skia2/tools/viewer/Viewer.cpp
Mike Klein 1e0884d07a add --dylib to viewer
This JIT mode helps debugging and profiling by shelling out to an
external assembler then loading its results back in via dlopen(),
so you can see coherent function profiles and not just every
instruction as its own line in the profile.

It's very slow, so viewer will stutter for a second or two before
drawing goes smooth again.  We can paper over this by using the
interpreter while these compiles are in progress, but I haven't hooked
that up yet.

Change-Id: I23e74d65a1a3a6d89649733296db8217be306438
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/285864
Reviewed-by: Florin Malita <fmalita@chromium.org>
Commit-Queue: Mike Klein <mtklein@google.com>
2020-04-28 20:42:49 +00:00

2544 lines
99 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkGraphics.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkStream.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrContext.h"
#include "include/private/SkTo.h"
#include "include/utils/SkPaintFilterCanvas.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkMD5.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkScan.h"
#include "src/core/SkTaskGroup.h"
#include "src/core/SkTextBlobPriv.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrPersistentCacheUtils.h"
#include "src/gpu/GrShaderUtils.h"
#include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
#include "src/utils/SkJSONWriter.h"
#include "src/utils/SkOSPath.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
#include "tools/flags/CommandLineFlags.h"
#include "tools/flags/CommonFlags.h"
#include "tools/trace/EventTracingPriv.h"
#include "tools/viewer/BisectSlide.h"
#include "tools/viewer/GMSlide.h"
#include "tools/viewer/ImageSlide.h"
#include "tools/viewer/ParticlesSlide.h"
#include "tools/viewer/SKPSlide.h"
#include "tools/viewer/SampleSlide.h"
#include "tools/viewer/SkSLSlide.h"
#include "tools/viewer/SlideDir.h"
#include "tools/viewer/SvgSlide.h"
#include "tools/viewer/Viewer.h"
#include <cstdlib>
#include <map>
#include "imgui.h"
#include "misc/cpp/imgui_stdlib.h" // For ImGui support of std::string
#if defined(SK_ENABLE_SKOTTIE)
#include "tools/viewer/SkottieSlide.h"
#endif
class CapturingShaderErrorHandler : public GrContextOptions::ShaderErrorHandler {
public:
void compileError(const char* shader, const char* errors) override {
fShaders.push_back(SkString(shader));
fErrors.push_back(SkString(errors));
}
void reset() {
fShaders.reset();
fErrors.reset();
}
SkTArray<SkString> fShaders;
SkTArray<SkString> fErrors;
};
static CapturingShaderErrorHandler gShaderErrorHandler;
using namespace sk_app;
static std::map<GpuPathRenderers, std::string> gPathRendererNames;
Application* Application::Create(int argc, char** argv, void* platformData) {
return new Viewer(argc, argv, platformData);
}
static DEFINE_string(slide, "", "Start on this sample.");
static DEFINE_bool(list, false, "List samples?");
#if defined(SK_VULKAN)
# define BACKENDS_STR "\"sw\", \"gl\", and \"vk\""
#elif defined(SK_METAL) && defined(SK_BUILD_FOR_MAC)
# define BACKENDS_STR "\"sw\", \"gl\", and \"mtl\""
#elif defined(SK_DAWN)
# define BACKENDS_STR "\"sw\", \"gl\", and \"dawn\""
#else
# define BACKENDS_STR "\"sw\" and \"gl\""
#endif
static DEFINE_string2(backend, b, "sw", "Backend to use. Allowed values are " BACKENDS_STR ".");
static DEFINE_int(msaa, 1, "Number of subpixel samples. 0 for no HW antialiasing.");
static DEFINE_string(bisect, "", "Path to a .skp or .svg file to bisect.");
static DEFINE_string2(file, f, "", "Open a single file for viewing.");
static DEFINE_string2(match, m, nullptr,
"[~][^]substring[$] [...] of name to run.\n"
"Multiple matches may be separated by spaces.\n"
"~ causes a matching name to always be skipped\n"
"^ requires the start of the name to match\n"
"$ requires the end of the name to match\n"
"^ and $ requires an exact match\n"
"If a name does not match any list entry,\n"
"it is skipped unless some list entry starts with ~");
#if defined(SK_BUILD_FOR_ANDROID)
static DEFINE_string(jpgs, "/data/local/tmp/resources", "Directory to read jpgs from.");
static DEFINE_string(skps, "/data/local/tmp/skps", "Directory to read skps from.");
static DEFINE_string(lotties, "/data/local/tmp/lotties",
"Directory to read (Bodymovin) jsons from.");
#else
static DEFINE_string(jpgs, "jpgs", "Directory to read jpgs from.");
static DEFINE_string(skps, "skps", "Directory to read skps from.");
static DEFINE_string(lotties, "lotties", "Directory to read (Bodymovin) jsons from.");
#endif
static DEFINE_string(svgs, "", "Directory to read SVGs from, or a single SVG file.");
static DEFINE_int_2(threads, j, -1,
"Run threadsafe tests on a threadpool with this many extra threads, "
"defaulting to one extra thread per core.");
static DEFINE_bool(redraw, false, "Toggle continuous redraw.");
static DEFINE_bool(offscreen, false, "Force rendering to an offscreen surface.");
static DEFINE_bool(skvm, false, "Try to use skvm blitters for raster.");
static DEFINE_bool(dylib, false, "JIT via dylib (much slower compile but easier to debug/profile)");
#ifndef SK_GL
static_assert(false, "viewer requires GL backend for raster.")
#endif
const char* kBackendTypeStrings[sk_app::Window::kBackendTypeCount] = {
"OpenGL",
#if SK_ANGLE && defined(SK_BUILD_FOR_WIN)
"ANGLE",
#endif
#ifdef SK_DAWN
"Dawn",
#endif
#ifdef SK_VULKAN
"Vulkan",
#endif
#ifdef SK_METAL
"Metal",
#endif
"Raster"
};
static sk_app::Window::BackendType get_backend_type(const char* str) {
#ifdef SK_DAWN
if (0 == strcmp(str, "dawn")) {
return sk_app::Window::kDawn_BackendType;
} else
#endif
#ifdef SK_VULKAN
if (0 == strcmp(str, "vk")) {
return sk_app::Window::kVulkan_BackendType;
} else
#endif
#if SK_ANGLE && defined(SK_BUILD_FOR_WIN)
if (0 == strcmp(str, "angle")) {
return sk_app::Window::kANGLE_BackendType;
} else
#endif
#ifdef SK_METAL
if (0 == strcmp(str, "mtl")) {
return sk_app::Window::kMetal_BackendType;
} else
#endif
if (0 == strcmp(str, "gl")) {
return sk_app::Window::kNativeGL_BackendType;
} else if (0 == strcmp(str, "sw")) {
return sk_app::Window::kRaster_BackendType;
} else {
SkDebugf("Unknown backend type, %s, defaulting to sw.", str);
return sk_app::Window::kRaster_BackendType;
}
}
static SkColorSpacePrimaries gSrgbPrimaries = {
0.64f, 0.33f,
0.30f, 0.60f,
0.15f, 0.06f,
0.3127f, 0.3290f };
static SkColorSpacePrimaries gAdobePrimaries = {
0.64f, 0.33f,
0.21f, 0.71f,
0.15f, 0.06f,
0.3127f, 0.3290f };
static SkColorSpacePrimaries gP3Primaries = {
0.680f, 0.320f,
0.265f, 0.690f,
0.150f, 0.060f,
0.3127f, 0.3290f };
static SkColorSpacePrimaries gRec2020Primaries = {
0.708f, 0.292f,
0.170f, 0.797f,
0.131f, 0.046f,
0.3127f, 0.3290f };
struct NamedPrimaries {
const char* fName;
SkColorSpacePrimaries* fPrimaries;
} gNamedPrimaries[] = {
{ "sRGB", &gSrgbPrimaries },
{ "AdobeRGB", &gAdobePrimaries },
{ "P3", &gP3Primaries },
{ "Rec. 2020", &gRec2020Primaries },
};
static bool primaries_equal(const SkColorSpacePrimaries& a, const SkColorSpacePrimaries& b) {
return memcmp(&a, &b, sizeof(SkColorSpacePrimaries)) == 0;
}
static Window::BackendType backend_type_for_window(Window::BackendType backendType) {
// In raster mode, we still use GL for the window.
