60c9b58b32
BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1855733002 Review URL: https://codereview.chromium.org/1855733002
985 lines
40 KiB
C++
985 lines
40 KiB
C++
/*
|
|
* Copyright 2013 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkPerlinNoiseShader.h"
|
|
#include "SkColorFilter.h"
|
|
#include "SkReadBuffer.h"
|
|
#include "SkWriteBuffer.h"
|
|
#include "SkShader.h"
|
|
#include "SkUnPreMultiply.h"
|
|
#include "SkString.h"
|
|
|
|
#if SK_SUPPORT_GPU
|
|
#include "GrContext.h"
|
|
#include "GrCoordTransform.h"
|
|
#include "GrInvariantOutput.h"
|
|
#include "SkGr.h"
|
|
#include "effects/GrConstColorProcessor.h"
|
|
#include "glsl/GrGLSLFragmentProcessor.h"
|
|
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
|
#include "glsl/GrGLSLProgramDataManager.h"
|
|
#include "glsl/GrGLSLUniformHandler.h"
|
|
#endif
|
|
|
|
static const int kBlockSize = 256;
|
|
static const int kBlockMask = kBlockSize - 1;
|
|
static const int kPerlinNoise = 4096;
|
|
static const int kRandMaximum = SK_MaxS32; // 2**31 - 1
|
|
|
|
namespace {
|
|
|
|
// noiseValue is the color component's value (or color)
|
|
// limitValue is the maximum perlin noise array index value allowed
|
|
// newValue is the current noise dimension (either width or height)
|
|
inline int checkNoise(int noiseValue, int limitValue, int newValue) {
|
|
// If the noise value would bring us out of bounds of the current noise array while we are
|
|
// stiching noise tiles together, wrap the noise around the current dimension of the noise to
|
|
// stay within the array bounds in a continuous fashion (so that tiling lines are not visible)
|
|
if (noiseValue >= limitValue) {
|
|
noiseValue -= newValue;
|
|
}
|
|
return noiseValue;
|
|
}
|
|
|
|
inline SkScalar smoothCurve(SkScalar t) {
|
|
static const SkScalar SK_Scalar3 = 3.0f;
|
|
|
|
// returns t * t * (3 - 2 * t)
|
|
return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t);
|
|
}
|
|
|
|
} // end namespace
|
|
|
|
struct SkPerlinNoiseShader::StitchData {
|
|
StitchData()
|
|
: fWidth(0)
|
|
, fWrapX(0)
|
|
, fHeight(0)
|
|
, fWrapY(0)
|
|
{}
|
|
|
|
bool operator==(const StitchData& other) const {
|
|
return fWidth == other.fWidth &&
|
|
fWrapX == other.fWrapX &&
|
|
fHeight == other.fHeight &&
|
|
fWrapY == other.fWrapY;
|
|
}
|
|
|
|
int fWidth; // How much to subtract to wrap for stitching.
|
|
int fWrapX; // Minimum value to wrap.
|
|
int fHeight;
|
|
int fWrapY;
|
|
};
|
|
|
|
struct SkPerlinNoiseShader::PaintingData {
|
|
PaintingData(const SkISize& tileSize, SkScalar seed,
|
|
SkScalar baseFrequencyX, SkScalar baseFrequencyY,
|
|
const SkMatrix& matrix)
|
|
{
|
|
SkVector vec[2] = {
|
|
{ SkScalarInvert(baseFrequencyX), SkScalarInvert(baseFrequencyY) },
|
|
{ SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight) },
|
|
};
|
|
matrix.mapVectors(vec, 2);
|
|
|
|
fBaseFrequency.set(SkScalarInvert(vec[0].fX), SkScalarInvert(vec[0].fY));
|
|
fTileSize.set(SkScalarRoundToInt(vec[1].fX), SkScalarRoundToInt(vec[1].fY));
|
|
this->init(seed);
|
|
if (!fTileSize.isEmpty()) {
|
|
this->stitch();
|
|
}
|
|
|
|
#if SK_SUPPORT_GPU
|
|
fPermutationsBitmap.setInfo(SkImageInfo::MakeA8(kBlockSize, 1));
|
|
fPermutationsBitmap.setPixels(fLatticeSelector);
|
|
|
|
fNoiseBitmap.setInfo(SkImageInfo::MakeN32Premul(kBlockSize, 4));
|
|
fNoiseBitmap.setPixels(fNoise[0][0]);
|
|
#endif
|
|
}
|
|
|
|
int fSeed;
|
|
uint8_t fLatticeSelector[kBlockSize];
|
|
uint16_t fNoise[4][kBlockSize][2];
|
|
SkPoint fGradient[4][kBlockSize];
|
|
SkISize fTileSize;
|
|
SkVector fBaseFrequency;
|
|
StitchData fStitchDataInit;
|
|
|
|
private:
|
|
|
|
#if SK_SUPPORT_GPU
|
|
SkBitmap fPermutationsBitmap;
|
|
SkBitmap fNoiseBitmap;
|
|
#endif
|
|
|
|
inline int random() {
|
|
static const int gRandAmplitude = 16807; // 7**5; primitive root of m
|
|
static const int gRandQ = 127773; // m / a
|
|
static const int gRandR = 2836; // m % a
|
|
|
|
int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ);
|
|
if (result <= 0)
|
|
result += kRandMaximum;
|
|
fSeed = result;
|
|
return result;
|
|
}
|
|
|
|
// Only called once. Could be part of the constructor.
