skia2/tests/GrMemoryPoolTest.cpp
Brian Osman c7ad40f76f Remove SK_SUPPORT_GPU checks in tool-only code
Most of this is (obviously) not necessary to do, but once
I started, I figured I'd just get it all. Tools (nanobench,
DM, skiaserve), all GMs, benches, and unit tests, plus support
code (command line parsing and config stuff).

This is almost entirely mechanical.

Bug: skia:
Change-Id: I209500f8df8c5bd43f8298ff26440d1c4d7425fb
Reviewed-on: https://skia-review.googlesource.com/131153
Reviewed-by: Mike Klein <mtklein@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
2018-05-31 18:59:44 +00:00

398 lines
12 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "GrMemoryPool.h"
#include "SkRandom.h"
#include "SkTArray.h"
#include "SkTDArray.h"
#include "SkTemplates.h"
// A is the top of an inheritance tree of classes that overload op new and
// and delete to use a GrMemoryPool. The objects have values of different types
// that can be set and checked.
class A {
public:
A() {}
virtual void setValues(int v) {
fChar = static_cast<char>(v);
}
virtual bool checkValues(int v) {
return fChar == static_cast<char>(v);
}
virtual ~A() {}
void* operator new(size_t size) {
if (!gPool.get()) {
return ::operator new(size);
} else {
return gPool->allocate(size);
}
}
void operator delete(void* p) {
if (!gPool.get()) {
::operator delete(p);
} else {
return gPool->release(p);
}
}
static A* Create(SkRandom* r);
static void SetAllocator(size_t preallocSize, size_t minAllocSize) {
GrMemoryPool* pool = new GrMemoryPool(preallocSize, minAllocSize);
gPool.reset(pool);
}
static void ResetAllocator() {
gPool.reset(nullptr);
}
private:
static std::unique_ptr<GrMemoryPool> gPool;
char fChar;
};
std::unique_ptr<GrMemoryPool> A::gPool;
class B : public A {
public:
B() {}
virtual void setValues(int v) {
fDouble = static_cast<double>(v);
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
return fDouble == static_cast<double>(v) &&
this->INHERITED::checkValues(v);
}
virtual ~B() {}
private:
double fDouble;
typedef A INHERITED;
};
class C : public A {
public:
C() {}
virtual void setValues(int v) {
fInt64 = static_cast<int64_t>(v);
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
return fInt64 == static_cast<int64_t>(v) &&
this->INHERITED::checkValues(v);
}
virtual ~C() {}
private:
int64_t fInt64;
typedef A INHERITED;
};
// D derives from C and owns a dynamically created B
class D : public C {
public:
D() {
fB = new B();
}
virtual void setValues(int v) {
fVoidStar = reinterpret_cast<void*>(static_cast<intptr_t>(v));
this->INHERITED::setValues(v);
fB->setValues(v);
}
virtual bool checkValues(int v) {
return fVoidStar == reinterpret_cast<void*>(static_cast<intptr_t>(v)) &&
fB->checkValues(v) &&
this->INHERITED::checkValues(v);
}
virtual ~D() {
delete fB;
}
private:
void* fVoidStar;
B* fB;
typedef C INHERITED;
};
class E : public A {
public:
E() {}
virtual void setValues(int v) {
for (size_t i = 0; i < SK_ARRAY_COUNT(fIntArray); ++i) {
fIntArray[i] = v;
}
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
bool ok = true;
for (size_t i = 0; ok && i < SK_ARRAY_COUNT(fIntArray); ++i) {
if (fIntArray[i] != v) {
ok = false;
}
}
return ok && this->INHERITED::checkValues(v);
}
virtual ~E() {}
private:
int fIntArray[20];
typedef A INHERITED;
};
A* A::Create(SkRandom* r) {
switch (r->nextRangeU(0, 4)) {
case 0:
return new A;
case 1:
return new B;
case 2:
return new C;
case 3:
return new D;
case 4:
return new E;
