skia2/bench/benchmain.cpp
reed@google.com ef77ec2104 extend SkBenchmark to allow a bench to return a durationScale, which allows it to perform fewer actual interations, but report a scale factor to account for that. Thus a very slow bench can be compared head-to-head with a faster one, w/o actually forcing the tool to run for the full duration of the slower test.
Extend BitmapBench to time bicubic filtering, and use this durationScale for it.

Extend SkBenchmark to have setBitmapFlags(or, clear), allowing it to request a set of paint flags to be cleared, and set to be set.

BUG=
R=robertphillips@google.com

Review URL: https://codereview.chromium.org/16069010

git-svn-id: http://skia.googlecode.com/svn/trunk@9315 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-05-29 15:39:54 +00:00

997 lines
35 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "BenchTimer.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrContextFactory.h"
#include "gl/GrGLDefines.h"
#include "GrRenderTarget.h"
#include "SkGpuDevice.h"
#else
class GrContext;
#endif // SK_SUPPORT_GPU
#include "SkBenchLogger.h"
#include "SkBenchmark.h"
#include "SkCanvas.h"
#include "SkDeferredCanvas.h"
#include "SkDevice.h"
#include "SkColorPriv.h"
#include "SkGraphics.h"
#include "SkImageEncoder.h"
#include "SkNWayCanvas.h"
#include "SkPicture.h"
#include "SkString.h"
#include "SkTArray.h"
#include "TimerData.h"
enum benchModes {
kNormal_benchModes,
kDeferred_benchModes,
kDeferredSilent_benchModes,
kRecord_benchModes,
kPictureRecord_benchModes
};
///////////////////////////////////////////////////////////////////////////////
static void erase(SkBitmap& bm) {
if (bm.config() == SkBitmap::kA8_Config) {
bm.eraseColor(SK_ColorTRANSPARENT);
} else {
bm.eraseColor(SK_ColorWHITE);
}
}
#if 0
static bool equal(const SkBitmap& bm1, const SkBitmap& bm2) {
if (bm1.width() != bm2.width() ||
bm1.height() != bm2.height() ||
bm1.config() != bm2.config()) {
return false;
}
size_t pixelBytes = bm1.width() * bm1.bytesPerPixel();
for (int y = 0; y < bm1.height(); y++) {
if (memcmp(bm1.getAddr(0, y), bm2.getAddr(0, y), pixelBytes)) {
return false;
}
}
return true;
}
#endif
class Iter {
public:
Iter(void* param) {
fBench = BenchRegistry::Head();
fParam = param;
}
SkBenchmark* next() {
if (fBench) {
BenchRegistry::Factory f = fBench->factory();
fBench = fBench->next();
return f(fParam);
}
return NULL;
}
private:
const BenchRegistry* fBench;
void* fParam;
};
class AutoPrePostDraw {
public:
AutoPrePostDraw(SkBenchmark* bench) : fBench(bench) {
fBench->preDraw();
}
~AutoPrePostDraw() {
fBench->postDraw();
}
private:
SkBenchmark* fBench;
};
static void make_filename(const char name[], SkString* path) {
path->set(name);
for (int i = 0; name[i]; i++) {
switch (name[i]) {
case '/':
case '\\':
case ' ':
case ':':
path->writable_str()[i] = '-';
break;
default:
break;
}
}
}
static void saveFile(const char name[], const char config[], const char dir[],
const SkBitmap& bm) {
SkBitmap copy;
if (!bm.copyTo(&copy, SkBitmap::kARGB_8888_Config)) {
return;
}
if (bm.config() == SkBitmap::kA8_Config) {
// turn alpha into gray-scale
size_t size = copy.getSize() >> 2;
SkPMColor* p = copy.getAddr32(0, 0);
for (size_t i = 0; i < size; i++) {
int c = (*p >> SK_A32_SHIFT) & 0xFF;
c = 255 - c;
c |= (c << 24) | (c << 16) | (c << 8);
*p++ = c | (SK_A32_MASK << SK_A32_SHIFT);
}
}
SkString str;