// This lets us render the GUI faster (and correct).
return Window::kRaster_BackendType == backendType ? Window::kNativeGL_BackendType : backendType;
}
class NullSlide : public Slide {
SkISize getDimensions() const override {
return SkISize::Make(640, 480);
}
void draw(SkCanvas* canvas) override {
canvas->clear(0xffff11ff);
}
};
const char* kName = "name";
const char* kValue = "value";
const char* kOptions = "options";
const char* kSlideStateName = "Slide";
const char* kBackendStateName = "Backend";
const char* kMSAAStateName = "MSAA";
const char* kPathRendererStateName = "Path renderer";
const char* kSoftkeyStateName = "Softkey";
const char* kSoftkeyHint = "Please select a softkey";
const char* kFpsStateName = "FPS";
const char* kON = "ON";
const char* kOFF = "OFF";
const char* kRefreshStateName = "Refresh";
extern bool gUseSkVMBlitter;
extern bool gSkVMJITViaDylib;
Viewer::Viewer(int argc, char** argv, void* platformData)
: fCurrentSlide(-1)
, fRefresh(false)
, fSaveToSKP(false)
, fShowSlideDimensions(false)
, fShowImGuiDebugWindow(false)
, fShowSlidePicker(false)
, fShowImGuiTestWindow(false)
, fShowZoomWindow(false)
, fZoomWindowFixed(false)
, fZoomWindowLocation{0.0f, 0.0f}
, fLastImage(nullptr)
, fZoomUI(false)
, fBackendType(sk_app::Window::kNativeGL_BackendType)
, fColorMode(ColorMode::kLegacy)
, fColorSpacePrimaries(gSrgbPrimaries)
// Our UI can only tweak gamma (currently), so start out gamma-only
, fColorSpaceTransferFn(SkNamedTransferFn::k2Dot2)
, fZoomLevel(0.0f)
, fRotation(0.0f)
, fOffset{0.5f, 0.5f}
, fGestureDevice(GestureDevice::kNone)
, fTiled(false)
, fDrawTileBoundaries(false)
, fTileScale{0.25f, 0.25f}
, fPerspectiveMode(kPerspective_Off)
{
SkGraphics::Init();
gPathRendererNames[GpuPathRenderers::kDefault] = "Default Path Renderers";
gPathRendererNames[GpuPathRenderers::kTessellation] = "Tessellation";
gPathRendererNames[GpuPathRenderers::kStencilAndCover] = "NV_path_rendering";
gPathRendererNames[GpuPathRenderers::kSmall] = "Small paths (cached sdf or alpha masks)";
gPathRendererNames[GpuPathRenderers::kCoverageCounting] = "CCPR";
gPathRendererNames[GpuPathRenderers::kTriangulating] = "Triangulating";
gPathRendererNames[GpuPathRenderers::kNone] = "Software masks";
SkDebugf("Command line arguments: ");
for (int i = 1; i < argc; ++i) {
SkDebugf("%s ", argv[i]);
}
SkDebugf("\n");
CommandLineFlags::Parse(argc, argv);
#ifdef SK_BUILD_FOR_ANDROID
SetResourcePath("/data/local/tmp/resources");
#endif
gUseSkVMBlitter = FLAGS_skvm;
gSkVMJITViaDylib = FLAGS_dylib;
ToolUtils::SetDefaultFontMgr();
initializeEventTracingForTools();
static SkTaskGroup::Enabler kTaskGroupEnabler(FLAGS_threads);
fBackendType = get_backend_type(FLAGS_backend[0]);
fWindow = Window::CreateNativeWindow(platformData);
DisplayParams displayParams;
displayParams.fMSAASampleCount = FLAGS_msaa;
SetCtxOptionsFromCommonFlags(&displayParams.fGrContextOptions);
displayParams.fGrContextOptions.fPersistentCache = &fPersistentCache;
displayParams.fGrContextOptions.fShaderCacheStrategy =
GrContextOptions::ShaderCacheStrategy::kBackendSource;
displayParams.fGrContextOptions.fShaderErrorHandler = &gShaderErrorHandler;
displayParams.fGrContextOptions.fSuppressPrints = true;
fWindow->setRequestedDisplayParams(displayParams);
fRefresh = FLAGS_redraw;
// Configure timers
fStatsLayer.setActive(false);
fAnimateTimer = fStatsLayer.addTimer("Animate", SK_ColorMAGENTA, 0xffff66ff);
fPaintTimer = fStatsLayer.addTimer("Paint", SK_ColorGREEN);
fFlushTimer = fStatsLayer.addTimer("Flush", SK_ColorRED, 0xffff6666);
// register callbacks
fCommands.attach(fWindow);
fWindow->pushLayer(this);
fWindow->pushLayer(&fStatsLayer);
fWindow->pushLayer(&fImGuiLayer);
// add key-bindings
fCommands.addCommand(' ', "GUI", "Toggle Debug GUI", [this]() {
this->fShowImGuiDebugWindow = !this->fShowImGuiDebugWindow;
fWindow->inval();
});
// Command to jump directly to the slide picker and give it focus
fCommands.addCommand('/', "GUI", "Jump to slide picker", [this]() {
this->fShowImGuiDebugWindow = true;
this->fShowSlidePicker = true;
fWindow->inval();
});
// Alias that to Backspace, to match SampleApp
fCommands.addCommand(skui::Key::kBack, "Backspace", "GUI", "Jump to slide picker", [this]() {
this->fShowImGuiDebugWindow = true;
this->fShowSlidePicker = true;
fWindow->inval();
});
fCommands.addCommand('g', "GUI", "Toggle GUI Demo", [this]() {
this->fShowImGuiTestWindow = !this->fShowImGuiTestWindow;
fWindow->inval();
});
fCommands.addCommand('z', "GUI", "Toggle zoom window", [this]() {
this->fShowZoomWindow = !this->fShowZoomWindow;
fWindow->inval();
});
fCommands.addCommand('Z', "GUI", "Toggle zoom window state", [this]() {
this->fZoomWindowFixed = !this->fZoomWindowFixed;
fWindow->inval();
});
fCommands.addCommand('v', "VSync", "Toggle vsync on/off", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
params.fDisableVsync = !params.fDisableVsync;
fWindow->setRequestedDisplayParams(params);
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('r', "Redraw", "Toggle redraw", [this]() {
fRefresh = !fRefresh;
fWindow->inval();
});
fCommands.addCommand('s', "Overlays", "Toggle stats display", [this]() {
fStatsLayer.setActive(!fStatsLayer.getActive());
fWindow->inval();
});
fCommands.addCommand('0', "Overlays", "Reset stats", [this]() {
fStatsLayer.resetMeasurements();
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('c', "Modes", "Cycle color mode", [this]() {
switch (fColorMode) {
case ColorMode::kLegacy:
this->setColorMode(ColorMode::kColorManaged8888);
break;
case ColorMode::kColorManaged8888:
this->setColorMode(ColorMode::kColorManagedF16);
break;
case ColorMode::kColorManagedF16:
this->setColorMode(ColorMode::kColorManagedF16Norm);
break;
case ColorMode::kColorManagedF16Norm:
this->setColorMode(ColorMode::kLegacy);
break;
}
});
fCommands.addCommand('w', "Modes", "Toggle wireframe", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
params.fGrContextOptions.fWireframeMode = !params.fGrContextOptions.fWireframeMode;
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
});
fCommands.addCommand(skui::Key::kRight, "Right", "Navigation", "Next slide", [this]() {
this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0);
});
fCommands.addCommand(skui::Key::kLeft, "Left", "Navigation", "Previous slide", [this]() {
this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1);
});
fCommands.addCommand(skui::Key::kUp, "Up", "Transform", "Zoom in", [this]() {
this->changeZoomLevel(1.f / 32.f);
fWindow->inval();
});
fCommands.addCommand(skui::Key::kDown, "Down", "Transform", "Zoom out", [this]() {
this->changeZoomLevel(-1.f / 32.f);
fWindow->inval();
});
fCommands.addCommand('d', "Modes", "Change rendering backend", [this]() {
sk_app::Window::BackendType newBackend = (sk_app::Window::BackendType)(
(fBackendType + 1) % sk_app::Window::kBackendTypeCount);
// Switching to and from Vulkan is problematic on Linux so disabled for now
#if defined(SK_BUILD_FOR_UNIX) && defined(SK_VULKAN)
if (newBackend == sk_app::Window::kVulkan_BackendType) {
newBackend = (sk_app::Window::BackendType)((newBackend + 1) %
sk_app::Window::kBackendTypeCount);
} else if (fBackendType == sk_app::Window::kVulkan_BackendType) {
newBackend = sk_app::Window::kVulkan_BackendType;
}
#endif
this->setBackend(newBackend);
});
fCommands.addCommand('K', "IO", "Save slide to SKP", [this]() {
fSaveToSKP = true;
fWindow->inval();
});
fCommands.addCommand('&', "Overlays", "Show slide dimensios", [this]() {