default:
// suppress warning
return nullptr;
}
}
struct Rec {
A* fInstance;
int fValue;
};
DEF_TEST(GrMemoryPool, reporter) {
// prealloc and min alloc sizes for the pool
static const size_t gSizes[][2] = {
{0, 0},
{10 * sizeof(A), 20 * sizeof(A)},
{100 * sizeof(A), 100 * sizeof(A)},
{500 * sizeof(A), 500 * sizeof(A)},
{10000 * sizeof(A), 0},
{1, 100 * sizeof(A)},
};
// different percentages of creation vs deletion
static const float gCreateFraction[] = {1.f, .95f, 0.75f, .5f};
// number of create/destroys per test
static const int kNumIters = 20000;
// check that all the values stored in A objects are correct after this
// number of iterations
static const int kCheckPeriod = 500;
SkRandom r;
for (size_t s = 0; s < SK_ARRAY_COUNT(gSizes); ++s) {
A::SetAllocator(gSizes[s][0], gSizes[s][1]);
for (size_t c = 0; c < SK_ARRAY_COUNT(gCreateFraction); ++c) {
SkTDArray<Rec> instanceRecs;
for (int i = 0; i < kNumIters; ++i) {
float createOrDestroy = r.nextUScalar1();
if (createOrDestroy < gCreateFraction[c] ||
0 == instanceRecs.count()) {
Rec* rec = instanceRecs.append();
rec->fInstance = A::Create(&r);
rec->fValue = static_cast<int>(r.nextU());
rec->fInstance->setValues(rec->fValue);
} else {
int d = r.nextRangeU(0, instanceRecs.count() - 1);
Rec& rec = instanceRecs[d];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
delete rec.fInstance;
instanceRecs.removeShuffle(d);
}
if (0 == i % kCheckPeriod) {
for (int r = 0; r < instanceRecs.count(); ++r) {
Rec& rec = instanceRecs[r];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
}
}
}
for (int i = 0; i < instanceRecs.count(); ++i) {
Rec& rec = instanceRecs[i];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
delete rec.fInstance;
}
}
}
}
// GrMemoryPool requires that it's empty at the point of destruction. This helps
// achieving that by releasing all added memory in the destructor.
class AutoPoolReleaser {
public:
AutoPoolReleaser(GrMemoryPool& pool): fPool(pool) {
}
~AutoPoolReleaser() {
for (void* ptr: fAllocated) {
fPool.release(ptr);
}
}
void add(void* ptr) {
fAllocated.push_back(ptr);
}
private:
GrMemoryPool& fPool;
SkTArray<void*> fAllocated;
};
DEF_TEST(GrMemoryPoolAPI, reporter) {
constexpr size_t kSmallestMinAllocSize = GrMemoryPool::kSmallestMinAllocSize;
// Allocates memory until pool adds a new block (pool.size() changes).
auto allocateMemory = [](GrMemoryPool& pool, AutoPoolReleaser& r) {
size_t origPoolSize = pool.size();
while (pool.size() == origPoolSize) {
r.add(pool.allocate(31));
}
};
// Effective prealloc space capacity is >= kSmallestMinAllocSize.
{
GrMemoryPool pool(0, 0);
REPORTER_ASSERT(reporter, pool.preallocSize() == kSmallestMinAllocSize);
}
// Effective prealloc space capacity is >= minAllocSize.
{
constexpr size_t kMinAllocSize = kSmallestMinAllocSize * 2;
GrMemoryPool pool(kSmallestMinAllocSize, kMinAllocSize);
REPORTER_ASSERT(reporter, pool.preallocSize() == kMinAllocSize);
}
// Effective block size capacity >= kSmallestMinAllocSize.
{
GrMemoryPool pool(kSmallestMinAllocSize, kSmallestMinAllocSize / 2);
AutoPoolReleaser r(pool);
allocateMemory(pool, r);
REPORTER_ASSERT(reporter, pool.size() == kSmallestMinAllocSize);
}
// Pool allocates exactly preallocSize on creation.
{
constexpr size_t kPreallocSize = kSmallestMinAllocSize * 5;
GrMemoryPool pool(kPreallocSize, 0);
REPORTER_ASSERT(reporter, pool.preallocSize() == kPreallocSize);
}
// Pool allocates exactly minAllocSize when it expands.
