c0bd9f9fe5
Current strategy: everything from the top Things to look at first are the manual changes: - added tools/rewrite_includes.py - removed -Idirectives from BUILD.gn - various compile.sh simplifications - tweak tools/embed_resources.py - update gn/find_headers.py to write paths from the top - update gn/gn_to_bp.py SkUserConfig.h layout so that #include "include/config/SkUserConfig.h" always gets the header we want. No-Presubmit: true Change-Id: I73a4b181654e0e38d229bc456c0d0854bae3363e Reviewed-on: https://skia-review.googlesource.com/c/skia/+/209706 Commit-Queue: Mike Klein <mtklein@google.com> Reviewed-by: Hal Canary <halcanary@google.com> Reviewed-by: Brian Osman <brianosman@google.com> Reviewed-by: Florin Malita <fmalita@chromium.org>
157 lines
4.6 KiB
C++
157 lines
4.6 KiB
C++
/*
|
|
* Copyright 2009 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#include "src/core/SkCubicClipper.h"
|
|
#include "src/core/SkGeometry.h"
|
|
|
|
#include <utility>
|
|
|
|
SkCubicClipper::SkCubicClipper() {
|
|
fClip.setEmpty();
|
|
}
|
|
|
|
void SkCubicClipper::setClip(const SkIRect& clip) {
|
|
// conver to scalars, since that's where we'll see the points
|
|
fClip.set(clip);
|
|
}
|
|
|
|
|
|
bool SkCubicClipper::ChopMonoAtY(const SkPoint pts[4], SkScalar y, SkScalar* t) {
|
|
SkScalar ycrv[4];
|
|
ycrv[0] = pts[0].fY - y;
|
|
ycrv[1] = pts[1].fY - y;
|
|
ycrv[2] = pts[2].fY - y;
|
|
ycrv[3] = pts[3].fY - y;
|
|
|
|
#ifdef NEWTON_RAPHSON // Quadratic convergence, typically <= 3 iterations.
|
|
// Initial guess.
|
|
// TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
|
|
// is not only monotonic but degenerate.
|
|
SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
|
|
|
|
// Newton's iterations.
|
|
const SkScalar tol = SK_Scalar1 / 16384; // This leaves 2 fixed noise bits.
|
|
SkScalar t0;
|
|
const int maxiters = 5;
|
|
int iters = 0;
|
|
bool converged;
|
|
do {
|
|
t0 = t1;
|
|
SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], t0);
|
|
SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], t0);
|
|
SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], t0);
|
|
SkScalar y012 = SkScalarInterp(y01, y12, t0);
|
|
SkScalar y123 = SkScalarInterp(y12, y23, t0);
|
|
SkScalar y0123 = SkScalarInterp(y012, y123, t0);
|
|
SkScalar yder = (y123 - y012) * 3;
|
|
// TODO(turk): check for yder==0: horizontal.
|
|
t1 -= y0123 / yder;
|
|
converged = SkScalarAbs(t1 - t0) <= tol; // NaN-safe
|
|
++iters;
|
|
} while (!converged && (iters < maxiters));
|
|
*t = t1; // Return the result.
|
|
|
|
// The result might be valid, even if outside of the range [0, 1], but
|
|
// we never evaluate a Bezier outside this interval, so we return false.
|
|
if (t1 < 0 || t1 > SK_Scalar1)
|
|
return false; // This shouldn't happen, but check anyway.
|
|
return converged;
|
|
|
|
#else // BISECTION // Linear convergence, typically 16 iterations.
|
|
|
|
// Check that the endpoints straddle zero.
|
|
SkScalar tNeg, tPos; // Negative and positive function parameters.
|
|
if (ycrv[0] < 0) {
|
|
if (ycrv[3] < 0)
|
|
return false;
|
|
tNeg = 0;
|
|
tPos = SK_Scalar1;
|
|
} else if (ycrv[0] > 0) {
|
|
if (ycrv[3] > 0)
|
|
return false;
|
|
tNeg = SK_Scalar1;
|
|
tPos = 0;
|
|
} else {
|
|
*t = 0;
|
|
return true;
|
|
}
|
|
|
|
const SkScalar tol = SK_Scalar1 / 65536; // 1 for fixed, 1e-5 for float.
|
|
int iters = 0;
|
|
do {
|
|
SkScalar tMid = (tPos + tNeg) / 2;
|
|
SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], tMid);
|
|
SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], tMid);
|
|
SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], tMid);
|
|
SkScalar y012 = SkScalarInterp(y01, y12, tMid);
|
|
SkScalar y123 = SkScalarInterp(y12, y23, tMid);
|
|
SkScalar y0123 = SkScalarInterp(y012, y123, tMid);
|
|
if (y0123 == 0) {
|
|
*t = tMid;
|
|
return true;
|
|
}
|
|
if (y0123 < 0) tNeg = tMid;
|
|
else tPos = tMid;
|
|
++iters;
|
|
} while (!(SkScalarAbs(tPos - tNeg) <= tol)); // Nan-safe
|
|
|
|
*t = (tNeg + tPos) / 2;
|
|
return true;
|
|
#endif // BISECTION
|
|
}
|
|
|
|
|
|
bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) {
|
|
bool reverse;
|
|
|
|
// we need the data to be monotonically descending in Y
|
|
if (srcPts[0].fY > srcPts[3].fY) {
|
|
dst[0] = srcPts[3];
|
|
dst[1] = srcPts[2];
|
|
dst[2] = srcPts[1];
|
|
dst[3] = srcPts[0];
|
|
reverse = true;
|
|
} else {
|
|
memcpy(dst, srcPts, 4 * sizeof(SkPoint));
|
|
reverse = false;
|
|
}
|
|
|
|
// are we completely above or below
|
|
const SkScalar ctop = fClip.fTop;
|
|
const SkScalar cbot = fClip.fBottom;
|
|
if (dst[3].fY <= ctop || dst[0].fY >= cbot) {
|
|
return false;
|
|
}
|
|
|
|
SkScalar t;
|
|
SkPoint tmp[7]; // for SkChopCubicAt
|
|
|
|
// are we partially above
|
|
if (dst[0].fY < ctop && ChopMonoAtY(dst, ctop, &t)) {
|
|
SkChopCubicAt(dst, tmp, t);
|
|
dst[0] = tmp[3];
|
|
dst[1] = tmp[4];
|
|
dst[2] = tmp[5];
|
|
}
|
|
|
|
// are we partially below
|
|
if (dst[3].fY > cbot && ChopMonoAtY(dst, cbot, &t)) {
|
|
SkChopCubicAt(dst, tmp, t);
|
|
dst[1] = tmp[1];
|
|
dst[2] = tmp[2];
|
|
dst[3] = tmp[3];
|
|
}
|
|
|
|
if (reverse) {
|
|
using std::swap;
|
|
swap(dst[0], dst[3]);
|
|
swap(dst[1], dst[2]);
|
|
}
|
|
return true;
|
|
}
|