocPixels(info, nullptr, ctable);
SkAutoLockPixels autoLockPixels(bm);
*bm.getAddr8(0, 0) = 0;
sk_sp<SkImage> img(SkImage::MakeFromBitmap(bm));
REPORTER_ASSERT(r, img != nullptr);
}
class EmptyGenerator : public SkImageGenerator {
public:
EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {}
};
DEF_TEST(ImageEmpty, reporter) {
const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType);
SkPixmap pmap(info, nullptr, 0);
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr));
REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator(new EmptyGenerator));
}
DEF_TEST(ImageDataRef, reporter) {
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
size_t rowBytes = info.minRowBytes();
size_t size = info.getSafeSize(rowBytes);
sk_sp<SkData> data = SkData::MakeUninitialized(size);
REPORTER_ASSERT(reporter, data->unique());
sk_sp<SkImage> image = SkImage::MakeRasterData(info, data, rowBytes);
REPORTER_ASSERT(reporter, !data->unique());
image.reset();
REPORTER_ASSERT(reporter, data->unique());
}
static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) {
for (int i = 0; i < count; ++i) {
if (pixels[i] != expected) {
return false;
}
}
return true;
}
static void test_read_pixels(skiatest::Reporter* reporter, SkImage* image) {
const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE);
const SkPMColor notExpected = ~expected;
const int w = 2, h = 2;
const size_t rowBytes = w * sizeof(SkPMColor);
SkPMColor pixels[w*h];
SkImageInfo info;
info = SkImageInfo::MakeUnknown(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0));
// out-of-bounds should fail
info = SkImageInfo::MakeN32Premul(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height()));
// top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - w, image->height() - h));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// partial top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1));
REPORTER_ASSERT(reporter, pixels[3] == expected);
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected));
// partial bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - 1, image->height() - 1));
REPORTER_ASSERT(reporter, pixels[0] == expected);
REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected));
}
DEF_TEST(ImageReadPixels, reporter) {
sk_sp<SkImage> image(create_image());
test_read_pixels(reporter, image.get());
image = create_data_image();
test_read_pixels(reporter, image.get());
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
test_read_pixels(reporter, image.get());
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
test_read_pixels(reporter, image.get());
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, context) {
test_read_pixels(reporter, create_gpu_image(context).get());
}
#endif
static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image,
const SkBitmap& bitmap, SkImage::LegacyBitmapMode mode) {
REPORTER_ASSERT(reporter, image->width() == bitmap.width());
REPORTER_ASSERT(reporter, image->height() == bitmap.height());
REPORTER_ASSERT(reporter, image->isOpaque() == bitmap.isOpaque());
if (SkImage::kRO_LegacyBitmapMode == mode) {
REPORTER_ASSERT(reporter, bitmap.isImmutable());
}
SkAutoLockPixels alp(bitmap);
REPORTER_ASSERT(reporter, bitmap.getPixels());
const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType());
SkPMColor imageColor;
REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0));
REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0));
}
static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, SkImage::LegacyBitmapMode mode) {
SkBitmap bitmap;
REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap, mode));
check_legacy_bitmap(reporter, image, bitmap, mode);
// Test subsetting to exercise the rowBytes logic.