make_filename(name, &str);
str.appendf("_%s.png", config);
str.prepend(dir);
::remove(str.c_str());
SkImageEncoder::EncodeFile(str.c_str(), copy, SkImageEncoder::kPNG_Type,
100);
}
static void performClip(SkCanvas* canvas, int w, int h) {
SkRect r;
r.set(SkIntToScalar(10), SkIntToScalar(10),
SkIntToScalar(w*2/3), SkIntToScalar(h*2/3));
canvas->clipRect(r, SkRegion::kIntersect_Op);
r.set(SkIntToScalar(w/3), SkIntToScalar(h/3),
SkIntToScalar(w-10), SkIntToScalar(h-10));
canvas->clipRect(r, SkRegion::kXOR_Op);
}
static void performRotate(SkCanvas* canvas, int w, int h) {
const SkScalar x = SkIntToScalar(w) / 2;
const SkScalar y = SkIntToScalar(h) / 2;
canvas->translate(x, y);
canvas->rotate(SkIntToScalar(35));
canvas->translate(-x, -y);
}
static void performScale(SkCanvas* canvas, int w, int h) {
const SkScalar x = SkIntToScalar(w) / 2;
const SkScalar y = SkIntToScalar(h) / 2;
canvas->translate(x, y);
// just enough so we can't take the sprite case
canvas->scale(SK_Scalar1 * 99/100, SK_Scalar1 * 99/100);
canvas->translate(-x, -y);
}
static bool parse_bool_arg(char * const* argv, char* const* stop, bool* var) {
if (argv < stop) {
*var = atoi(*argv) != 0;
return true;
}
return false;
}
enum Backend {
kNonRendering_Backend,
kRaster_Backend,
kGPU_Backend,
kPDF_Backend,
};
static SkDevice* make_device(SkBitmap::Config config, const SkIPoint& size,
Backend backend, int sampleCount, GrContext* context) {
SkDevice* device = NULL;
SkBitmap bitmap;
bitmap.setConfig(config, size.fX, size.fY);
switch (backend) {
case kRaster_Backend:
bitmap.allocPixels();
erase(bitmap);
device = SkNEW_ARGS(SkDevice, (bitmap));
break;
#if SK_SUPPORT_GPU
case kGPU_Backend: {
GrTextureDesc desc;
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = size.fX;
desc.fHeight = size.fY;
desc.fSampleCnt = sampleCount;
SkAutoTUnref<GrTexture> texture(context->createUncachedTexture(desc, NULL, 0));
if (!texture) {
return NULL;
}
device = SkNEW_ARGS(SkGpuDevice, (context, texture.get()));
break;
}
#endif
case kPDF_Backend:
default:
SkASSERT(!"unsupported");
}
return device;
}
#if SK_SUPPORT_GPU
GrContextFactory gContextFactory;
typedef GrContextFactory::GLContextType GLContextType;
static const GLContextType kDontCareGLCtxType = GrContextFactory::kNative_GLContextType;
#else
typedef int GLContextType;
static const GLContextType kDontCareGLCtxType = 0;
#endif
static const struct {
SkBitmap::Config fConfig;
const char* fName;
int fSampleCnt;
Backend fBackend;
GLContextType fContextType;
bool fRunByDefault;
} gConfigs[] = {
{ SkBitmap::kNo_Config, "NONRENDERING", 0, kNonRendering_Backend, kDontCareGLCtxType, true },
{ SkBitmap::kARGB_8888_Config, "8888", 0, kRaster_Backend, kDontCareGLCtxType, true },
{ SkBitmap::kRGB_565_Config, "565", 0, kRaster_Backend, kDontCareGLCtxType, true },
#if SK_SUPPORT_GPU
{ SkBitmap::kARGB_8888_Config, "GPU", 0, kGPU_Backend, GrContextFactory::kNative_GLContextType, true },
{ SkBitmap::kARGB_8888_Config, "MSAA4", 4, kGPU_Backend, GrContextFactory::kNative_GLContextType, false },
{ SkBitmap::kARGB_8888_Config, "MSAA16", 16, kGPU_Backend, GrContextFactory::kNative_GLContextType, false },
#if SK_ANGLE
{ SkBitmap::kARGB_8888_Config, "ANGLE", 0, kGPU_Backend, GrContextFactory::kANGLE_GLContextType, true },
#endif // SK_ANGLE
#ifdef SK_DEBUG
{ SkBitmap::kARGB_8888_Config, "Debug", 0, kGPU_Backend, GrContextFactory::kDebug_GLContextType, GR_DEBUG },