fShowSlideDimensions = !fShowSlideDimensions;
fWindow->inval();
});
fCommands.addCommand('G', "Modes", "Geometry", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
uint32_t flags = params.fSurfaceProps.flags();
if (!fPixelGeometryOverrides) {
fPixelGeometryOverrides = true;
params.fSurfaceProps = SkSurfaceProps(flags, kUnknown_SkPixelGeometry);
} else {
switch (params.fSurfaceProps.pixelGeometry()) {
case kUnknown_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kRGB_H_SkPixelGeometry);
break;
case kRGB_H_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kBGR_H_SkPixelGeometry);
break;
case kBGR_H_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kRGB_V_SkPixelGeometry);
break;
case kRGB_V_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kBGR_V_SkPixelGeometry);
break;
case kBGR_V_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, SkSurfaceProps::kLegacyFontHost_InitType);
fPixelGeometryOverrides = false;
break;
}
}
fWindow->setRequestedDisplayParams(params);
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('H', "Font", "Hinting mode", [this]() {
if (!fFontOverrides.fHinting) {
fFontOverrides.fHinting = true;
fFont.setHinting(SkFontHinting::kNone);
} else {
switch (fFont.getHinting()) {
case SkFontHinting::kNone:
fFont.setHinting(SkFontHinting::kSlight);
break;
case SkFontHinting::kSlight:
fFont.setHinting(SkFontHinting::kNormal);
break;
case SkFontHinting::kNormal:
fFont.setHinting(SkFontHinting::kFull);
break;
case SkFontHinting::kFull:
fFont.setHinting(SkFontHinting::kNone);
fFontOverrides.fHinting = false;
break;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('A', "Paint", "Antialias Mode", [this]() {
if (!fPaintOverrides.fAntiAlias) {
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias;
fPaintOverrides.fAntiAlias = true;
fPaint.setAntiAlias(false);
gSkUseAnalyticAA = gSkForceAnalyticAA = false;
} else {
fPaint.setAntiAlias(true);
switch (fPaintOverrides.fAntiAliasState) {
case SkPaintFields::AntiAliasState::Alias:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Normal;
gSkUseAnalyticAA = gSkForceAnalyticAA = false;
break;
case SkPaintFields::AntiAliasState::Normal:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::AnalyticAAEnabled;
gSkUseAnalyticAA = true;
gSkForceAnalyticAA = false;
break;
case SkPaintFields::AntiAliasState::AnalyticAAEnabled:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::AnalyticAAForced;
gSkUseAnalyticAA = gSkForceAnalyticAA = true;
break;
case SkPaintFields::AntiAliasState::AnalyticAAForced:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias;
fPaintOverrides.fAntiAlias = false;
gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA;
gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA;
break;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('D', "Modes", "DFT", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
uint32_t flags = params.fSurfaceProps.flags();
flags ^= SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
params.fSurfaceProps = SkSurfaceProps(flags, params.fSurfaceProps.pixelGeometry());
fWindow->setRequestedDisplayParams(params);
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('L', "Font", "Subpixel Antialias Mode", [this]() {
if (!fFontOverrides.fEdging) {
fFontOverrides.fEdging = true;
fFont.setEdging(SkFont::Edging::kAlias);
} else {
switch (fFont.getEdging()) {
case SkFont::Edging::kAlias:
fFont.setEdging(SkFont::Edging::kAntiAlias);
break;
case SkFont::Edging::kAntiAlias:
fFont.setEdging(SkFont::Edging::kSubpixelAntiAlias);
break;
case SkFont::Edging::kSubpixelAntiAlias:
fFont.setEdging(SkFont::Edging::kAlias);
fFontOverrides.fEdging = false;
break;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('S', "Font", "Subpixel Position Mode", [this]() {
if (!fFontOverrides.fSubpixel) {
fFontOverrides.fSubpixel = true;
fFont.setSubpixel(false);
} else {
if (!fFont.isSubpixel()) {
fFont.setSubpixel(true);
} else {
fFontOverrides.fSubpixel = false;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('B', "Font", "Baseline Snapping", [this]() {
if (!fFontOverrides.fBaselineSnap) {
fFontOverrides.fBaselineSnap = true;
fFont.setBaselineSnap(false);
} else {
if (!fFont.isBaselineSnap()) {
fFont.setBaselineSnap(true);
} else {
fFontOverrides.fBaselineSnap = false;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('p', "Transform", "Toggle Perspective Mode", [this]() {
fPerspectiveMode = (kPerspective_Real == fPerspectiveMode) ? kPerspective_Fake
: kPerspective_Real;
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('P', "Transform", "Toggle Perspective", [this]() {
fPerspectiveMode = (kPerspective_Off == fPerspectiveMode) ? kPerspective_Real
: kPerspective_Off;
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('a', "Transform", "Toggle Animation", [this]() {
fAnimTimer.togglePauseResume();
});
fCommands.addCommand('u', "GUI", "Zoom UI", [this]() {
fZoomUI = !fZoomUI;
fStatsLayer.setDisplayScale(fZoomUI ? 2.0f : 1.0f);
fWindow->inval();
});
fCommands.addCommand('$', "ViaSerialize", "Toggle ViaSerialize", [this]() {
fDrawViaSerialize = !fDrawViaSerialize;
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('!', "SkVM", "Toggle SkVM", [this]() {
gUseSkVMBlitter = !gUseSkVMBlitter;
this->updateTitle();
fWindow->inval();
});
// set up slides
this->initSlides();
if (FLAGS_list) {
this->listNames();
}
fPerspectivePoints[0].set(0, 0);
fPerspectivePoints[1].set(1, 0);
fPerspectivePoints[2].set(0, 1);
fPerspectivePoints[3].set(1, 1);
fAnimTimer.run();
auto gamutImage = GetResourceAsImage("images/gamut.png");
if (gamutImage) {
fImGuiGamutPaint.setShader(gamutImage->makeShader());
}
fImGuiGamutPaint.setColor(SK_ColorWHITE);
fImGuiGamutPaint.setFilterQuality(kLow_SkFilterQuality);
fWindow->attach(backend_type_for_window(fBackendType));
this->setCurrentSlide(this->startupSlide());
}
void Viewer::initSlides() {
using SlideFactory = sk_sp<Slide>(*)(const SkString& name, const SkString& path);
static const struct {
const char* fExtension;
const char* fDirName;
const CommandLineFlags::StringArray& fFlags;
const SlideFactory fFactory;
} gExternalSlidesInfo[] = {
{ ".skp", "skp-dir", FLAGS_skps,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<SKPSlide>(name, path);}
},
{ ".jpg", "jpg-dir", FLAGS_jpgs,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<ImageSlide>(name, path);}
},
#if defined(SK_ENABLE_SKOTTIE)
{ ".json", "skottie-dir", FLAGS_lotties,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<SkottieSlide>(name, path);}
},
#endif
#if defined(SK_XML)
{ ".svg", "svg-dir", FLAGS_svgs,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<SvgSlide>(name, path);}
},
#endif
};
SkTArray<sk_sp<Slide>> dirSlides;
const auto addSlide =
[&](const SkString& name, const SkString& path, const SlideFactory& fact) {
if (CommandLineFlags::ShouldSkip(FLAGS_match, name.c_str())) {
return;
}
if (auto slide = fact(name, path)) {
dirSlides.push_back(slide);
fSlides.push_back(std::move(slide));
}
};
if (!FLAGS_file.isEmpty()) {
// single file mode
const SkString file(FLAGS_file[0]);
if (sk_exists(file.c_str(), kRead_SkFILE_Flag)) {
for (const auto& sinfo : gExternalSlidesInfo) {
if (file.endsWith(sinfo.fExtension)) {
addSlide(SkOSPath::Basename(file.c_str()), file, sinfo.fFactory);
return;
}
}
fprintf(stderr, "Unsupported file type \"%s\"\n", file.c_str());
} else {
fprintf(stderr, "Cannot read \"%s\"\n", file.c_str());
}
return;
}
// Bisect slide.