|
|
void init(SkScalar seed)
|
|
{
|
|
static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize));
|
|
|
|
// According to the SVG spec, we must truncate (not round) the seed value.
|
|
fSeed = SkScalarTruncToInt(seed);
|
|
// The seed value clamp to the range [1, kRandMaximum - 1].
|
|
if (fSeed <= 0) {
|
|
fSeed = -(fSeed % (kRandMaximum - 1)) + 1;
|
|
}
|
|
if (fSeed > kRandMaximum - 1) {
|
|
fSeed = kRandMaximum - 1;
|
|
}
|
|
for (int channel = 0; channel < 4; ++channel) {
|
|
for (int i = 0; i < kBlockSize; ++i) {
|
|
fLatticeSelector[i] = i;
|
|
fNoise[channel][i][0] = (random() % (2 * kBlockSize));
|
|
fNoise[channel][i][1] = (random() % (2 * kBlockSize));
|
|
}
|
|
}
|
|
for (int i = kBlockSize - 1; i > 0; --i) {
|
|
int k = fLatticeSelector[i];
|
|
int j = random() % kBlockSize;
|
|
SkASSERT(j >= 0);
|
|
SkASSERT(j < kBlockSize);
|
|
fLatticeSelector[i] = fLatticeSelector[j];
|
|
fLatticeSelector[j] = k;
|
|
}
|
|
|
|
// Perform the permutations now
|
|
{
|
|
// Copy noise data
|
|
uint16_t noise[4][kBlockSize][2];
|
|
for (int i = 0; i < kBlockSize; ++i) {
|
|
for (int channel = 0; channel < 4; ++channel) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
noise[channel][i][j] = fNoise[channel][i][j];
|
|
}
|
|
}
|
|
}
|
|
// Do permutations on noise data
|
|
for (int i = 0; i < kBlockSize; ++i) {
|
|
for (int channel = 0; channel < 4; ++channel) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Half of the largest possible value for 16 bit unsigned int
|
|
static const SkScalar gHalfMax16bits = 32767.5f;
|
|
|
|
// Compute gradients from permutated noise data
|
|
for (int channel = 0; channel < 4; ++channel) {
|
|
for (int i = 0; i < kBlockSize; ++i) {
|
|
fGradient[channel][i] = SkPoint::Make(
|
|
SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize),
|
|
gInvBlockSizef),
|
|
SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize),
|
|
gInvBlockSizef));
|
|
fGradient[channel][i].normalize();
|
|
// Put the normalized gradient back into the noise data
|
|
fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul(
|
|
fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits));
|
|
fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul(
|
|
fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only called once. Could be part of the constructor.
|
|
void stitch() {
|
|
SkScalar tileWidth = SkIntToScalar(fTileSize.width());
|
|
SkScalar tileHeight = SkIntToScalar(fTileSize.height());
|
|
SkASSERT(tileWidth > 0 && tileHeight > 0);
|
|
// When stitching tiled turbulence, the frequencies must be adjusted
|
|
// so that the tile borders will be continuous.
|
|
if (fBaseFrequency.fX) {
|
|
SkScalar lowFrequencx =
|
|
SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
|
|
SkScalar highFrequencx =
|
|
SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
|
|
// BaseFrequency should be non-negative according to the standard.
|
|
if (fBaseFrequency.fX / lowFrequencx < highFrequencx / fBaseFrequency.fX) {
|
|
fBaseFrequency.fX = lowFrequencx;
|
|
} else {
|
|
fBaseFrequency.fX = highFrequencx;
|
|
}
|
|
}
|
|
if (fBaseFrequency.fY) {
|
|
SkScalar lowFrequency =
|
|
SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
|
|
SkScalar highFrequency =
|
|
SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
|
|
if (fBaseFrequency.fY / lowFrequency < highFrequency / fBaseFrequency.fY) {
|
|
fBaseFrequency.fY = lowFrequency;
|
|
} else {
|
|
fBaseFrequency.fY = highFrequency;
|
|
}
|
|
}
|
|
// Set up TurbulenceInitial stitch values.