#endif // SK_DEBUG
{ SkBitmap::kARGB_8888_Config, "NULLGPU", 0, kGPU_Backend, GrContextFactory::kNull_GLContextType, true },
#endif // SK_SUPPORT_GPU
};
static int findConfig(const char config[]) {
for (size_t i = 0; i < SK_ARRAY_COUNT(gConfigs); i++) {
if (!strcmp(config, gConfigs[i].fName)) {
return i;
}
}
return -1;
}
static bool skip_name(const SkTDArray<const char*> array, const char name[]) {
// FIXME: this duplicates the logic in skia_test.cpp, gmmain.cpp -- consolidate
int count = array.count();
size_t testLen = strlen(name);
bool anyExclude = count == 0;
for (int i = 0; i < array.count(); ++i) {
const char* matchName = array[i];
size_t matchLen = strlen(matchName);
bool matchExclude, matchStart, matchEnd;
if ((matchExclude = matchName[0] == '~')) {
anyExclude = true;
matchName++;
matchLen--;
}
if ((matchStart = matchName[0] == '^')) {
matchName++;
matchLen--;
}
if ((matchEnd = matchName[matchLen - 1] == '$')) {
matchLen--;
}
if (matchStart ? (!matchEnd || matchLen == testLen)
&& strncmp(name, matchName, matchLen) == 0
: matchEnd ? matchLen <= testLen
&& strncmp(name + testLen - matchLen, matchName, matchLen) == 0
: strstr(name, matchName) != 0) {
return matchExclude;
}
}
return !anyExclude;
}
static void help() {
SkString configsStr;
static const size_t kConfigCount = SK_ARRAY_COUNT(gConfigs);
for (size_t i = 0; i < kConfigCount; ++i) {
configsStr.appendf("%s%s", gConfigs[i].fName, ((i == kConfigCount - 1) ? "" : "|"));
}
SkDebugf("Usage: bench [-o outDir] [--repeat nr] [--logPerIter] "
"[--timers [wcgWC]*] [--rotate]\n"
" [--scale] [--clip] [--min] [--forceAA 1|0] [--forceFilter 1|0]\n"
" [--forceDither 1|0] [--forceBlend 1|0]"
#if SK_SUPPORT_GPU
" [--gpuCacheSize <bytes> <count>]"
#endif
"\n"
" [--strokeWidth width] [--match name]\n"
" [--mode normal|deferred|deferredSilent|record|picturerecord]\n"
" [--config ");
SkDebugf("%s]\n", configsStr.c_str());
SkDebugf(" [-Dfoo bar] [--logFile filename] [-h|--help]");
SkDebugf("\n\n");
SkDebugf(" -o outDir : Image of each bench will be put in outDir.\n");
SkDebugf(" --repeat nr : Each bench repeats for nr times.\n");
SkDebugf(" --logPerIter : "
"Log each repeat timer instead of mean, default is disabled.\n");
SkDebugf(" --timers [wcgWC]* : "
"Display wall, cpu, gpu, truncated wall or truncated cpu time for each bench.\n");
SkDebugf(" --rotate : Rotate before each bench runs.\n");
SkDebugf(" --scale : Scale before each bench runs.\n");
SkDebugf(" --clip : Clip before each bench runs.\n");
SkDebugf(" --min : Print the minimum times (instead of average).\n");
SkDebugf(" --forceAA 1|0 : "
"Enable/disable anti-aliased, default is enabled.\n");
SkDebugf(" --forceFilter 1|0 : "
"Enable/disable bitmap filtering, default is disabled.\n");
SkDebugf(" --forceDither 1|0 : "
"Enable/disable dithering, default is disabled.\n");
SkDebugf(" --forceBlend 1|0 : "
"Enable/disable dithering, default is disabled.\n");
#if SK_SUPPORT_GPU
SkDebugf(" --gpuCacheSize <bytes> <count>: "
"limits gpu cache to bytes size or object count.\n");
SkDebugf(" -1 for either value means use the default. 0 for either disables the cache.\n");
#endif
SkDebugf(" --strokeWidth width : The width for path stroke.\n");
SkDebugf(" --match [~][^]substring[$] [...] of test name to run.\n"
" Multiple matches may be separated by spaces.\n"