if (!FLAGS_bisect.isEmpty()) {
sk_sp<BisectSlide> bisect = BisectSlide::Create(FLAGS_bisect[0]);
if (bisect && !CommandLineFlags::ShouldSkip(FLAGS_match, bisect->getName().c_str())) {
if (FLAGS_bisect.count() >= 2) {
for (const char* ch = FLAGS_bisect[1]; *ch; ++ch) {
bisect->onChar(*ch);
}
}
fSlides.push_back(std::move(bisect));
}
}
// GMs
int firstGM = fSlides.count();
for (skiagm::GMFactory gmFactory : skiagm::GMRegistry::Range()) {
std::unique_ptr<skiagm::GM> gm = gmFactory();
if (!CommandLineFlags::ShouldSkip(FLAGS_match, gm->getName())) {
sk_sp<Slide> slide(new GMSlide(std::move(gm)));
fSlides.push_back(std::move(slide));
}
}
// reverse gms
int numGMs = fSlides.count() - firstGM;
for (int i = 0; i < numGMs/2; ++i) {
std::swap(fSlides[firstGM + i], fSlides[fSlides.count() - i - 1]);
}
// samples
for (const SampleFactory factory : SampleRegistry::Range()) {
sk_sp<Slide> slide(new SampleSlide(factory));
if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) {
fSlides.push_back(slide);
}
}
// Particle demo
{
// TODO: Convert this to a sample
sk_sp<Slide> slide(new ParticlesSlide());
if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) {
fSlides.push_back(std::move(slide));
}
}
// Runtime shader editor
{
sk_sp<Slide> slide(new SkSLSlide());
if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) {
fSlides.push_back(std::move(slide));
}
}
for (const auto& info : gExternalSlidesInfo) {
for (const auto& flag : info.fFlags) {
if (SkStrEndsWith(flag.c_str(), info.fExtension)) {
// single file
addSlide(SkOSPath::Basename(flag.c_str()), flag, info.fFactory);
} else {
// directory
SkString name;
SkTArray<SkString> sortedFilenames;
SkOSFile::Iter it(flag.c_str(), info.fExtension);
while (it.next(&name)) {
sortedFilenames.push_back(name);
}
if (sortedFilenames.count()) {
SkTQSort(sortedFilenames.begin(), sortedFilenames.end() - 1,
[](const SkString& a, const SkString& b) {
return strcmp(a.c_str(), b.c_str()) < 0;
});
}
for (const SkString& filename : sortedFilenames) {
addSlide(filename, SkOSPath::Join(flag.c_str(), filename.c_str()),
info.fFactory);
}
}
if (!dirSlides.empty()) {
fSlides.push_back(
sk_make_sp<SlideDir>(SkStringPrintf("%s[%s]", info.fDirName, flag.c_str()),
std::move(dirSlides)));
dirSlides.reset(); // NOLINT(bugprone-use-after-move)
}
}
}
if (!fSlides.count()) {
sk_sp<Slide> slide(new NullSlide());
fSlides.push_back(std::move(slide));
}
}
Viewer::~Viewer() {
fWindow->detach();
delete fWindow;
}
struct SkPaintTitleUpdater {
SkPaintTitleUpdater(SkString* title) : fTitle(title), fCount(0) {}
void append(const char* s) {
if (fCount == 0) {
fTitle->append(" {");
} else {
fTitle->append(", ");
}
fTitle->append(s);
++fCount;
}
void done() {
if (fCount > 0) {
fTitle->append("}");
}
}
SkString* fTitle;
int fCount;
};
void Viewer::updateTitle() {
if (!fWindow) {
return;
}
if (fWindow->sampleCount() < 1) {
return; // Surface hasn't been created yet.
}
SkString title("Viewer: ");
title.append(fSlides[fCurrentSlide]->getName());
if (gSkUseAnalyticAA) {
if (gSkForceAnalyticAA) {
title.append(" <FAAA>");
} else {
title.append(" <AAA>");
}
}
if (fDrawViaSerialize) {
title.append(" <serialize>");
}
if (gUseSkVMBlitter) {
title.append(" <skvm>");
}
SkPaintTitleUpdater paintTitle(&title);
auto paintFlag = [this, &paintTitle](bool SkPaintFields::* flag,
bool (SkPaint::* isFlag)() const,
const char* on, const char* off)
{
if (fPaintOverrides.*flag) {
paintTitle.append((fPaint.*isFlag)() ? on : off);
}
};
auto fontFlag = [this, &paintTitle](bool SkFontFields::* flag, bool (SkFont::* isFlag)() const,
const char* on, const char* off)
{
if (fFontOverrides.*flag) {
paintTitle.append((fFont.*isFlag)() ? on : off);
}
};
paintFlag(&SkPaintFields::fAntiAlias, &SkPaint::isAntiAlias, "Antialias", "Alias");
paintFlag(&SkPaintFields::fDither, &SkPaint::isDither, "DITHER", "No Dither");
if (fPaintOverrides.fFilterQuality) {
switch (fPaint.getFilterQuality()) {
case kNone_SkFilterQuality:
paintTitle.append("NoFilter");
break;
case kLow_SkFilterQuality:
paintTitle.append("LowFilter");
break;
case kMedium_SkFilterQuality:
paintTitle.append("MediumFilter");
break;
case kHigh_SkFilterQuality:
paintTitle.append("HighFilter");
break;
}
}
fontFlag(&SkFontFields::fForceAutoHinting, &SkFont::isForceAutoHinting,
"Force Autohint", "No Force Autohint");
fontFlag(&SkFontFields::fEmbolden, &SkFont::isEmbolden, "Fake Bold", "No Fake Bold");
fontFlag(&SkFontFields::fBaselineSnap, &SkFont::isBaselineSnap, "BaseSnap", "No BaseSnap");
fontFlag(&SkFontFields::fLinearMetrics, &SkFont::isLinearMetrics,
"Linear Metrics", "Non-Linear Metrics");
fontFlag(&SkFontFields::fEmbeddedBitmaps, &SkFont::isEmbeddedBitmaps,
"Bitmap Text", "No Bitmap Text");
fontFlag(&SkFontFields::fSubpixel, &SkFont::isSubpixel, "Subpixel Text", "Pixel Text");
if (fFontOverrides.fEdging) {
switch (fFont.getEdging()) {
case SkFont::Edging::kAlias:
paintTitle.append("Alias Text");
break;
case SkFont::Edging::kAntiAlias:
paintTitle.append("Antialias Text");
break;
case SkFont::Edging::kSubpixelAntiAlias:
paintTitle.append("Subpixel Antialias Text");
break;
}
}
if (fFontOverrides.fHinting) {
switch (fFont.getHinting()) {
case SkFontHinting::kNone:
paintTitle.append("No Hinting");
break;
case SkFontHinting::kSlight:
paintTitle.append("Slight Hinting");
break;
case SkFontHinting::kNormal:
paintTitle.append("Normal Hinting");
break;
case SkFontHinting::kFull:
paintTitle.append("Full Hinting");
break;
}
}
paintTitle.done();
switch (fColorMode) {
case ColorMode::kLegacy:
title.append(" Legacy 8888");
break;
case ColorMode::kColorManaged8888:
title.append(" ColorManaged 8888");
break;
case ColorMode::kColorManagedF16:
title.append(" ColorManaged F16");
break;
case ColorMode::kColorManagedF16Norm:
title.append(" ColorManaged F16 Norm");
break;
}
if (ColorMode::kLegacy != fColorMode) {
int curPrimaries = -1;