|
|
fStitchDataInit.fWidth =
|
|
SkScalarRoundToInt(tileWidth * fBaseFrequency.fX);
|
|
fStitchDataInit.fWrapX = kPerlinNoise + fStitchDataInit.fWidth;
|
|
fStitchDataInit.fHeight =
|
|
SkScalarRoundToInt(tileHeight * fBaseFrequency.fY);
|
|
fStitchDataInit.fWrapY = kPerlinNoise + fStitchDataInit.fHeight;
|
|
}
|
|
|
|
public:
|
|
|
|
#if SK_SUPPORT_GPU
|
|
const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; }
|
|
|
|
const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; }
|
|
#endif
|
|
};
|
|
|
|
sk_sp<SkShader> SkPerlinNoiseShader::MakeFractalNoise(SkScalar baseFrequencyX,
|
|
SkScalar baseFrequencyY,
|
|
int numOctaves, SkScalar seed,
|
|
const SkISize* tileSize) {
|
|
return sk_sp<SkShader>(new SkPerlinNoiseShader(kFractalNoise_Type, baseFrequencyX,
|
|
baseFrequencyY, numOctaves,
|
|
seed, tileSize));
|
|
}
|
|
|
|
sk_sp<SkShader> SkPerlinNoiseShader::MakeTurbulence(SkScalar baseFrequencyX,
|
|
SkScalar baseFrequencyY,
|
|
int numOctaves, SkScalar seed,
|
|
const SkISize* tileSize) {
|
|
return sk_sp<SkShader>(new SkPerlinNoiseShader(kTurbulence_Type, baseFrequencyX, baseFrequencyY,
|
|
numOctaves, seed, tileSize));
|
|
}
|
|
|
|
SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type,
|
|
SkScalar baseFrequencyX,
|
|
SkScalar baseFrequencyY,
|
|
int numOctaves,
|
|
SkScalar seed,
|
|
const SkISize* tileSize)
|
|
: fType(type)
|
|
, fBaseFrequencyX(baseFrequencyX)
|
|
, fBaseFrequencyY(baseFrequencyY)
|
|
, fNumOctaves(numOctaves > 255 ? 255 : numOctaves/*[0,255] octaves allowed*/)
|
|
, fSeed(seed)
|
|
, fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize)
|
|
, fStitchTiles(!fTileSize.isEmpty())
|
|
{
|
|
SkASSERT(numOctaves >= 0 && numOctaves < 256);
|
|
}
|
|
|
|
SkPerlinNoiseShader::~SkPerlinNoiseShader() {
|
|
}
|
|
|
|
sk_sp<SkFlattenable> SkPerlinNoiseShader::CreateProc(SkReadBuffer& buffer) {
|
|
Type type = (Type)buffer.readInt();
|
|
SkScalar freqX = buffer.readScalar();
|
|
SkScalar freqY = buffer.readScalar();
|
|
int octaves = buffer.readInt();
|
|
SkScalar seed = buffer.readScalar();
|
|
SkISize tileSize;
|
|
tileSize.fWidth = buffer.readInt();
|
|
tileSize.fHeight = buffer.readInt();
|
|
|
|
switch (type) {
|
|
case kFractalNoise_Type:
|
|
return SkPerlinNoiseShader::MakeFractalNoise(freqX, freqY, octaves, seed,
|
|
&tileSize);
|
|
case kTurbulence_Type:
|
|
return SkPerlinNoiseShader::MakeTurbulence(freqX, freqY, octaves, seed,
|
|
&tileSize);
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void SkPerlinNoiseShader::flatten(SkWriteBuffer& buffer) const {
|
|
buffer.writeInt((int) fType);
|
|
buffer.writeScalar(fBaseFrequencyX);
|
|
buffer.writeScalar(fBaseFrequencyY);
|
|
buffer.writeInt(fNumOctaves);
|
|
buffer.writeScalar(fSeed);
|
|
buffer.writeInt(fTileSize.fWidth);
|
|
buffer.writeInt(fTileSize.fHeight);
|
|
}
|
|
|
|
SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::noise2D(
|
|
int channel, const StitchData& stitchData, const SkPoint& noiseVector) const {
|
|
struct Noise {
|
|
int noisePositionIntegerValue;
|
|
int nextNoisePositionIntegerValue;
|
|
SkScalar noisePositionFractionValue;
|
|
Noise(SkScalar component)
|
|
{
|
|
SkScalar position = component + kPerlinNoise;
|
|
noisePositionIntegerValue = SkScalarFloorToInt(position);
|
|
noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue);
|
|
nextNoisePositionIntegerValue = noisePositionIntegerValue + 1;
|
|
}
|
|
};
|
|
Noise noiseX(noiseVector.x());
|
|
Noise noiseY(noiseVector.y());
|
|
SkScalar u, v;
|
|
const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader);
|
|
// If stitching, adjust lattice points accordingly.