" ~ causes a matching test to always be skipped\n"
" ^ requires the start of the test to match\n"
" $ requires the end of the test to match\n"
" ^ and $ requires an exact match\n"
" If a test does not match any list entry,\n"
" it is skipped unless some list entry starts with ~\n");
SkDebugf(" --mode normal|deferred|deferredSilent|record|picturerecord :\n"
" Run in the corresponding mode\n"
" normal, Use a normal canvas to draw to;\n"
" deferred, Use a deferrred canvas when drawing;\n"
" deferredSilent, deferred with silent playback;\n"
" record, Benchmark the time to record to an SkPicture;\n"
" picturerecord, Benchmark the time to do record from a \n"
" SkPicture to a SkPicture.\n");
SkDebugf(" --logFile filename : destination for writing log output, in addition to stdout.\n");
SkDebugf(" --config %s:\n", configsStr.c_str());
SkDebugf(" Run bench in corresponding config mode.\n");
SkDebugf(" -Dfoo bar : Add extra definition to bench.\n");
SkDebugf(" -h|--help : Show this help message.\n");
}
int tool_main(int argc, char** argv);
int tool_main(int argc, char** argv) {
#if SK_ENABLE_INST_COUNT
gPrintInstCount = true;
#endif
SkAutoGraphics ag;
SkTDict<const char*> defineDict(1024);
int repeatDraw = 1;
bool logPerIter = false;
int forceAlpha = 0xFF;
bool forceAA = true;
bool forceFilter = false;
SkTriState::State forceDither = SkTriState::kDefault;
bool timerWall = false;
bool truncatedTimerWall = false;
bool timerCpu = true;
bool truncatedTimerCpu = false;
bool timerGpu = true;
bool doScale = false;
bool doRotate = false;
bool doClip = false;
bool printMin = false;
bool hasStrokeWidth = false;
#if SK_SUPPORT_GPU
struct {
int fBytes;
int fCount;
} gpuCacheSize = { -1, -1 }; // -1s mean use the default
#endif
float strokeWidth;
SkTDArray<const char*> fMatches;
benchModes benchMode = kNormal_benchModes;
SkString perIterTimeformat("%.2f");
SkString normalTimeFormat("%6.2f");
SkString outDir;
SkBitmap::Config outConfig = SkBitmap::kNo_Config;
const char* configName = "";
Backend backend = kRaster_Backend; // for warning
int sampleCount = 0;
SkTDArray<int> configs;
bool userConfig = false;
SkBenchLogger logger;
char* const* stop = argv + argc;
for (++argv; argv < stop; ++argv) {
if (strcmp(*argv, "-o") == 0) {
argv++;
if (argv < stop && **argv) {
outDir.set(*argv);
if (outDir.c_str()[outDir.size() - 1] != '/') {
outDir.append("/");
}
}
} else if (strcmp(*argv, "--repeat") == 0) {
argv++;
if (argv < stop) {
repeatDraw = atoi(*argv);
if (repeatDraw < 1) {
repeatDraw = 1;
}
} else {
logger.logError("missing arg for --repeat\n");
help();
return -1;
}
} else if (strcmp(*argv, "--logPerIter") == 0) {
logPerIter = true;
} else if (strcmp(*argv, "--timers") == 0) {
argv++;
if (argv < stop) {
timerWall = false;
truncatedTimerWall = false;
timerCpu = false;
truncatedTimerCpu = false;
timerGpu = false;
for (char* t = *argv; *t; ++t) {
switch (*t) {
case 'w': timerWall = true; break;
case 'c': timerCpu = true; break;
case 'W': truncatedTimerWall = true; break;
case 'C': truncatedTimerCpu = true; break;
case 'g': timerGpu = true; break;
}
}
} else {
logger.logError("missing arg for --timers\n");
help();
return -1;
}
} else if (!strcmp(*argv, "--rotate")) {
doRotate = true;
} else if (!strcmp(*argv, "--scale")) {
doScale = true;
} else if (!strcmp(*argv, "--clip")) {
doClip = true;
} else if (!strcmp(*argv, "--min")) {
printMin = true;
