c6cb56f36c
Use path rendering to render the text from outlines if supported by the GPU. Implement this in GrStencilAndCoverTextContext by copying chunks of code from GrBitmapTextContext. The drawing is implemented with "instanced" path drawing functions. Moves the creation of the "main" text context from SkGpuDevice to the GrContext::createTextContext. This is done because the decision of which text renderer is optimal can be made only with the internal implementation-specific information of the context. Remove a windows assertion from SkScalerContext_GDI::getGDIGlyphPath. The GetGlyphOutlineW fails in fontmgr_match for the initial space char in the string " [700] ...". According to MSDN, this is a known problem. Just return that the glyph has no path data in these cases. R=jvanverth@google.com, bsalomon@google.com, mtklein@google.com Author: kkinnunen@nvidia.com Review URL: https://codereview.chromium.org/196133014
255 lines
8.6 KiB
C++
255 lines
8.6 KiB
C++
|
|
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#ifndef GrPaint_DEFINED
|
|
#define GrPaint_DEFINED
|
|
|
|
#include "GrColor.h"
|
|
#include "GrEffectStage.h"
|
|
|
|
#include "SkXfermode.h"
|
|
|
|
/**
|
|
* The paint describes how color and coverage are computed at each pixel by GrContext draw
|
|
* functions and the how color is blended with the destination pixel.
|
|
*
|
|
* The paint allows installation of custom color and coverage stages. New types of stages are
|
|
* created by subclassing GrEffect.
|
|
*
|
|
* The primitive color computation starts with the color specified by setColor(). This color is the
|
|
* input to the first color stage. Each color stage feeds its output to the next color stage. The
|
|
* final color stage's output color is input to the color filter specified by
|
|
* setXfermodeColorFilter which produces the final source color, S.
|
|
*
|
|
* Fractional pixel coverage follows a similar flow. The coverage is initially the value specified
|
|
* by setCoverage(). This is input to the first coverage stage. Coverage stages are chained
|
|
* together in the same manner as color stages. The output of the last stage is modulated by any
|
|
* fractional coverage produced by anti-aliasing. This last step produces the final coverage, C.
|
|
*
|
|
* setBlendFunc() specifies blending coefficients for S (described above) and D, the initial value
|
|
* of the destination pixel, labeled Bs and Bd respectively. The final value of the destination
|
|
* pixel is then D' = (1-C)*D + C*(Bd*D + Bs*S).
|
|
*
|
|
* Note that the coverage is applied after the blend. This is why they are computed as distinct
|
|
* values.
|
|
*
|
|
* TODO: Encapsulate setXfermodeColorFilter in a GrEffect and remove from GrPaint.
|
|
*/
|
|
class GrPaint {
|
|
public:
|
|
GrPaint() { this->reset(); }
|
|
|
|
GrPaint(const GrPaint& paint) { *this = paint; }
|
|
|
|
~GrPaint() {}
|
|
|
|
/**
|
|
* Sets the blending coefficients to use to blend the final primitive color with the
|
|
* destination color. Defaults to kOne for src and kZero for dst (i.e. src mode).
|
|
*/
|
|
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
|
|
fSrcBlendCoeff = srcCoeff;
|
|
fDstBlendCoeff = dstCoeff;
|
|
}
|
|
GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlendCoeff; }
|
|
GrBlendCoeff getDstBlendCoeff() const { return fDstBlendCoeff; }
|
|
|
|
/**
|
|
* The initial color of the drawn primitive. Defaults to solid white.
|
|
*/
|
|
void setColor(GrColor color) { fColor = color; }
|
|
GrColor getColor() const { return fColor; }
|
|
|
|
/**
|
|
* Applies fractional coverage to the entire drawn primitive. Defaults to 0xff.
|
|
*/
|
|
void setCoverage(uint8_t coverage) { fCoverage = coverage; }
|
|
uint8_t getCoverage() const { return fCoverage; }
|
|
|
|
/**
|
|
* Should primitives be anti-aliased or not. Defaults to false.
|
|
*/
|
|
void setAntiAlias(bool aa) { fAntiAlias = aa; }
|
|
bool isAntiAlias() const { return fAntiAlias; }
|
|
|
|
/**
|
|
* Should dithering be applied. Defaults to false.
|
|
*/
|
|
void setDither(bool dither) { fDither = dither; }
|
|
bool isDither() const { return fDither; }
|
|
|
|
/**
|
|
* Appends an additional color effect to the color computation.
|
|
*/
|
|
const GrEffectRef* addColorEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
|
|
SkASSERT(NULL != effect);
|
|
if (!(*effect)->willUseInputColor()) {
|
|
fColorStages.reset();
|
|
}
|
|
SkNEW_APPEND_TO_TARRAY(&fColorStages, GrEffectStage, (effect, attr0, attr1));
|
|
return effect;
|
|
}
|
|
|
|
/**
|
|
* Appends an additional coverage effect to the coverage computation.
|
|
*/
|
|
const GrEffectRef* addCoverageEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
|
|
SkASSERT(NULL != effect);
|
|
if (!(*effect)->willUseInputColor()) {
|
|
fCoverageStages.reset();
|
|
}
|
|
SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrEffectStage, (effect, attr0, attr1));
|
|
return effect;
|
|
}
|
|
|
|
/**
|
|
* Helpers for adding color or coverage effects that sample a texture. The matrix is applied
|
|
* to the src space position to compute texture coordinates.