|
|
if (perlinNoiseShader.fStitchTiles) {
|
|
noiseX.noisePositionIntegerValue =
|
|
checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
|
|
noiseY.noisePositionIntegerValue =
|
|
checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
|
|
noiseX.nextNoisePositionIntegerValue =
|
|
checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
|
|
noiseY.nextNoisePositionIntegerValue =
|
|
checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
|
|
}
|
|
noiseX.noisePositionIntegerValue &= kBlockMask;
|
|
noiseY.noisePositionIntegerValue &= kBlockMask;
|
|
noiseX.nextNoisePositionIntegerValue &= kBlockMask;
|
|
noiseY.nextNoisePositionIntegerValue &= kBlockMask;
|
|
int i =
|
|
fPaintingData->fLatticeSelector[noiseX.noisePositionIntegerValue];
|
|
int j =
|
|
fPaintingData->fLatticeSelector[noiseX.nextNoisePositionIntegerValue];
|
|
int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask;
|
|
int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask;
|
|
int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
|
|
int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
|
|
SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue);
|
|
SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue);
|
|
// This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
|
|
SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue,
|
|
noiseY.noisePositionFractionValue); // Offset (0,0)
|
|
u = fPaintingData->fGradient[channel][b00].dot(fractionValue);
|
|
fractionValue.fX -= SK_Scalar1; // Offset (-1,0)
|
|
v = fPaintingData->fGradient[channel][b10].dot(fractionValue);
|
|
SkScalar a = SkScalarInterp(u, v, sx);
|
|
fractionValue.fY -= SK_Scalar1; // Offset (-1,-1)
|
|
v = fPaintingData->fGradient[channel][b11].dot(fractionValue);
|
|
fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1)
|
|
u = fPaintingData->fGradient[channel][b01].dot(fractionValue);
|
|
SkScalar b = SkScalarInterp(u, v, sx);
|
|
return SkScalarInterp(a, b, sy);
|
|
}
|
|
|
|
SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint(
|
|
int channel, StitchData& stitchData, const SkPoint& point) const {
|
|
const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader);
|
|
if (perlinNoiseShader.fStitchTiles) {
|
|
// Set up TurbulenceInitial stitch values.
|
|
stitchData = fPaintingData->fStitchDataInit;
|
|
}
|
|
SkScalar turbulenceFunctionResult = 0;
|
|
SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), fPaintingData->fBaseFrequency.fX),
|
|
SkScalarMul(point.y(), fPaintingData->fBaseFrequency.fY)));
|
|
SkScalar ratio = SK_Scalar1;
|
|
for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) {
|
|
SkScalar noise = noise2D(channel, stitchData, noiseVector);
|
|
SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ?
|
|
noise : SkScalarAbs(noise);
|
|
turbulenceFunctionResult += numer / ratio;
|
|
noiseVector.fX *= 2;
|
|
noiseVector.fY *= 2;
|
|
ratio *= 2;
|
|
if (perlinNoiseShader.fStitchTiles) {
|
|
// Update stitch values
|
|
stitchData.fWidth *= 2;
|
|
stitchData.fWrapX = stitchData.fWidth + kPerlinNoise;
|
|
stitchData.fHeight *= 2;
|
|
stitchData.fWrapY = stitchData.fHeight + kPerlinNoise;
|
|
}
|
|
}
|
|
|
|
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
|
|
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
|
|
if (perlinNoiseShader.fType == kFractalNoise_Type) {
|
|
turbulenceFunctionResult =
|
|
SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf;
|
|
}
|
|
|
|
if (channel == 3) { // Scale alpha by paint value
|
|
turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255;
|
|
}
|
|
|
|
// Clamp result
|
|
return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1);
|
|
}
|
|
|
|
SkPMColor SkPerlinNoiseShader::PerlinNoiseShaderContext::shade(
|
|
const SkPoint& point, StitchData& stitchData) const {
|
|
SkPoint newPoint;
|
|
fMatrix.mapPoints(&newPoint, &point, 1);
|
|
newPoint.fX = SkScalarRoundToScalar(newPoint.fX);
|
|
newPoint.fY = SkScalarRoundToScalar(newPoint.fY);
|
|
|
|
U8CPU rgba[4];
|
|
for (int channel = 3; channel >= 0; --channel) {
|
|
rgba[channel] = SkScalarFloorToInt(255 *
|
|
calculateTurbulenceValueForPoint(channel, stitchData, newPoint));
|
|
}
|
|
return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]);
|
|
}
|
|
|
|
SkShader::Context* SkPerlinNoiseShader::onCreateContext(const ContextRec& rec,
|
|
void* storage) const {
|
|
return new (storage) PerlinNoiseShaderContext(*this, rec);
|
|
}
|
|
|
|
size_t SkPerlinNoiseShader::onContextSize(const ContextRec&) const {
|
|
return sizeof(PerlinNoiseShaderContext);
|
|
}
|
|
|
|
SkPerlinNoiseShader::PerlinNoiseShaderContext::PerlinNoiseShaderContext(
|
|
const SkPerlinNoiseShader& shader, const ContextRec& rec)
|
|
: INHERITED(shader, rec)
|
|
{
|
|
SkMatrix newMatrix = *rec.fMatrix;
|
|
newMatrix.preConcat(shader.getLocalMatrix());
|
|
if (rec.fLocalMatrix) {
|
|
newMatrix.preConcat(*rec.fLocalMatrix);
|
|
}
|
|
// This (1,1) translation is due to WebKit's 1 based coordinates for the noise
|
|
// (as opposed to 0 based, usually). The same adjustment is in the setData() function.