} else if (strcmp(*argv, "--forceAA") == 0) {
if (!parse_bool_arg(++argv, stop, &forceAA)) {
logger.logError("missing arg for --forceAA\n");
help();
return -1;
}
} else if (strcmp(*argv, "--forceFilter") == 0) {
if (!parse_bool_arg(++argv, stop, &forceFilter)) {
logger.logError("missing arg for --forceFilter\n");
help();
return -1;
}
} else if (strcmp(*argv, "--forceDither") == 0) {
bool tmp;
if (!parse_bool_arg(++argv, stop, &tmp)) {
logger.logError("missing arg for --forceDither\n");
help();
return -1;
}
forceDither = tmp ? SkTriState::kTrue : SkTriState::kFalse;
} else if (strcmp(*argv, "--forceBlend") == 0) {
bool wantAlpha = false;
if (!parse_bool_arg(++argv, stop, &wantAlpha)) {
logger.logError("missing arg for --forceBlend\n");
help();
return -1;
}
forceAlpha = wantAlpha ? 0x80 : 0xFF;
#if SK_SUPPORT_GPU
} else if (strcmp(*argv, "--gpuCacheSize") == 0) {
if (stop - argv > 2) {
gpuCacheSize.fBytes = atoi(*++argv);
gpuCacheSize.fCount = atoi(*++argv);
} else {
SkDebugf("missing arg for --gpuCacheSize\n");
help();
return -1;
}
#endif
} else if (strcmp(*argv, "--mode") == 0) {
argv++;
if (argv < stop) {
if (strcmp(*argv, "normal") == 0) {
benchMode = kNormal_benchModes;
} else if (strcmp(*argv, "deferred") == 0) {
benchMode = kDeferred_benchModes;
} else if (strcmp(*argv, "deferredSilent") == 0) {
benchMode = kDeferredSilent_benchModes;
} else if (strcmp(*argv, "record") == 0) {
benchMode = kRecord_benchModes;
} else if (strcmp(*argv, "picturerecord") == 0) {
benchMode = kPictureRecord_benchModes;
} else {
logger.logError("bad arg for --mode\n");
help();
return -1;
}
} else {
logger.logError("missing arg for --mode\n");
help();
return -1;
}
} else if (strcmp(*argv, "--strokeWidth") == 0) {
argv++;
if (argv < stop) {
const char *strokeWidthStr = *argv;
if (sscanf(strokeWidthStr, "%f", &strokeWidth) != 1) {
logger.logError("bad arg for --strokeWidth\n");
help();
return -1;
}
hasStrokeWidth = true;
} else {
logger.logError("missing arg for --strokeWidth\n");
help();
return -1;
}
} else if (strcmp(*argv, "--match") == 0) {
argv++;
while (argv < stop && (*argv)[0] != '-') {
*fMatches.append() = *argv++;
}
argv--;
if (!fMatches.count()) {
logger.logError("missing arg for --match\n");
help();
return -1;
}
} else if (strcmp(*argv, "--config") == 0) {
argv++;
if (argv < stop) {
int index = findConfig(*argv);
if (index >= 0) {
*configs.append() = index;
userConfig = true;
} else {
SkString str;
str.printf("unrecognized config %s\n", *argv);
logger.logError(str);
help();
return -1;
}
} else {
logger.logError("missing arg for --config\n");
help();
return -1;
}
} else if (strcmp(*argv, "--logFile") == 0) {
argv++;
if (argv < stop) {
if (!logger.SetLogFile(*argv)) {
SkString str;
str.printf("Could not open %s for writing.", *argv);
logger.logError(str);
return -1;
}
} else {
logger.logError("missing arg for --logFile\n");
help();
return -1;
}
} else if (strlen(*argv) > 2 && strncmp(*argv, "-D", 2) == 0) {
argv++;
if (argv < stop) {
defineDict.set(argv[-1] + 2, *argv);
} else {
logger.logError("incomplete '-Dfoo bar' definition\n");
help();
return -1;
}
} else if (strcmp(*argv, "--help") == 0 || strcmp(*argv, "-h") == 0) {
help();
return 0;
} else {
SkString str;
str.printf("unrecognized arg %s\n", *argv);
logger.logError(str);
help();
return -1;
}
}
if ((benchMode == kRecord_benchModes || benchMode == kPictureRecord_benchModes)