for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) {
if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) {
curPrimaries = i;
break;
}
}
title.appendf(" %s Gamma %f",
curPrimaries >= 0 ? gNamedPrimaries[curPrimaries].fName : "Custom",
fColorSpaceTransferFn.g);
}
const DisplayParams& params = fWindow->getRequestedDisplayParams();
if (fPixelGeometryOverrides) {
switch (params.fSurfaceProps.pixelGeometry()) {
case kUnknown_SkPixelGeometry:
title.append( " Flat");
break;
case kRGB_H_SkPixelGeometry:
title.append( " RGB");
break;
case kBGR_H_SkPixelGeometry:
title.append( " BGR");
break;
case kRGB_V_SkPixelGeometry:
title.append( " RGBV");
break;
case kBGR_V_SkPixelGeometry:
title.append( " BGRV");
break;
}
}
if (params.fSurfaceProps.isUseDeviceIndependentFonts()) {
title.append(" DFT");
}
title.append(" [");
title.append(kBackendTypeStrings[fBackendType]);
int msaa = fWindow->sampleCount();
if (msaa > 1) {
title.appendf(" MSAA: %i", msaa);
}
title.append("]");
GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers;
if (GpuPathRenderers::kDefault != pr) {
title.appendf(" [Path renderer: %s]", gPathRendererNames[pr].c_str());
}
if (kPerspective_Real == fPerspectiveMode) {
title.append(" Perpsective (Real)");
} else if (kPerspective_Fake == fPerspectiveMode) {
title.append(" Perspective (Fake)");
}
fWindow->setTitle(title.c_str());
}
int Viewer::startupSlide() const {
if (!FLAGS_slide.isEmpty()) {
int count = fSlides.count();
for (int i = 0; i < count; i++) {
if (fSlides[i]->getName().equals(FLAGS_slide[0])) {
return i;
}
}
fprintf(stderr, "Unknown slide \"%s\"\n", FLAGS_slide[0]);
this->listNames();
}
return 0;
}
void Viewer::listNames() const {
SkDebugf("All Slides:\n");
for (const auto& slide : fSlides) {
SkDebugf(" %s\n", slide->getName().c_str());
}
}
void Viewer::setCurrentSlide(int slide) {
SkASSERT(slide >= 0 && slide < fSlides.count());
if (slide == fCurrentSlide) {
return;
}
if (fCurrentSlide >= 0) {
fSlides[fCurrentSlide]->unload();
}
fSlides[slide]->load(SkIntToScalar(fWindow->width()),
SkIntToScalar(fWindow->height()));
fCurrentSlide = slide;
this->setupCurrentSlide();
}
void Viewer::setupCurrentSlide() {
if (fCurrentSlide >= 0) {
// prepare dimensions for image slides
fGesture.resetTouchState();
fDefaultMatrix.reset();
const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions();
const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height());
const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height());
// Start with a matrix that scales the slide to the available screen space
if (fWindow->scaleContentToFit()) {
if (windowRect.width() > 0 && windowRect.height() > 0) {
fDefaultMatrix.setRectToRect(slideBounds, windowRect, SkMatrix::kStart_ScaleToFit);
}
}
// Prevent the user from dragging content so far outside the window they can't find it again
fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix());
this->updateTitle();
this->updateUIState();
fStatsLayer.resetMeasurements();
fWindow->inval();
}
}
#define MAX_ZOOM_LEVEL 8.0f
#define MIN_ZOOM_LEVEL -8.0f
void Viewer::changeZoomLevel(float delta) {
fZoomLevel += delta;
fZoomLevel = SkTPin(fZoomLevel, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL);
this->preTouchMatrixChanged();
}
void Viewer::preTouchMatrixChanged() {
// Update the trans limit as the transform changes.
const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions();
const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height());
const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height());
fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix());
}
SkMatrix Viewer::computePerspectiveMatrix() {
SkScalar w = fWindow->width(), h = fWindow->height();
SkPoint orthoPts[4] = { { 0, 0 }, { w, 0 }, { 0, h }, { w, h } };
SkPoint perspPts[4] = {
{ fPerspectivePoints[0].fX * w, fPerspectivePoints[0].fY * h },
{ fPerspectivePoints[1].fX * w, fPerspectivePoints[1].fY * h },
{ fPerspectivePoints[2].fX * w, fPerspectivePoints[2].fY * h },
{ fPerspectivePoints[3].fX * w, fPerspectivePoints[3].fY * h }
};
SkMatrix m;
m.setPolyToPoly(orthoPts, perspPts, 4);
return m;
}
SkMatrix Viewer::computePreTouchMatrix() {
SkMatrix m = fDefaultMatrix;
SkScalar zoomScale = exp(fZoomLevel);
m.preTranslate((fOffset.x() - 0.5f) * 2.0f, (fOffset.y() - 0.5f) * 2.0f);
m.preScale(zoomScale, zoomScale);
const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions();
m.preRotate(fRotation, slideSize.width() * 0.5f, slideSize.height() * 0.5f);
if (kPerspective_Real == fPerspectiveMode) {
SkMatrix persp = this->computePerspectiveMatrix();
m.postConcat(persp);
}
return m;
}
SkMatrix Viewer::computeMatrix() {
SkMatrix m = fGesture.localM();
m.preConcat(fGesture.globalM());
m.preConcat(this->computePreTouchMatrix());
return m;
}
void Viewer::setBackend(sk_app::Window::BackendType backendType) {
fPersistentCache.reset();
fCachedGLSL.reset();
fBackendType = backendType;
fWindow->detach();
#if defined(SK_BUILD_FOR_WIN)
// Switching between OpenGL, Vulkan, and ANGLE in the same window is problematic at this point
// on Windows, so we just delete the window and recreate it.
DisplayParams params = fWindow->getRequestedDisplayParams();
delete fWindow;
fWindow = Window::CreateNativeWindow(nullptr);
// re-register callbacks
fCommands.attach(fWindow);
fWindow->pushLayer(this);
fWindow->pushLayer(&fStatsLayer);
fWindow->pushLayer(&fImGuiLayer);
// Don't allow the window to re-attach. If we're in MSAA mode, the params we grabbed above
// will still include our correct sample count. But the re-created fWindow will lose that
// information. On Windows, we need to re-create the window when changing sample count,
// so we'll incorrectly detect that situation, then re-initialize the window in GL mode,
// rendering this tear-down step pointless (and causing the Vulkan window context to fail
// as if we had never changed windows at all).