|
|
fMatrix.setTranslate(-newMatrix.getTranslateX() + SK_Scalar1, -newMatrix.getTranslateY() + SK_Scalar1);
|
|
fPaintingData = new PaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX,
|
|
shader.fBaseFrequencyY, newMatrix);
|
|
}
|
|
|
|
SkPerlinNoiseShader::PerlinNoiseShaderContext::~PerlinNoiseShaderContext() { delete fPaintingData; }
|
|
|
|
void SkPerlinNoiseShader::PerlinNoiseShaderContext::shadeSpan(
|
|
int x, int y, SkPMColor result[], int count) {
|
|
SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
|
|
StitchData stitchData;
|
|
for (int i = 0; i < count; ++i) {
|
|
result[i] = shade(point, stitchData);
|
|
point.fX += SK_Scalar1;
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
|
|
#if SK_SUPPORT_GPU
|
|
|
|
class GrGLPerlinNoise : public GrGLSLFragmentProcessor {
|
|
public:
|
|
void emitCode(EmitArgs&) override;
|
|
|
|
static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*);
|
|
|
|
protected:
|
|
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
|
|
|
|
private:
|
|
GrGLSLProgramDataManager::UniformHandle fStitchDataUni;
|
|
GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni;
|
|
|
|
typedef GrGLSLFragmentProcessor INHERITED;
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
|
|
class GrPerlinNoiseEffect : public GrFragmentProcessor {
|
|
public:
|
|
static GrFragmentProcessor* Create(SkPerlinNoiseShader::Type type,
|
|
int numOctaves, bool stitchTiles,
|
|
SkPerlinNoiseShader::PaintingData* paintingData,
|
|
GrTexture* permutationsTexture, GrTexture* noiseTexture,
|
|
const SkMatrix& matrix) {
|
|
return new GrPerlinNoiseEffect(type, numOctaves, stitchTiles, paintingData,
|
|
permutationsTexture, noiseTexture, matrix);
|
|
}
|
|
|
|
virtual ~GrPerlinNoiseEffect() { delete fPaintingData; }
|
|
|
|
const char* name() const override { return "PerlinNoise"; }
|
|
|
|
const SkPerlinNoiseShader::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; }
|
|
|
|
SkPerlinNoiseShader::Type type() const { return fType; }
|
|
bool stitchTiles() const { return fStitchTiles; }
|
|
const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; }
|
|
int numOctaves() const { return fNumOctaves; }
|
|
const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); }
|
|
|
|
private:
|
|
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
|
|
return new GrGLPerlinNoise;
|
|
}
|
|
|
|
virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps,
|
|
GrProcessorKeyBuilder* b) const override {
|
|
GrGLPerlinNoise::GenKey(*this, caps, b);
|
|
}
|
|
|
|
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
|
|
const GrPerlinNoiseEffect& s = sBase.cast<GrPerlinNoiseEffect>();
|
|
return fType == s.fType &&
|
|
fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency &&
|
|
fNumOctaves == s.fNumOctaves &&
|
|
fStitchTiles == s.fStitchTiles &&
|
|
fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit;
|
|
}
|
|
|
|
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
|
|
inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput);
|
|
}
|
|
|
|
GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type,
|
|
int numOctaves, bool stitchTiles,
|
|
SkPerlinNoiseShader::PaintingData* paintingData,
|
|
GrTexture* permutationsTexture, GrTexture* noiseTexture,
|
|
const SkMatrix& matrix)
|
|
: fType(type)
|
|
, fNumOctaves(numOctaves)
|
|
, fStitchTiles(stitchTiles)
|
|
, fPermutationsAccess(permutationsTexture)
|
|
, fNoiseAccess(noiseTexture)
|
|
, fPaintingData(paintingData) {
|
|
this->initClassID<GrPerlinNoiseEffect>();
|
|
this->addTextureAccess(&fPermutationsAccess);
|
|
this->addTextureAccess(&fNoiseAccess);
|
|
fCoordTransform.reset(kLocal_GrCoordSet, matrix);
|
|
this->addCoordTransform(&fCoordTransform);
|
|
}
|
|
|
|
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
|
|
|
|
SkPerlinNoiseShader::Type fType;
|
|
GrCoordTransform fCoordTransform;
|
|
int fNumOctaves;
|
|
bool fStitchTiles;
|
|
GrTextureAccess fPermutationsAccess;
|
|
GrTextureAccess fNoiseAccess;
|
|
SkPerlinNoiseShader::PaintingData *fPaintingData;
|
|
|
|
private:
|
|
typedef GrFragmentProcessor INHERITED;
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoiseEffect);
|
|
|
|
const GrFragmentProcessor* GrPerlinNoiseEffect::TestCreate(GrProcessorTestData* d) {
|
|
int numOctaves = d->fRandom->nextRangeU(2, 10);
|
|
bool stitchTiles = d->fRandom->nextBool();
|
|
SkScalar seed = SkIntToScalar(d->fRandom->nextU());
|
|
SkISize tileSize = SkISize::Make(d->fRandom->nextRangeU(4, 4096),
|
|
d->fRandom->nextRangeU(4, 4096));
|
|
SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f,
|
|
0.99f);
|
|
SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f,
|
|
0.99f);
|
|
|
|
sk_sp<SkShader> shader(d->fRandom->nextBool() ?