&& !outDir.isEmpty()) {
logger.logError("'--mode record' and '--mode picturerecord' are not"
" compatible with -o.\n");
return -1;
}
if ((benchMode == kRecord_benchModes || benchMode == kPictureRecord_benchModes)) {
perIterTimeformat.set("%.4f");
normalTimeFormat.set("%6.4f");
}
if (!userConfig) {
// if no config is specified by user, add the default configs
for (unsigned int i = 0; i < SK_ARRAY_COUNT(gConfigs); ++i) {
if (gConfigs[i].fRunByDefault) {
*configs.append() = i;
}
}
}
if (kNormal_benchModes != benchMode) {
// Non-rendering configs only run in normal mode
for (int i = 0; i < configs.count(); ++i) {
int configIdx = configs[i];
if (kNonRendering_Backend == gConfigs[configIdx].fBackend) {
configs.remove(i, 1);
--i;
}
}
}
#if SK_SUPPORT_GPU
for (int i = 0; i < configs.count(); ++i) {
int configIdx = configs[i];
if (kGPU_Backend == gConfigs[configIdx].fBackend && gConfigs[configIdx].fSampleCnt > 0) {
GrContext* context = gContextFactory.get(gConfigs[configIdx].fContextType);
if (NULL == context) {
SkString error;
error.printf("Error creating GrContext for config %s. Config will be skipped.\n",
gConfigs[configIdx].fName);
logger.logError(error.c_str());
configs.remove(i);
--i;
continue;
}
if (gConfigs[configIdx].fSampleCnt > context->getMaxSampleCount()){
SkString error;
error.printf("Sample count (%d) for config %s is unsupported. "
"Config will be skipped.\n",
gConfigs[configIdx].fSampleCnt, gConfigs[configIdx].fName);
logger.logError(error.c_str());
configs.remove(i);
--i;
continue;
}
}
}
#endif
// report our current settings
{
SkString str;
const char* deferredMode = benchMode == kDeferred_benchModes ? "yes" :
(benchMode == kDeferredSilent_benchModes ? "silent" : "no");
str.printf("skia bench: alpha=0x%02X antialias=%d filter=%d "
"deferred=%s logperiter=%d",
forceAlpha, forceAA, forceFilter, deferredMode,
logPerIter);
str.appendf(" rotate=%d scale=%d clip=%d min=%d",
doRotate, doScale, doClip, printMin);
str.appendf(" record=%d picturerecord=%d",
benchMode == kRecord_benchModes,
benchMode == kPictureRecord_benchModes);
const char * ditherName;
switch (forceDither) {
case SkTriState::kDefault: ditherName = "default"; break;
case SkTriState::kTrue: ditherName = "true"; break;
case SkTriState::kFalse: ditherName = "false"; break;
default: ditherName = "<invalid>"; break;
}
str.appendf(" dither=%s", ditherName);
if (hasStrokeWidth) {
str.appendf(" strokeWidth=%f", strokeWidth);
} else {
str.append(" strokeWidth=none");
}
#if defined(SK_SCALAR_IS_FLOAT)
str.append(" scalar=float");
#elif defined(SK_SCALAR_IS_FIXED)
str.append(" scalar=fixed");
#endif
#if defined(SK_BUILD_FOR_WIN32)
str.append(" system=WIN32");
#elif defined(SK_BUILD_FOR_MAC)
str.append(" system=MAC");
#elif defined(SK_BUILD_FOR_ANDROID)
str.append(" system=ANDROID");
#elif defined(SK_BUILD_FOR_UNIX)
str.append(" system=UNIX");
#else
str.append(" system=other");
#endif
#if defined(SK_DEBUG)
str.append(" DEBUG");
#endif
str.append("\n");
logger.logProgress(str);
}
SkTArray<BenchTimer*> timers(SK_ARRAY_COUNT(gConfigs));
for (size_t i = 0; i < SK_ARRAY_COUNT(gConfigs); ++i) {
#if SK_SUPPORT_GPU
SkGLContextHelper* glCtx = NULL;
if (kGPU_Backend == gConfigs[i].fBackend) {
GrContext* context = gContextFactory.get(gConfigs[i].fContextType);
if (NULL != context) {
// Set the user specified cache limits if non-default.