fWindow->setRequestedDisplayParams(params, false);
#endif
fWindow->attach(backend_type_for_window(fBackendType));
}
void Viewer::setColorMode(ColorMode colorMode) {
fColorMode = colorMode;
this->updateTitle();
fWindow->inval();
}
class OveridePaintFilterCanvas : public SkPaintFilterCanvas {
public:
OveridePaintFilterCanvas(SkCanvas* canvas, SkPaint* paint, Viewer::SkPaintFields* pfields,
SkFont* font, Viewer::SkFontFields* ffields)
: SkPaintFilterCanvas(canvas), fPaint(paint), fPaintOverrides(pfields), fFont(font), fFontOverrides(ffields)
{ }
const SkTextBlob* filterTextBlob(const SkPaint& paint, const SkTextBlob* blob,
sk_sp<SkTextBlob>* cache) {
bool blobWillChange = false;
for (SkTextBlobRunIterator it(blob); !it.done(); it.next()) {
SkTCopyOnFirstWrite<SkFont> filteredFont(it.font());
bool shouldDraw = this->filterFont(&filteredFont);
if (it.font() != *filteredFont || !shouldDraw) {
blobWillChange = true;
break;
}
}
if (!blobWillChange) {
return blob;
}
SkTextBlobBuilder builder;
for (SkTextBlobRunIterator it(blob); !it.done(); it.next()) {
SkTCopyOnFirstWrite<SkFont> filteredFont(it.font());
bool shouldDraw = this->filterFont(&filteredFont);
if (!shouldDraw) {
continue;
}
SkFont font = *filteredFont;
const SkTextBlobBuilder::RunBuffer& runBuffer
= it.positioning() == SkTextBlobRunIterator::kDefault_Positioning
? SkTextBlobBuilderPriv::AllocRunText(&builder, font,
it.glyphCount(), it.offset().x(),it.offset().y(), it.textSize(), SkString())
: it.positioning() == SkTextBlobRunIterator::kHorizontal_Positioning
? SkTextBlobBuilderPriv::AllocRunTextPosH(&builder, font,
it.glyphCount(), it.offset().y(), it.textSize(), SkString())
: it.positioning() == SkTextBlobRunIterator::kFull_Positioning
? SkTextBlobBuilderPriv::AllocRunTextPos(&builder, font,
it.glyphCount(), it.textSize(), SkString())
: (SkASSERT_RELEASE(false), SkTextBlobBuilder::RunBuffer());
uint32_t glyphCount = it.glyphCount();
if (it.glyphs()) {
size_t glyphSize = sizeof(decltype(*it.glyphs()));
memcpy(runBuffer.glyphs, it.glyphs(), glyphCount * glyphSize);
}
if (it.pos()) {
size_t posSize = sizeof(decltype(*it.pos()));
uint8_t positioning = it.positioning();
memcpy(runBuffer.pos, it.pos(), glyphCount * positioning * posSize);
}
if (it.text()) {
size_t textSize = sizeof(decltype(*it.text()));
uint32_t textCount = it.textSize();
memcpy(runBuffer.utf8text, it.text(), textCount * textSize);
}
if (it.clusters()) {
size_t clusterSize = sizeof(decltype(*it.clusters()));
memcpy(runBuffer.clusters, it.clusters(), glyphCount * clusterSize);
}
}
*cache = builder.make();
return cache->get();
}
void onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) override {
sk_sp<SkTextBlob> cache;
this->SkPaintFilterCanvas::onDrawTextBlob(
this->filterTextBlob(paint, blob, &cache), x, y, paint);
}
bool filterFont(SkTCopyOnFirstWrite<SkFont>* font) const {
if (fFontOverrides->fSize) {
font->writable()->setSize(fFont->getSize());
}
if (fFontOverrides->fScaleX) {
font->writable()->setScaleX(fFont->getScaleX());
}
if (fFontOverrides->fSkewX) {
font->writable()->setSkewX(fFont->getSkewX());
}
if (fFontOverrides->fHinting) {
font->writable()->setHinting(fFont->getHinting());
}
if (fFontOverrides->fEdging) {
font->writable()->setEdging(fFont->getEdging());
}
if (fFontOverrides->fEmbolden) {
font->writable()->setEmbolden(fFont->isEmbolden());
}
if (fFontOverrides->fBaselineSnap) {
font->writable()->setBaselineSnap(fFont->isBaselineSnap());
}
if (fFontOverrides->fLinearMetrics) {
font->writable()->setLinearMetrics(fFont->isLinearMetrics());
}
if (fFontOverrides->fSubpixel) {
font->writable()->setSubpixel(fFont->isSubpixel());
}
if (fFontOverrides->fEmbeddedBitmaps) {
font->writable()->setEmbeddedBitmaps(fFont->isEmbeddedBitmaps());
}
if (fFontOverrides->fForceAutoHinting) {
font->writable()->setForceAutoHinting(fFont->isForceAutoHinting());
}
return true;
}
bool onFilter(SkPaint& paint) const override {
if (fPaintOverrides->fAntiAlias) {
paint.setAntiAlias(fPaint->isAntiAlias());
}
if (fPaintOverrides->fDither) {
paint.setDither(fPaint->isDither());
}
if (fPaintOverrides->fFilterQuality) {
paint.setFilterQuality(fPaint->getFilterQuality());
}
return true;
}
SkPaint* fPaint;
Viewer::SkPaintFields* fPaintOverrides;
SkFont* fFont;
Viewer::SkFontFields* fFontOverrides;
};
void Viewer::drawSlide(SkSurface* surface) {
if (fCurrentSlide < 0) {
return;
}
SkAutoCanvasRestore autorestore(surface->getCanvas(), false);
// By default, we render directly into the window's surface/canvas
SkSurface* slideSurface = surface;
SkCanvas* slideCanvas = surface->getCanvas();
fLastImage.reset();
// If we're in any of the color managed modes, construct the color space we're going to use
sk_sp<SkColorSpace> colorSpace = nullptr;
if (ColorMode::kLegacy != fColorMode) {
skcms_Matrix3x3 toXYZ;
SkAssertResult(fColorSpacePrimaries.toXYZD50(&toXYZ));
colorSpace = SkColorSpace::MakeRGB(fColorSpaceTransferFn, toXYZ);
}
if (fSaveToSKP) {
SkPictureRecorder recorder;
SkCanvas* recorderCanvas = recorder.beginRecording(
SkRect::Make(fSlides[fCurrentSlide]->getDimensions()));
fSlides[fCurrentSlide]->draw(recorderCanvas);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
SkFILEWStream stream("sample_app.skp");
picture->serialize(&stream);
fSaveToSKP = false;
}
// Grab some things we'll need to make surfaces (for tiling or general offscreen rendering)
SkColorType colorType;
switch (fColorMode) {
case ColorMode::kLegacy:
case ColorMode::kColorManaged8888:
colorType = kN32_SkColorType;
break;
case ColorMode::kColorManagedF16:
colorType = kRGBA_F16_SkColorType;
break;
case ColorMode::kColorManagedF16Norm:
colorType = kRGBA_F16Norm_SkColorType;
break;
}
auto make_surface = [=](int w, int h) {
SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
slideCanvas->getProps(&props);
SkImageInfo info = SkImageInfo::Make(w, h, colorType, kPremul_SkAlphaType, colorSpace);
return Window::kRaster_BackendType == this->fBackendType
? SkSurface::MakeRaster(info, &props)
: slideCanvas->makeSurface(info, &props);
};
// We need to render offscreen if we're...