|
|
SkPerlinNoiseShader::MakeFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed,
|
|
stitchTiles ? &tileSize : nullptr) :
|
|
SkPerlinNoiseShader::MakeTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed,
|
|
stitchTiles ? &tileSize : nullptr));
|
|
|
|
return shader->asFragmentProcessor(d->fContext,
|
|
GrTest::TestMatrix(d->fRandom), nullptr,
|
|
kNone_SkFilterQuality);
|
|
}
|
|
|
|
void GrGLPerlinNoise::emitCode(EmitArgs& args) {
|
|
const GrPerlinNoiseEffect& pne = args.fFp.cast<GrPerlinNoiseEffect>();
|
|
|
|
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
|
|
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
|
|
SkString vCoords = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
|
|
|
|
fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
|
|
kVec2f_GrSLType, kDefault_GrSLPrecision,
|
|
"baseFrequency");
|
|
const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni);
|
|
|
|
const char* stitchDataUni = nullptr;
|
|
if (pne.stitchTiles()) {
|
|
fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
|
|
kVec2f_GrSLType, kDefault_GrSLPrecision,
|
|
"stitchData");
|
|
stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni);
|
|
}
|
|
|
|
// There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
|
|
const char* chanCoordR = "0.125";
|
|
const char* chanCoordG = "0.375";
|
|
const char* chanCoordB = "0.625";
|
|
const char* chanCoordA = "0.875";
|
|
const char* chanCoord = "chanCoord";
|
|
const char* stitchData = "stitchData";
|
|
const char* ratio = "ratio";
|
|
const char* noiseVec = "noiseVec";
|
|
const char* noiseSmooth = "noiseSmooth";
|
|
const char* floorVal = "floorVal";
|
|
const char* fractVal = "fractVal";
|
|
const char* uv = "uv";
|
|
const char* ab = "ab";
|
|
const char* latticeIdx = "latticeIdx";
|
|
const char* bcoords = "bcoords";
|
|
const char* lattice = "lattice";
|
|
const char* inc8bit = "0.00390625"; // 1.0 / 256.0
|
|
// This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
|
|
// [-1,1] vector and perform a dot product between that vector and the provided vector.
|
|
const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";
|
|
|
|
// Add noise function
|
|
static const GrGLSLShaderVar gPerlinNoiseArgs[] = {
|
|
GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
|
|
GrGLSLShaderVar(noiseVec, kVec2f_GrSLType)
|
|
};
|
|
|
|
static const GrGLSLShaderVar gPerlinNoiseStitchArgs[] = {
|
|
GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
|
|
GrGLSLShaderVar(noiseVec, kVec2f_GrSLType),
|
|
GrGLSLShaderVar(stitchData, kVec2f_GrSLType)
|
|
};
|
|
|
|
SkString noiseCode;
|
|
|
|
noiseCode.appendf("\tvec4 %s;\n", floorVal);
|
|
noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec);
|
|
noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal);
|
|
noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec);
|
|
|
|
// smooth curve : t * t * (3 - 2 * t)
|
|
noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);",
|
|
noiseSmooth, fractVal, fractVal, fractVal);
|
|
|
|
// Adjust frequencies if we're stitching tiles
|
|
if (pne.stitchTiles()) {
|
|
noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
|
|
floorVal, stitchData, floorVal, stitchData);
|
|
noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
|
|
floorVal, stitchData, floorVal, stitchData);
|
|
noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
|
|
floorVal, stitchData, floorVal, stitchData);
|
|
noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
|
|
floorVal, stitchData, floorVal, stitchData);
|
|
}
|
|
|
|
// Get texture coordinates and normalize
|
|
noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n",
|
|
floorVal, floorVal);
|
|
|
|
// Get permutation for x
|
|
{
|
|
SkString xCoords("");
|
|
xCoords.appendf("vec2(%s.x, 0.5)", floorVal);
|
|
|
|
noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
|
|
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(),
|
|
kVec2f_GrSLType);
|
|
noiseCode.append(".r;");
|
|
}
|
|
|
|
// Get permutation for x + 1
|
|
{
|
|
SkString xCoords("");
|
|
xCoords.appendf("vec2(%s.z, 0.5)", floorVal);
|
|
|
|
noiseCode.appendf("\n\t%s.y = ", latticeIdx);
|
|
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(),
|
|
kVec2f_GrSLType);
|
|
noiseCode.append(".r;");
|
|
}
|
|
|
|
#if defined(SK_BUILD_FOR_ANDROID)
|
|
// Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3).
|
|
// The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit
|
|
// value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725
|
|
// (or 0.484368 here). The following rounding operation prevents these precision issues from
|
|
// affecting the result of the noise by making sure that we only have multiples of 1/255.