size_t bytes;
int count;
context->getTextureCacheLimits(&count, &bytes);
if (-1 != gpuCacheSize.fBytes) {
bytes = static_cast<size_t>(gpuCacheSize.fBytes);
}
if (-1 != gpuCacheSize.fCount) {
count = gpuCacheSize.fCount;
}
context->setTextureCacheLimits(count, bytes);
}
glCtx = gContextFactory.getGLContext(gConfigs[i].fContextType);
}
timers.push_back(SkNEW_ARGS(BenchTimer, (glCtx)));
#else
timers.push_back(SkNEW(BenchTimer));
#endif
}
Iter iter(&defineDict);
SkBenchmark* bench;
while ((bench = iter.next()) != NULL) {
SkAutoTUnref<SkBenchmark> benchUnref(bench);
SkIPoint dim = bench->getSize();
if (dim.fX <= 0 || dim.fY <= 0) {
continue;
}
bench->setForceAlpha(forceAlpha);
bench->setForceAA(forceAA);
bench->setForceFilter(forceFilter);
bench->setDither(forceDither);
if (hasStrokeWidth) {
bench->setStrokeWidth(strokeWidth);
}
// only run benchmarks if their name contains matchStr
if (skip_name(fMatches, bench->getName())) {
continue;
}
bool loggedBenchStart = false;
AutoPrePostDraw appd(bench);
for (int x = 0; x < configs.count(); ++x) {
int configIndex = configs[x];
if (kNonRendering_Backend == gConfigs[configIndex].fBackend) {
if (bench->isRendering()) {
continue;
}
} else {
if (!bench->isRendering()) {
continue;
}
}
outConfig = gConfigs[configIndex].fConfig;
configName = gConfigs[configIndex].fName;
backend = gConfigs[configIndex].fBackend;
sampleCount = gConfigs[configIndex].fSampleCnt;
GrContext* context = NULL;
BenchTimer* timer = timers[configIndex];
#if SK_SUPPORT_GPU
SkGLContextHelper* glContext = NULL;
if (kGPU_Backend == backend) {
context = gContextFactory.get(gConfigs[configIndex].fContextType);
if (NULL == context) {
continue;
}
glContext = gContextFactory.getGLContext(gConfigs[configIndex].fContextType);
}
#endif
SkDevice* device = NULL;
SkCanvas* canvas = NULL;
SkPicture pictureRecordFrom;
SkPicture pictureRecordTo;
if (kNonRendering_Backend != backend) {
device = make_device(outConfig, dim, backend, sampleCount, context);
switch(benchMode) {
case kDeferredSilent_benchModes:
case kDeferred_benchModes:
canvas =
#if SK_DEFERRED_CANVAS_USES_FACTORIES
SkDeferredCanvas::Create(device);
#else
SkNEW_ARGS(SkDeferredCanvas, (device));
#endif
break;
case kRecord_benchModes:
canvas = pictureRecordTo.beginRecording(dim.fX, dim.fY,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->ref();
break;
case kPictureRecord_benchModes: {
// This sets up picture-to-picture recording.
// The C++ drawing calls for the benchmark are recorded into
// pictureRecordFrom. As the benchmark, we will time how
// long it takes to playback pictureRecordFrom into
// pictureRecordTo.