|
|
*/
|
|
void addColorTextureEffect(GrTexture* texture, const SkMatrix& matrix);
|
|
void addCoverageTextureEffect(GrTexture* texture, const SkMatrix& matrix);
|
|
|
|
void addColorTextureEffect(GrTexture* texture,
|
|
const SkMatrix& matrix,
|
|
const GrTextureParams& params);
|
|
void addCoverageTextureEffect(GrTexture* texture,
|
|
const SkMatrix& matrix,
|
|
const GrTextureParams& params);
|
|
|
|
int numColorStages() const { return fColorStages.count(); }
|
|
int numCoverageStages() const { return fCoverageStages.count(); }
|
|
int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }
|
|
|
|
const GrEffectStage& getColorStage(int s) const { return fColorStages[s]; }
|
|
const GrEffectStage& getCoverageStage(int s) const { return fCoverageStages[s]; }
|
|
|
|
GrPaint& operator=(const GrPaint& paint) {
|
|
fSrcBlendCoeff = paint.fSrcBlendCoeff;
|
|
fDstBlendCoeff = paint.fDstBlendCoeff;
|
|
fAntiAlias = paint.fAntiAlias;
|
|
fDither = paint.fDither;
|
|
|
|
fColor = paint.fColor;
|
|
fCoverage = paint.fCoverage;
|
|
|
|
fColorStages = paint.fColorStages;
|
|
fCoverageStages = paint.fCoverageStages;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Resets the paint to the defaults.
|
|
*/
|
|
void reset() {
|
|
this->resetBlend();
|
|
this->resetOptions();
|
|
this->resetColor();
|
|
this->resetCoverage();
|
|
this->resetStages();
|
|
}
|
|
|
|
/**
|
|
* Determines whether the drawing with this paint is opaque with respect to both color blending
|
|
* and fractional coverage. It does not consider whether AA has been enabled on the paint or
|
|
* not. Depending upon whether multisampling or coverage-based AA is in use, AA may make the
|
|
* result only apply to the interior of primitives.
|
|
*
|
|
*/
|
|
bool isOpaque() const;
|
|
|
|
/**
|
|
* Returns true if isOpaque would return true and the paint represents a solid constant color
|
|
* draw. If the result is true, constantColor will be updated to contain the constant color.
|
|
*/
|
|
bool isOpaqueAndConstantColor(GrColor* constantColor) const;
|
|
|
|
private:
|
|
|
|
/**
|
|
* Helper for isOpaque and isOpaqueAndConstantColor.
|
|
*/
|
|
bool getOpaqueAndKnownColor(GrColor* solidColor, uint32_t* solidColorKnownComponents) const;
|
|
|
|
/**
|
|
* Called when the source coord system from which geometry is rendered changes. It ensures that
|
|
* the local coordinates seen by effects remains unchanged. oldToNew gives the transformation
|
|
* from the previous coord system to the new coord system.
|
|
*/
|
|
void localCoordChange(const SkMatrix& oldToNew) {
|
|
for (int i = 0; i < fColorStages.count(); ++i) {
|
|
fColorStages[i].localCoordChange(oldToNew);
|
|
}
|
|
for (int i = 0; i < fCoverageStages.count(); ++i) {
|
|
fCoverageStages[i].localCoordChange(oldToNew);
|
|
}
|
|
}
|
|
|
|
bool localCoordChangeInverse(const SkMatrix& newToOld) {
|
|
SkMatrix oldToNew;
|
|
bool computed = false;
|
|
for (int i = 0; i < fColorStages.count(); ++i) {
|
|
if (!computed && !newToOld.invert(&oldToNew)) {
|
|
return false;
|
|
} else {
|
|
computed = true;
|
|
}
|
|
fColorStages[i].localCoordChange(oldToNew);
|
|
}
|
|
for (int i = 0; i < fCoverageStages.count(); ++i) {
|
|
if (!computed && !newToOld.invert(&oldToNew)) {
|
|
return false;
|
|
} else {
|
|
computed = true;
|
|
}
|
|
fCoverageStages[i].localCoordChange(oldToNew);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
friend class GrContext; // To access above two functions
|
|
friend class GrStencilAndCoverTextContext; // To access above two functions
|
|
|
|
SkSTArray<4, GrEffectStage> fColorStages;
|
|
SkSTArray<2, GrEffectStage> fCoverageStages;
|
|
|
|
GrBlendCoeff fSrcBlendCoeff;
|
|
GrBlendCoeff fDstBlendCoeff;
|
|
bool fAntiAlias;
|
|
bool fDither;
|
|
|
|
GrColor fColor;
|
|
uint8_t fCoverage;
|
|
|
|
void resetBlend() {
|
|
fSrcBlendCoeff = kOne_GrBlendCoeff;
|
|
fDstBlendCoeff = kZero_GrBlendCoeff;
|
|
}
|
|
|
|
void resetOptions() {
|
|
fAntiAlias = false;
|
|
fDither = false;
|
|
}
|
|
|
|
void resetColor() {
|
|
fColor = GrColorPackRGBA(0xff, 0xff, 0xff, 0xff);
|
|
}
|
|
|
|
void resetCoverage() {
|
|
fCoverage = 0xff;
|
|
}
|
|
|
|
void resetStages() {
|
|
fColorStages.reset();
|
|
fCoverageStages.reset();
|
|
}
|
|
};
|
|
|
|
#endif
|