{
constexpr size_t kMinAllocSize = kSmallestMinAllocSize * 7;
GrMemoryPool pool(0, kMinAllocSize);
AutoPoolReleaser r(pool);
allocateMemory(pool, r);
REPORTER_ASSERT(reporter, pool.size() == kMinAllocSize);
allocateMemory(pool, r);
REPORTER_ASSERT(reporter, pool.size() == 2 * kMinAllocSize);
}
// When asked to allocate amount > minAllocSize, pool allocates larger block
// to accommodate all internal structures.
{
constexpr size_t kMinAllocSize = kSmallestMinAllocSize * 2;
GrMemoryPool pool(kSmallestMinAllocSize, kMinAllocSize);
AutoPoolReleaser r(pool);
REPORTER_ASSERT(reporter, pool.size() == 0);
constexpr size_t hugeSize = 10 * kMinAllocSize;
r.add(pool.allocate(hugeSize));
REPORTER_ASSERT(reporter, pool.size() > hugeSize);
// Block size allocated to accommodate huge request doesn't include any extra
// space, so next allocation request allocates a new block.
size_t hugeBlockSize = pool.size();
r.add(pool.allocate(0));
REPORTER_ASSERT(reporter, pool.size() == hugeBlockSize + kMinAllocSize);
}
}
DEF_TEST(GrObjectMemoryPoolAPI, reporter) {
struct Data {
int value[5];
};
using DataObjectPool = GrObjectMemoryPool<Data>;
constexpr size_t kSmallestMinAllocCount = DataObjectPool::kSmallestMinAllocCount;
// Allocates objects until pool adds a new block (pool.size() changes).
// Returns number of objects that fit into the current block (i.e. before pool.size()
// changed; newly allocated block always ends up with one object allocated from it).
auto allocateObjects = [](DataObjectPool& pool, AutoPoolReleaser& r) -> size_t {
size_t count = 0;
size_t origPoolSize = pool.size();
while (pool.size() == origPoolSize) {
r.add(pool.allocate());
count++;
}
return count - 1;
};
// Effective prealloc space capacity is >= kSmallestMinAllocCount.
{
DataObjectPool pool(kSmallestMinAllocCount / 3, 0);
AutoPoolReleaser r(pool);
size_t preallocCount = allocateObjects(pool, r);
REPORTER_ASSERT(reporter, preallocCount == kSmallestMinAllocCount);
}
// Effective prealloc space capacity is >= minAllocCount.
{
DataObjectPool pool(kSmallestMinAllocCount, 2 * kSmallestMinAllocCount);
AutoPoolReleaser r(pool);
size_t preallocCount = allocateObjects(pool, r);
REPORTER_ASSERT(reporter, preallocCount == 2 * kSmallestMinAllocCount);
}
// Effective block capacity is >= kSmallestMinAllocCount.
{
DataObjectPool pool(kSmallestMinAllocCount, kSmallestMinAllocCount / 2);
AutoPoolReleaser r(pool);
// Fill prealloc space
allocateObjects(pool, r);
size_t minAllocCount = 1 + allocateObjects(pool, r);
REPORTER_ASSERT(reporter, minAllocCount == kSmallestMinAllocCount);
}
// Pool allocates space for exactly preallocCount objects on creation.
{
constexpr size_t kPreallocCount = kSmallestMinAllocCount * 7 / 3;
DataObjectPool pool(kPreallocCount, 0);
AutoPoolReleaser r(pool);
size_t preallocCount = allocateObjects(pool, r);
REPORTER_ASSERT(reporter, preallocCount == kPreallocCount);
}
// Pool allocates space for minAllocCount objects when it adds a new block.
{
constexpr size_t kMinAllocCount = kSmallestMinAllocCount * 11 / 3;
DataObjectPool pool(0, kMinAllocCount);
AutoPoolReleaser r(pool);
// Fill prealloc space
allocateObjects(pool, r);
size_t firstBlockCount = 1 + allocateObjects(pool, r);
REPORTER_ASSERT(reporter, firstBlockCount == kMinAllocCount);
size_t secondBlockCount = 1 + allocateObjects(pool, r);
REPORTER_ASSERT(reporter, secondBlockCount == kMinAllocCount);
}
}