SkBitmap tmp;
REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2,
image->height() / 2)));
sk_sp<SkImage> subsetImage(SkImage::MakeFromBitmap(tmp));
REPORTER_ASSERT(reporter, subsetImage.get());
SkBitmap subsetBitmap;
REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap, mode));
check_legacy_bitmap(reporter, subsetImage.get(), subsetBitmap, mode);
}
DEF_TEST(ImageLegacyBitmap, reporter) {
const SkImage::LegacyBitmapMode modes[] = {
SkImage::kRO_LegacyBitmapMode,
SkImage::kRW_LegacyBitmapMode,
};
for (auto& mode : modes) {
sk_sp<SkImage> image(create_image());
test_legacy_bitmap(reporter, image.get(), mode);
image = create_data_image();
test_legacy_bitmap(reporter, image.get(), mode);
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
test_legacy_bitmap(reporter, image.get(), mode);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
test_legacy_bitmap(reporter, image.get(), mode);
}
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, context) {
const SkImage::LegacyBitmapMode modes[] = {
SkImage::kRO_LegacyBitmapMode,
SkImage::kRW_LegacyBitmapMode,
};
for (auto& mode : modes) {
sk_sp<SkImage> image(create_gpu_image(context));
test_legacy_bitmap(reporter, image.get(), mode);
}
}
#endif
static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) {
SkPixmap pm;
bool success = image->peekPixels(&pm);
REPORTER_ASSERT(reporter, expectPeekSuccess == success);
if (success) {
const SkImageInfo& info = pm.info();
REPORTER_ASSERT(reporter, 20 == info.width());
REPORTER_ASSERT(reporter, 20 == info.height());
REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType());
REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() ||
kOpaque_SkAlphaType == info.alphaType());
REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes());
REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0));
}
}
DEF_TEST(ImagePeek, reporter) {
sk_sp<SkImage> image(create_image());
test_peek(reporter, image.get(), true);
image = create_data_image();
test_peek(reporter, image.get(), true);
RasterDataHolder dataHolder;
image = create_rasterproc_image(&dataHolder);
test_peek(reporter, image.get(), true);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image = create_codec_image();
test_peek(reporter, image.get(), false);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, context) {
sk_sp<SkImage> image(create_gpu_image(context));
test_peek(reporter, image.get(), false);
}
#endif
#if SK_SUPPORT_GPU
struct TextureReleaseChecker {
TextureReleaseChecker() : fReleaseCount(0) {}
int fReleaseCount;
static void Release(void* self) {
static_cast<TextureReleaseChecker*>(self)->fReleaseCount++;
}
};
static void check_image_color(skiatest::Reporter* reporter, SkImage* image, SkPMColor expected) {
const SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
SkPMColor pixel;
REPORTER_ASSERT(reporter, image->readPixels(info, &pixel, sizeof(pixel), 0, 0));
REPORTER_ASSERT(reporter, pixel == expected);
}
DEF_GPUTEST_FOR_NATIVE_CONTEXT(SkImage_NewFromTexture, reporter, context) {
GrTextureProvider* provider = context->textureProvider();
const int w = 10;
const int h = 10;
SkPMColor storage[w * h];
const SkPMColor expected0 = SkPreMultiplyColor(SK_ColorRED);
sk_memset32(storage, expected0, w * h);
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag; // needs to be a rendertarget for readpixels();
desc.fOrigin = kDefault_GrSurfaceOrigin;
desc.fWidth = w;
desc.fHeight = h;
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fSampleCnt = 0;
SkAutoTUnref<GrTexture> tex(provider->createTexture(desc, SkBudgeted::kNo, storage, w * 4));
if (!tex) {
REPORTER_ASSERT(reporter, false);
return;
}
GrBackendTextureDesc backendDesc;
backendDesc.fConfig = kSkia8888_GrPixelConfig;
backendDesc.fFlags = kRenderTarget_GrBackendTextureFlag;
backendDesc.fWidth = w;
backendDesc.fHeight = h;
backendDesc.fSampleCnt = 0;
backendDesc.fTextureHandle = tex->getTextureHandle();
TextureReleaseChecker releaseChecker;
sk_sp<SkImage> refImg(
SkImage::MakeFromTexture(context, backendDesc, kPremul_SkAlphaType,
TextureReleaseChecker::Release, &releaseChecker));
sk_sp<SkImage> cpyImg(SkImage::MakeFromTextureCopy(context, backendDesc, kPremul_SkAlphaType));
check_image_color(reporter, refImg.get(), expected0);
check_image_color(reporter, cpyImg.get(), expected0);
// Now lets jam new colors into our "external" texture, and see if the images notice
const SkPMColor expected1 = SkPreMultiplyColor(SK_ColorBLUE);
sk_memset32(storage, expected1, w * h);
tex->writePixels(0, 0, w, h, kSkia8888_GrPixelConfig, storage, GrContext::kFlushWrites_PixelOp);
// The cpy'd one should still see the old color
#if 0
// There is no guarantee that refImg sees the new color. We are free to have made a copy. Our
// write pixels call violated the contract with refImg and refImg is now undefined.