// ... in fake perspective or zooming (so we have a snapped copy of the results)
// ... in any raster mode, because the window surface is actually GL
// ... in any color managed mode, because we always make the window surface with no color space
// ... or if the user explicitly requested offscreen rendering
sk_sp<SkSurface> offscreenSurface = nullptr;
if (kPerspective_Fake == fPerspectiveMode ||
fShowZoomWindow ||
Window::kRaster_BackendType == fBackendType ||
colorSpace != nullptr ||
FLAGS_offscreen) {
offscreenSurface = make_surface(fWindow->width(), fWindow->height());
slideSurface = offscreenSurface.get();
slideCanvas = offscreenSurface->getCanvas();
}
SkPictureRecorder recorder;
SkCanvas* recorderRestoreCanvas = nullptr;
if (fDrawViaSerialize) {
recorderRestoreCanvas = slideCanvas;
slideCanvas = recorder.beginRecording(
SkRect::Make(fSlides[fCurrentSlide]->getDimensions()));
}
int count = slideCanvas->save();
slideCanvas->clear(SK_ColorWHITE);
// Time the painting logic of the slide
fStatsLayer.beginTiming(fPaintTimer);
if (fTiled) {
int tileW = SkScalarCeilToInt(fWindow->width() * fTileScale.width());
int tileH = SkScalarCeilToInt(fWindow->height() * fTileScale.height());
for (int y = 0; y < fWindow->height(); y += tileH) {
for (int x = 0; x < fWindow->width(); x += tileW) {
SkAutoCanvasRestore acr(slideCanvas, true);
slideCanvas->clipRect(SkRect::MakeXYWH(x, y, tileW, tileH));
fSlides[fCurrentSlide]->draw(slideCanvas);
}
}
// Draw borders between tiles
if (fDrawTileBoundaries) {
SkPaint border;
border.setColor(0x60FF00FF);
border.setStyle(SkPaint::kStroke_Style);
for (int y = 0; y < fWindow->height(); y += tileH) {
for (int x = 0; x < fWindow->width(); x += tileW) {
slideCanvas->drawRect(SkRect::MakeXYWH(x, y, tileW, tileH), border);
}
}
}
} else {
slideCanvas->concat(this->computeMatrix());
if (kPerspective_Real == fPerspectiveMode) {
slideCanvas->clipRect(SkRect::MakeWH(fWindow->width(), fWindow->height()));
}
OveridePaintFilterCanvas filterCanvas(slideCanvas, &fPaint, &fPaintOverrides, &fFont, &fFontOverrides);
fSlides[fCurrentSlide]->draw(&filterCanvas);
}
fStatsLayer.endTiming(fPaintTimer);
slideCanvas->restoreToCount(count);
if (recorderRestoreCanvas) {
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
auto data = picture->serialize();
slideCanvas = recorderRestoreCanvas;
slideCanvas->drawPicture(SkPicture::MakeFromData(data.get()));
}
// Force a flush so we can time that, too
fStatsLayer.beginTiming(fFlushTimer);
slideSurface->flush();
fStatsLayer.endTiming(fFlushTimer);
// If we rendered offscreen, snap an image and push the results to the window's canvas
if (offscreenSurface) {
fLastImage = offscreenSurface->makeImageSnapshot();
SkCanvas* canvas = surface->getCanvas();
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
int prePerspectiveCount = canvas->save();
if (kPerspective_Fake == fPerspectiveMode) {
paint.setFilterQuality(kHigh_SkFilterQuality);
canvas->clear(SK_ColorWHITE);
canvas->concat(this->computePerspectiveMatrix());
}
canvas->drawImage(fLastImage, 0, 0, &paint);
canvas->restoreToCount(prePerspectiveCount);
}
if (fShowSlideDimensions) {
SkRect r = SkRect::Make(fSlides[fCurrentSlide]->getDimensions());
SkPaint paint;
paint.setColor(0x40FFFF00);
surface->getCanvas()->drawRect(r, paint);
}
}
void Viewer::onBackendCreated() {
this->setupCurrentSlide();
fWindow->show();
}
void Viewer::onPaint(SkSurface* surface) {
this->drawSlide(surface);
fCommands.drawHelp(surface->getCanvas());
this->drawImGui();
if (GrContext* ctx = fWindow->getGrContext()) {
// Clean out cache items that haven't been used in more than 10 seconds.
ctx->performDeferredCleanup(std::chrono::seconds(10));
}
}
void Viewer::onResize(int width, int height) {
if (fCurrentSlide >= 0) {
fSlides[fCurrentSlide]->resize(width, height);
}
}
SkPoint Viewer::mapEvent(float x, float y) {
const auto m = this->computeMatrix();
SkMatrix inv;
SkAssertResult(m.invert(&inv));
return inv.mapXY(x, y);
}
bool Viewer::onTouch(intptr_t owner, skui::InputState state, float x, float y) {
if (GestureDevice::kMouse == fGestureDevice) {
return false;
}
const auto slidePt = this->mapEvent(x, y);
if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, skui::ModifierKey::kNone)) {
fWindow->inval();
return true;
}
void* castedOwner = reinterpret_cast<void*>(owner);
switch (state) {
case skui::InputState::kUp: {
fGesture.touchEnd(castedOwner);
#if defined(SK_BUILD_FOR_IOS)
// TODO: move IOS swipe detection higher up into the platform code
SkPoint dir;
if (fGesture.isFling(&dir)) {
// swiping left or right
if (SkTAbs(dir.fX) > SkTAbs(dir.fY)) {
if (dir.fX < 0) {
this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ?
fCurrentSlide + 1 : 0);
} else {
this->setCurrentSlide(fCurrentSlide > 0 ?
fCurrentSlide - 1 : fSlides.count() - 1);
}
}
fGesture.reset();
}
#endif
break;
}
case skui::InputState::kDown: {
fGesture.touchBegin(castedOwner, x, y);
break;
}
case skui::InputState::kMove: {
fGesture.touchMoved(castedOwner, x, y);
break;
}
default: {
// kLeft and kRight are only for swipes
SkASSERT(false);
break;
}
}
fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kTouch : GestureDevice::kNone;
fWindow->inval();
return true;
}
bool Viewer::onMouse(int x, int y, skui::InputState state, skui::ModifierKey modifiers) {
if (GestureDevice::kTouch == fGestureDevice) {
return false;
}
const auto slidePt = this->mapEvent(x, y);
if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, modifiers)) {
fWindow->inval();
return true;
}
switch (state) {
case skui::InputState::kUp: {
fGesture.touchEnd(nullptr);
break;
}
case skui::InputState::kDown: {
fGesture.touchBegin(nullptr, x, y);
break;
}
case skui::InputState::kMove: {
fGesture.touchMoved(nullptr, x, y);
break;
}
default: {
SkASSERT(false); // shouldn't see kRight or kLeft here
break;
}
}
fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kMouse : GestureDevice::kNone;
if (state != skui::InputState::kMove || fGesture.isBeingTouched()) {
fWindow->inval();
}
return true;
}
bool Viewer::onFling(skui::InputState state) {
if (skui::InputState::kRight == state) {
this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1);
return true;
} else if (skui::InputState::kLeft == state) {
this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0);
return true;
}
return false;
}
bool Viewer::onPinch(skui::InputState state, float scale, float x, float y) {
switch (state) {
case skui::InputState::kDown:
fGesture.startZoom();
return true;
break;
case skui::InputState::kMove:
fGesture.updateZoom(scale, x, y, x, y);
return true;
break;
case skui::InputState::kUp:
fGesture.endZoom();
return true;
break;
default:
SkASSERT(false);
break;
}
return false;
}
static void ImGui_Primaries(SkColorSpacePrimaries* primaries, SkPaint* gamutPaint) {
// The gamut image covers a (0.8 x 0.9) shaped region
ImGui::DragCanvas dc(primaries, { 0.0f, 0.9f }, { 0.8f, 0.0f });
// Background image. Only draw a subset of the image, to avoid the regions less than zero.
// Simplifes re-mapping math, clipping behavior, and increases resolution in the useful area.
// Magic numbers are pixel locations of the origin and upper-right corner.
dc.fDrawList->AddImage(gamutPaint, dc.fPos,
ImVec2(dc.fPos.x + dc.fSize.x, dc.fPos.y + dc.fSize.y),
ImVec2(242, 61), ImVec2(1897, 1922));
dc.dragPoint((SkPoint*)(&primaries->fRX), true, 0xFF000040);
dc.dragPoint((SkPoint*)(&primaries->fGX), true, 0xFF004000);
dc.dragPoint((SkPoint*)(&primaries->fBX), true, 0xFF400000);
dc.dragPoint((SkPoint*)(&primaries->fWX), true);
dc.fDrawList->AddPolyline(dc.fScreenPoints.begin(), 3, 0xFFFFFFFF, true, 1.5f);
}
static bool ImGui_DragLocation(SkPoint* pt) {
ImGui::DragCanvas dc(pt);
dc.fillColor(IM_COL32(0, 0, 0, 128));
dc.dragPoint(pt);
return dc.fDragging;
}
static bool ImGui_DragQuad(SkPoint* pts) {
ImGui::DragCanvas dc(pts);
dc.fillColor(IM_COL32(0, 0, 0, 128));
for (int i = 0; i < 4; ++i) {
dc.dragPoint(pts + i);
}
dc.fDrawList->AddLine(dc.fScreenPoints[0], dc.fScreenPoints[1], 0xFFFFFFFF);
dc.fDrawList->AddLine(dc.fScreenPoints[1], dc.fScreenPoints[3], 0xFFFFFFFF);
dc.fDrawList->AddLine(dc.fScreenPoints[3], dc.fScreenPoints[2], 0xFFFFFFFF);
dc.fDrawList->AddLine(dc.fScreenPoints[2], dc.fScreenPoints[0], 0xFFFFFFFF);
return dc.fDragging;
}
void Viewer::drawImGui() {
// Support drawing the ImGui demo window. Superfluous, but gives a good idea of what's possible
if (fShowImGuiTestWindow) {
ImGui::ShowDemoWindow(&fShowImGuiTestWindow);
}
if (fShowImGuiDebugWindow) {
// We have some dynamic content that sizes to fill available size. If the scroll bar isn't
// always visible, we can end up in a layout feedback loop.
