0b7645f6d9
* For ambient we outset a constant amount around the perspective shape. * For spot we compute the projection of the bounds from the light's perspective, and from that compute a matrix to transform the path. Bug: skia:7971 Change-Id: I7fffdd1446423956773d145ff4fae0a81602ad5b Reviewed-on: https://skia-review.googlesource.com/150471 Commit-Queue: Jim Van Verth <jvanverth@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com>
158 lines
4.1 KiB
C
158 lines
4.1 KiB
C
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkPoint3_DEFINED
|
|
#define SkPoint3_DEFINED
|
|
|
|
#include "SkPoint.h"
|
|
|
|
struct SK_API SkPoint3 {
|
|
SkScalar fX, fY, fZ;
|
|
|
|
static SkPoint3 Make(SkScalar x, SkScalar y, SkScalar z) {
|
|
SkPoint3 pt;
|
|
pt.set(x, y, z);
|
|
return pt;
|
|
}
|
|
|
|
SkScalar x() const { return fX; }
|
|
SkScalar y() const { return fY; }
|
|
SkScalar z() const { return fZ; }
|
|
|
|
void set(SkScalar x, SkScalar y, SkScalar z) { fX = x; fY = y; fZ = z; }
|
|
|
|
friend bool operator==(const SkPoint3& a, const SkPoint3& b) {
|
|
return a.fX == b.fX && a.fY == b.fY && a.fZ == b.fZ;
|
|
}
|
|
|
|
friend bool operator!=(const SkPoint3& a, const SkPoint3& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
/** Returns the Euclidian distance from (0,0,0) to (x,y,z)
|
|
*/
|
|
static SkScalar Length(SkScalar x, SkScalar y, SkScalar z);
|
|
|
|
/** Return the Euclidian distance from (0,0,0) to the point
|
|
*/
|
|
SkScalar length() const { return SkPoint3::Length(fX, fY, fZ); }
|
|
|
|
/** Set the point (vector) to be unit-length in the same direction as it
|
|
already points. If the point has a degenerate length (i.e., nearly 0)
|
|
then set it to (0,0,0) and return false; otherwise return true.
|
|
*/
|
|
bool normalize();
|
|
|
|
/** Return a new point whose X, Y and Z coordinates are scaled.
|
|
*/
|
|
SkPoint3 makeScale(SkScalar scale) const {
|
|
SkPoint3 p;
|
|
p.set(scale * fX, scale * fY, scale * fZ);
|
|
return p;
|
|
}
|
|
|
|
/** Scale the point's coordinates by scale.
|
|
*/
|
|
void scale(SkScalar value) {
|
|
fX *= value;
|
|
fY *= value;
|
|
fZ *= value;
|
|
}
|
|
|
|
/** Return a new point whose X, Y and Z coordinates are the negative of the
|
|
original point's
|
|
*/
|
|
SkPoint3 operator-() const {
|
|
SkPoint3 neg;
|
|
neg.fX = -fX;
|
|
neg.fY = -fY;
|
|
neg.fZ = -fZ;
|
|
return neg;
|
|
}
|
|
|
|
/** Returns a new point whose coordinates are the difference between
|
|
a and b (i.e., a - b)
|
|
*/
|
|
friend SkPoint3 operator-(const SkPoint3& a, const SkPoint3& b) {
|
|
SkPoint3 v;
|
|
v.set(a.fX - b.fX, a.fY - b.fY, a.fZ - b.fZ);
|
|
return v;
|
|
}
|
|
|
|
/** Returns a new point whose coordinates are the sum of a and b (a + b)
|
|
*/
|
|
friend SkPoint3 operator+(const SkPoint3& a, const SkPoint3& b) {
|
|
SkPoint3 v;
|
|
v.set(a.fX + b.fX, a.fY + b.fY, a.fZ + b.fZ);
|
|
return v;
|
|
}
|
|
|
|
/** Add v's coordinates to the point's
|
|
*/
|
|
void operator+=(const SkPoint3& v) {
|
|
fX += v.fX;
|
|
fY += v.fY;
|
|
fZ += v.fZ;
|
|
}
|
|
|
|
/** Subtract v's coordinates from the point's
|
|
*/
|
|
void operator-=(const SkPoint3& v) {
|
|
fX -= v.fX;
|
|
fY -= v.fY;
|
|
fZ -= v.fZ;
|
|
}
|
|
|
|
/** Returns true if fX, fY, and fZ are measurable values.
|
|
|
|
@return true for values other than infinities and NaN
|
|
*/
|
|
bool isFinite() const {
|
|
SkScalar accum = 0;
|
|
accum *= fX;
|
|
accum *= fY;
|
|
accum *= fZ;
|
|
|
|
// accum is either NaN or it is finite (zero).
|
|
SkASSERT(0 == accum || SkScalarIsNaN(accum));
|
|
|
|
// value==value will be true iff value is not NaN
|
|
// TODO: is it faster to say !accum or accum==accum?
|
|
return !SkScalarIsNaN(accum);
|
|
}
|
|
|
|
/** Returns the dot product of a and b, treating them as 3D vectors
|
|
*/
|
|
static SkScalar DotProduct(const SkPoint3& a, const SkPoint3& b) {
|
|
return a.fX * b.fX + a.fY * b.fY + a.fZ * b.fZ;
|
|
}
|
|
|
|
SkScalar dot(const SkPoint3& vec) const {
|
|
return DotProduct(*this, vec);
|
|
}
|
|
|
|
/** Returns the cross product of a and b, treating them as 3D vectors
|
|
*/
|
|
static SkPoint3 CrossProduct(const SkPoint3& a, const SkPoint3& b) {
|
|
SkPoint3 result;
|
|
result.fX = a.fY*b.fZ - a.fZ*b.fY;
|
|
result.fY = a.fZ*b.fX - a.fX*b.fZ;
|
|
result.fZ = a.fX*b.fY - a.fY*b.fX;
|
|
|
|
return result;
|
|
}
|
|
|
|
SkPoint3 cross(const SkPoint3& vec) const {
|
|
return CrossProduct(*this, vec);
|
|
}
|
|
};
|
|
|
|
typedef SkPoint3 SkVector3;
|
|
typedef SkPoint3 SkColor3f;
|
|
|
|
#endif
|