check_image_color(reporter, refImg, expected1);
#endif
check_image_color(reporter, cpyImg.get(), expected0);
// Now exercise the release proc
REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount);
refImg.reset(nullptr); // force a release of the image
REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount);
}
static void check_images_same(skiatest::Reporter* reporter, const SkImage* a, const SkImage* b) {
if (a->width() != b->width() || a->height() != b->height()) {
ERRORF(reporter, "Images must have the same size");
return;
}
if (a->isOpaque() != b->isOpaque()) {
ERRORF(reporter, "Images must have the same opaquness");
return;
}
SkImageInfo info = SkImageInfo::MakeN32Premul(a->width(), a->height());
SkAutoPixmapStorage apm;
SkAutoPixmapStorage bpm;
apm.alloc(info);
bpm.alloc(info);
if (!a->readPixels(apm, 0, 0)) {
ERRORF(reporter, "Could not read image a's pixels");
return;
}
if (!b->readPixels(bpm, 0, 0)) {
ERRORF(reporter, "Could not read image b's pixels");
return;
}
for (auto y = 0; y < info.height(); ++y) {
for (auto x = 0; x < info.width(); ++x) {
uint32_t pixelA = *apm.addr32(x, y);
uint32_t pixelB = *bpm.addr32(x, y);
if (pixelA != pixelB) {
ERRORF(reporter, "Expected image pixels to be the same. At %d,%d 0x%08x != 0x%08x",
x, y, pixelA, pixelB);
return;
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(NewTextureFromPixmap, reporter, context) {
for (auto create : {&create_image,
&create_image_565,
&create_image_ct}) {
sk_sp<SkImage> image((*create)());
if (!image) {
ERRORF(reporter, "Could not create image");
return;
}
SkPixmap pixmap;
if (!image->peekPixels(&pixmap)) {
ERRORF(reporter, "peek failed");
} else {
sk_sp<SkImage> texImage(SkImage::MakeTextureFromPixmap(context, pixmap,
SkBudgeted::kNo));
if (!texImage) {
ERRORF(reporter, "NewTextureFromPixmap failed.");
} else {
check_images_same(reporter, image.get(), texImage.get());
}
}
}
}
DEF_GPUTEST_FOR_NATIVE_CONTEXT(DeferredTextureImage, reporter, context, glContext) {
SkAutoTUnref<GrContextThreadSafeProxy> proxy(context->threadSafeProxy());
GrContextFactory otherFactory;
GrContextFactory::ContextInfo otherContextInfo =
otherFactory.getContextInfo(GrContextFactory::kNative_GLContextType);
glContext->makeCurrent();
REPORTER_ASSERT(reporter, proxy);
struct {
std::function<sk_sp<SkImage> ()> fImageFactory;
bool fExpectation;
} testCases[] = {
{ create_image, true },
{ create_codec_image, true },
{ create_data_image, true },
{ create_picture_image, false },
{ [context] { return create_gpu_image(context); }, false },
// Create a texture image in a another GrContext.
{ [glContext, otherContextInfo] {
otherContextInfo.fGLContext->makeCurrent();
sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.fGrContext);
glContext->makeCurrent();
return otherContextImage;
}, false },
};
for (auto testCase : testCases) {
sk_sp<SkImage> image(testCase.fImageFactory());
// This isn't currently used in the implementation, just set any old values.
SkImage::DeferredTextureImageUsageParams params;
params.fQuality = kLow_SkFilterQuality;
params.fMatrix = SkMatrix::I();
size_t size = image->getDeferredTextureImageData(*proxy, &params, 1, nullptr);
static const char *const kFS[] = { "fail", "succeed" };
if (SkToBool(size) != testCase.fExpectation) {
ERRORF(reporter, "This image was expected to %s but did not.",
kFS[testCase.fExpectation]);
}
if (size) {
void* buffer = sk_malloc_throw(size);
void* misaligned = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(buffer) + 3);
if (image->getDeferredTextureImageData(*proxy, &params, 1, misaligned)) {
ERRORF(reporter, "Should fail when buffer is misaligned.");
}
if (!image->getDeferredTextureImageData(*proxy, &params, 1, buffer)) {
ERRORF(reporter, "deferred image size succeeded but creation failed.");
} else {
for (auto budgeted : { SkBudgeted::kNo, SkBudgeted::kYes }) {
sk_sp<SkImage> newImage(
SkImage::MakeFromDeferredTextureImageData(context, buffer, budgeted));
REPORTER_ASSERT(reporter, newImage != nullptr);
if (newImage) {
check_images_same(reporter, image.get(), newImage.get());
}
// The other context should not be able to create images from texture data
// created by the original context.
sk_sp<SkImage> newImage2(SkImage::MakeFromDeferredTextureImageData(
otherContextInfo.fGrContext, buffer, budgeted));
REPORTER_ASSERT(reporter, !newImage2);
glContext->makeCurrent();
}
}
sk_free(buffer);
}
}
}
#endif