SkCanvas* tempCanvas = pictureRecordFrom.beginRecording(dim.fX, dim.fY,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
bench->draw(tempCanvas);
pictureRecordFrom.endRecording();
canvas = pictureRecordTo.beginRecording(dim.fX, dim.fY,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
canvas->ref();
break;
}
case kNormal_benchModes:
canvas = new SkCanvas(device);
break;
default:
SkASSERT(0);
}
device->unref();
canvas->clear(SK_ColorWHITE);
}
SkAutoUnref canvasUnref(canvas);
if (NULL != canvas) {
if (doClip) {
performClip(canvas, dim.fX, dim.fY);
}
if (doScale) {
performScale(canvas, dim.fX, dim.fY);
}
if (doRotate) {
performRotate(canvas, dim.fX, dim.fY);
}
}
if (!loggedBenchStart) {
loggedBenchStart = true;
SkString str;
str.printf("running bench [%d %d] %28s", dim.fX, dim.fY, bench->getName());
logger.logProgress(str);
}
// warm up caches if needed
if (repeatDraw > 1 && NULL != canvas) {
#if SK_SUPPORT_GPU
// purge the GPU resources to reduce variance
if (NULL != context) {
context->freeGpuResources();
}
#endif
SkAutoCanvasRestore acr(canvas, true);
if (benchMode == kPictureRecord_benchModes) {
pictureRecordFrom.draw(canvas);
} else {
bench->draw(canvas);
}
if (kDeferredSilent_benchModes == benchMode) {
static_cast<SkDeferredCanvas*>(canvas)->silentFlush();
} else {
canvas->flush();
}
#if SK_SUPPORT_GPU
if (NULL != context) {
context->flush();
SK_GL(*glContext, Finish());
}
#endif
}
// record timer values for each repeat, and their sum
TimerData timerData(perIterTimeformat, normalTimeFormat);
for (int i = 0; i < repeatDraw; i++) {
if ((benchMode == kRecord_benchModes || benchMode == kPictureRecord_benchModes)) {
// This will clear the recorded commands so that they do not
// accumulate.
canvas = pictureRecordTo.beginRecording(dim.fX, dim.fY,
SkPicture::kUsePathBoundsForClip_RecordingFlag);
}
timer->start(bench->getDurationScale());
if (NULL != canvas) {
canvas->save();
}
if (benchMode == kPictureRecord_benchModes) {
pictureRecordFrom.draw(canvas);
} else {
bench->draw(canvas);
}
if (kDeferredSilent_benchModes == benchMode) {
static_cast<SkDeferredCanvas*>(canvas)->silentFlush();
} else if (NULL != canvas) {
canvas->flush();
}
if (NULL != canvas) {
canvas->restore();
}
// stop the truncated timer after the last canvas call but
// don't wait for all the GL calls to complete
timer->truncatedEnd();
#if SK_SUPPORT_GPU
if (NULL != glContext) {
context->flush();
SK_GL(*glContext, Finish());
}
#endif
// stop the inclusive and gpu timers once all the GL calls
// have completed
timer->end();
timerData.appendTimes(timer, repeatDraw - 1 == i);
}
if (repeatDraw > 1) {
SkString result = timerData.getResult(logPerIter, printMin, repeatDraw, configName,
timerWall, truncatedTimerWall, timerCpu,
truncatedTimerCpu,
timerGpu && NULL != context);
logger.logProgress(result);
}
if (outDir.size() > 0 && kNonRendering_Backend != backend) {
saveFile(bench->getName(), configName, outDir.c_str(),
device->accessBitmap(false));
}
}
if (loggedBenchStart) {
logger.logProgress(SkString("\n"));
}
}
#if SK_SUPPORT_GPU
#if GR_CACHE_STATS
for (int i = 0; i <= GrContextFactory::kLastGLContextType; ++i) {
GrContextFactory::GLContextType ctxType = (GrContextFactory::GLContextType)i;
GrContext* context = gContextFactory.get(ctxType);
if (NULL != context) {
SkDebugf("Cache Stats for %s context:\n", GrContextFactory::GLContextTypeName(ctxType));
context->printCacheStats();
SkDebugf("\n");
}
}
#endif
// Destroy the GrContext before the inst tracking printing at main() exit occurs.
gContextFactory.destroyContexts();
#endif
for (size_t i = 0; i < SK_ARRAY_COUNT(gConfigs); ++i) {
SkDELETE(timers[i]);
}
return 0;
}
#if !defined(SK_BUILD_FOR_IOS) && !defined(SK_BUILD_FOR_NACL)
int main(int argc, char * const argv[]) {
return tool_main(argc, (char**) argv);
}
#endif