|
|
// (Note that 1/255 is about 0.003921569, which is the value used here).
|
|
noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);",
|
|
latticeIdx, latticeIdx);
|
|
#endif
|
|
|
|
// Get (x,y) coordinates with the permutated x
|
|
noiseCode.appendf("\n\tvec4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal);
|
|
|
|
noiseCode.appendf("\n\n\tvec2 %s;", uv);
|
|
// Compute u, at offset (0,0)
|
|
{
|
|
SkString latticeCoords("");
|
|
latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord);
|
|
noiseCode.appendf("\n\tvec4 %s = ", lattice);
|
|
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
|
|
kVec2f_GrSLType);
|
|
noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
|
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
|
}
|
|
|
|
noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal);
|
|
// Compute v, at offset (-1,0)
|
|
{
|
|
SkString latticeCoords("");
|
|
latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord);
|
|
noiseCode.append("\n\tlattice = ");
|
|
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
|
|
kVec2f_GrSLType);
|
|
noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
|
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
|
}
|
|
|
|
// Compute 'a' as a linear interpolation of 'u' and 'v'
|
|
noiseCode.appendf("\n\tvec2 %s;", ab);
|
|
noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
|
|
|
|
noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal);
|
|
// Compute v, at offset (-1,-1)
|
|
{
|
|
SkString latticeCoords("");
|
|
latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord);
|
|
noiseCode.append("\n\tlattice = ");
|
|
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
|
|
kVec2f_GrSLType);
|
|
noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
|
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
|
}
|
|
|
|
noiseCode.appendf("\n\t%s.x += 1.0;", fractVal);
|
|
// Compute u, at offset (0,-1)
|
|
{
|
|
SkString latticeCoords("");
|
|
latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord);
|
|
noiseCode.append("\n\tlattice = ");
|
|
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
|
|
kVec2f_GrSLType);
|
|
noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
|
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
|
}
|
|
|
|
// Compute 'b' as a linear interpolation of 'u' and 'v'
|
|
noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
|
|
// Compute the noise as a linear interpolation of 'a' and 'b'
|
|
noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth);
|
|
|
|
SkString noiseFuncName;
|
|
if (pne.stitchTiles()) {
|
|
fragBuilder->emitFunction(kFloat_GrSLType,
|
|
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
|
|
gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
|
|
} else {
|
|
fragBuilder->emitFunction(kFloat_GrSLType,
|
|
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
|
|
gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
|
|
}
|
|
|
|
// There are rounding errors if the floor operation is not performed here
|
|
fragBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;",
|
|
noiseVec, vCoords.c_str(), baseFrequencyUni);
|
|
|
|
// Clear the color accumulator
|
|
fragBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor);
|
|
|
|
if (pne.stitchTiles()) {
|
|
// Set up TurbulenceInitial stitch values.
|
|
fragBuilder->codeAppendf("vec2 %s = %s;", stitchData, stitchDataUni);
|
|
}
|
|
|
|
fragBuilder->codeAppendf("float %s = 1.0;", ratio);
|
|
|
|
// Loop over all octaves
|
|
fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves());
|
|
|
|
fragBuilder->codeAppendf("%s += ", args.fOutputColor);
|
|
if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) {
|
|
fragBuilder->codeAppend("abs(");
|
|
}
|
|
if (pne.stitchTiles()) {
|
|
fragBuilder->codeAppendf(
|
|
"vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s),"
|
|
"\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))",
|
|
noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData,
|
|
noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData,
|
|
noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData,
|
|
noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData);
|
|
} else {
|
|
fragBuilder->codeAppendf(
|
|
"vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s),"
|
|
"\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))",
|
|
noiseFuncName.c_str(), chanCoordR, noiseVec,
|
|
noiseFuncName.c_str(), chanCoordG, noiseVec,
|
|
noiseFuncName.c_str(), chanCoordB, noiseVec,
|
|
noiseFuncName.c_str(), chanCoordA, noiseVec);
|
|
}
|
|
if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) {
|
|
fragBuilder->codeAppendf(")"); // end of "abs("
|
|
}
|
|
fragBuilder->codeAppendf(" * %s;", ratio);
|
|
|
|
fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec);
|
|
fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio);
|
|
|
|
if (pne.stitchTiles()) {
|
|
fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData);
|
|
}
|
|
fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves
|
|
|
|
if (pne.type() == SkPerlinNoiseShader::kFractalNoise_Type) {
|
|
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
|
|
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
|
|
fragBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);",
|
|
args.fOutputColor,args.fOutputColor);
|
|
}
|
|
|
|
// Clamp values
|
|
fragBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor);
|
|
|
|
// Pre-multiply the result
|
|
fragBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
|
|
args.fOutputColor, args.fOutputColor,
|
|
args.fOutputColor, args.fOutputColor);
|
|
}
|
|
|
|
void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrGLSLCaps&,
|
|
GrProcessorKeyBuilder* b) {
|
|
const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>();
|
|
|
|
uint32_t key = turbulence.numOctaves();
|
|
|
|
key = key << 3; // Make room for next 3 bits
|
|
|
|
switch (turbulence.type()) {
|
|
case SkPerlinNoiseShader::kFractalNoise_Type:
|
|
key |= 0x1;
|
|
break;
|
|
case SkPerlinNoiseShader::kTurbulence_Type:
|
|
key |= 0x2;
|
|
break;
|
|
default:
|
|
// leave key at 0
|
|
break;
|
|
}
|
|
|
|
if (turbulence.stitchTiles()) {
|
|
key |= 0x4; // Flip the 3rd bit if tile stitching is on
|
|
}
|
|
|
|
b->add32(key);
|
|
}
|
|
|
|
void GrGLPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman,
|
|
const GrProcessor& processor) {
|
|
INHERITED::onSetData(pdman, processor);
|
|
|
|
const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>();
|
|
|
|
const SkVector& baseFrequency = turbulence.baseFrequency();
|
|
pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);
|
|
|
|
if (turbulence.stitchTiles()) {
|
|
const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData();
|
|
pdman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth),
|
|
SkIntToScalar(stitchData.fHeight));
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
const GrFragmentProcessor* SkPerlinNoiseShader::asFragmentProcessor(
|
|
GrContext* context,
|
|
const SkMatrix& viewM,
|
|
const SkMatrix* externalLocalMatrix,
|
|
SkFilterQuality) const {
|
|
SkASSERT(context);
|
|
|
|
SkMatrix localMatrix = this->getLocalMatrix();
|
|
if (externalLocalMatrix) {
|
|
localMatrix.preConcat(*externalLocalMatrix);
|
|
}
|
|
|
|
SkMatrix matrix = viewM;
|
|
matrix.preConcat(localMatrix);
|
|
|
|
if (0 == fNumOctaves) {
|
|
if (kFractalNoise_Type == fType) {
|
|
// Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2)
|
|
SkAutoTUnref<const GrFragmentProcessor> inner(
|
|
GrConstColorProcessor::Create(0x80404040,
|
|
GrConstColorProcessor::kModulateRGBA_InputMode));
|
|
return GrFragmentProcessor::MulOutputByInputAlpha(inner);
|
|
}
|
|
// Emit zero.
|
|
return GrConstColorProcessor::Create(0x0, GrConstColorProcessor::kIgnore_InputMode);
|
|
}
|
|
|
|
// Either we don't stitch tiles, either we have a valid tile size
|
|
SkASSERT(!fStitchTiles || !fTileSize.isEmpty());
|
|
|
|
SkPerlinNoiseShader::PaintingData* paintingData =
|
|
new PaintingData(fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, matrix);
|
|
SkAutoTUnref<GrTexture> permutationsTexture(
|
|
GrRefCachedBitmapTexture(context, paintingData->getPermutationsBitmap(),
|
|
GrTextureParams::ClampNoFilter()));
|
|
SkAutoTUnref<GrTexture> noiseTexture(
|
|
GrRefCachedBitmapTexture(context, paintingData->getNoiseBitmap(),
|
|
GrTextureParams::ClampNoFilter()));
|
|
|
|
SkMatrix m = viewM;
|
|
m.setTranslateX(-localMatrix.getTranslateX() + SK_Scalar1);
|
|
m.setTranslateY(-localMatrix.getTranslateY() + SK_Scalar1);
|
|
if ((permutationsTexture) && (noiseTexture)) {
|
|
SkAutoTUnref<GrFragmentProcessor> inner(
|
|
GrPerlinNoiseEffect::Create(fType,
|
|
fNumOctaves,
|
|
fStitchTiles,
|
|
paintingData,
|
|
permutationsTexture, noiseTexture,
|
|
m));
|
|
return GrFragmentProcessor::MulOutputByInputAlpha(inner);
|
|
}
|
|
delete paintingData;
|
|
return nullptr;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef SK_IGNORE_TO_STRING
|
|
void SkPerlinNoiseShader::toString(SkString* str) const {
|
|
str->append("SkPerlinNoiseShader: (");
|
|
|
|
str->append("type: ");
|
|
switch (fType) {
|
|
case kFractalNoise_Type:
|
|
str->append("\"fractal noise\"");
|
|
break;
|
|
case kTurbulence_Type:
|
|
str->append("\"turbulence\"");
|
|
break;
|
|
default:
|
|
str->append("\"unknown\"");
|
|
break;
|
|
}
|
|
str->append(" base frequency: (");
|
|
str->appendScalar(fBaseFrequencyX);
|
|
str->append(", ");
|
|
str->appendScalar(fBaseFrequencyY);
|
|
str->append(") number of octaves: ");
|
|
str->appendS32(fNumOctaves);
|
|
str->append(" seed: ");
|
|
str->appendScalar(fSeed);
|
|
str->append(" stitch tiles: ");
|
|
str->append(fStitchTiles ? "true " : "false ");
|
|
|
|
this->INHERITED::toString(str);
|
|
|
|
str->append(")");
|
|
}
|
|
#endif
|