ImGui::SetNextWindowSize(ImVec2(400, 400), ImGuiCond_FirstUseEver);
DisplayParams params = fWindow->getRequestedDisplayParams();
bool paramsChanged = false;
const GrContext* ctx = fWindow->getGrContext();
if (ImGui::Begin("Tools", &fShowImGuiDebugWindow,
ImGuiWindowFlags_AlwaysVerticalScrollbar)) {
if (ImGui::CollapsingHeader("Backend")) {
int newBackend = static_cast<int>(fBackendType);
ImGui::RadioButton("Raster", &newBackend, sk_app::Window::kRaster_BackendType);
ImGui::SameLine();
ImGui::RadioButton("OpenGL", &newBackend, sk_app::Window::kNativeGL_BackendType);
#if SK_ANGLE && defined(SK_BUILD_FOR_WIN)
ImGui::SameLine();
ImGui::RadioButton("ANGLE", &newBackend, sk_app::Window::kANGLE_BackendType);
#endif
#if defined(SK_DAWN)
ImGui::SameLine();
ImGui::RadioButton("Dawn", &newBackend, sk_app::Window::kDawn_BackendType);
#endif
#if defined(SK_VULKAN)
ImGui::SameLine();
ImGui::RadioButton("Vulkan", &newBackend, sk_app::Window::kVulkan_BackendType);
#endif
#if defined(SK_METAL)
ImGui::SameLine();
ImGui::RadioButton("Metal", &newBackend, sk_app::Window::kMetal_BackendType);
#endif
if (newBackend != fBackendType) {
fDeferredActions.push_back([=]() {
this->setBackend(static_cast<sk_app::Window::BackendType>(newBackend));
});
}
bool* wire = &params.fGrContextOptions.fWireframeMode;
if (ctx && ImGui::Checkbox("Wireframe Mode", wire)) {
paramsChanged = true;
}
if (ctx) {
int sampleCount = fWindow->sampleCount();
ImGui::Text("MSAA: "); ImGui::SameLine();
ImGui::RadioButton("1", &sampleCount, 1); ImGui::SameLine();
ImGui::RadioButton("4", &sampleCount, 4); ImGui::SameLine();
ImGui::RadioButton("8", &sampleCount, 8); ImGui::SameLine();
ImGui::RadioButton("16", &sampleCount, 16);
if (sampleCount != params.fMSAASampleCount) {
params.fMSAASampleCount = sampleCount;
paramsChanged = true;
}
}
int pixelGeometryIdx = 0;
if (fPixelGeometryOverrides) {
pixelGeometryIdx = params.fSurfaceProps.pixelGeometry() + 1;
}
if (ImGui::Combo("Pixel Geometry", &pixelGeometryIdx,
"Default\0Flat\0RGB\0BGR\0RGBV\0BGRV\0\0"))
{
uint32_t flags = params.fSurfaceProps.flags();
if (pixelGeometryIdx == 0) {
fPixelGeometryOverrides = false;
params.fSurfaceProps = SkSurfaceProps(flags, SkSurfaceProps::kLegacyFontHost_InitType);
} else {
fPixelGeometryOverrides = true;
SkPixelGeometry pixelGeometry = SkTo<SkPixelGeometry>(pixelGeometryIdx - 1);
params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry);
}
paramsChanged = true;
}
bool useDFT = params.fSurfaceProps.isUseDeviceIndependentFonts();
if (ImGui::Checkbox("DFT", &useDFT)) {
uint32_t flags = params.fSurfaceProps.flags();
if (useDFT) {
flags |= SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
} else {
flags &= ~SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
}
SkPixelGeometry pixelGeometry = params.fSurfaceProps.pixelGeometry();
params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry);
paramsChanged = true;
}
if (ImGui::TreeNode("Path Renderers")) {
GpuPathRenderers prevPr = params.fGrContextOptions.fGpuPathRenderers;
auto prButton = [&](GpuPathRenderers x) {
if (ImGui::RadioButton(gPathRendererNames[x].c_str(), prevPr == x)) {
if (x != params.fGrContextOptions.fGpuPathRenderers) {
params.fGrContextOptions.fGpuPathRenderers = x;
paramsChanged = true;
}
}
};
if (!ctx) {
ImGui::RadioButton("Software", true);
} else {
const auto* caps = ctx->priv().caps();
prButton(GpuPathRenderers::kDefault);
if (fWindow->sampleCount() > 1 || caps->mixedSamplesSupport()) {
if (caps->shaderCaps()->tessellationSupport()) {
prButton(GpuPathRenderers::kTessellation);
}
if (caps->shaderCaps()->pathRenderingSupport()) {
prButton(GpuPathRenderers::kStencilAndCover);
}
}
if (1 == fWindow->sampleCount()) {
if (GrCoverageCountingPathRenderer::IsSupported(*caps)) {
prButton(GpuPathRenderers::kCoverageCounting);
}
prButton(GpuPathRenderers::kSmall);
}
prButton(GpuPathRenderers::kTriangulating);
prButton(GpuPathRenderers::kNone);
}
ImGui::TreePop();
}
}
if (ImGui::CollapsingHeader("Tiling")) {
ImGui::Checkbox("Enable", &fTiled);
ImGui::Checkbox("Draw Boundaries", &fDrawTileBoundaries);
ImGui::SliderFloat("Horizontal", &fTileScale.fWidth, 0.1f, 1.0f);
ImGui::SliderFloat("Vertical", &fTileScale.fHeight, 0.1f, 1.0f);
}
if (ImGui::CollapsingHeader("Transform")) {
float zoom = fZoomLevel;
if (ImGui::SliderFloat("Zoom", &zoom, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) {
fZoomLevel = zoom;
this->preTouchMatrixChanged();
paramsChanged = true;
}
float deg = fRotation;
if (ImGui::SliderFloat("Rotate", &deg, -30, 360, "%.3f deg")) {
fRotation = deg;
this->preTouchMatrixChanged();
paramsChanged = true;
}
if (ImGui::CollapsingHeader("Subpixel offset", ImGuiTreeNodeFlags_NoTreePushOnOpen)) {
if (ImGui_DragLocation(&fOffset)) {
this->preTouchMatrixChanged();
paramsChanged = true;
}
} else if (fOffset != SkVector{0.5f, 0.5f}) {
this->preTouchMatrixChanged();
paramsChanged = true;
fOffset = {0.5f, 0.5f};
}
int perspectiveMode = static_cast<int>(fPerspectiveMode);
if (ImGui::Combo("Perspective", &perspectiveMode, "Off\0Real\0Fake\0\0")) {
fPerspectiveMode = static_cast<PerspectiveMode>(perspectiveMode);
this->preTouchMatrixChanged();
paramsChanged = true;
}
if (perspectiveMode != kPerspective_Off && ImGui_DragQuad(fPerspectivePoints)) {
this->preTouchMatrixChanged();
paramsChanged = true;
}
}
if (ImGui::CollapsingHeader("Paint")) {
int aliasIdx = 0;
if (fPaintOverrides.fAntiAlias) {
aliasIdx = SkTo<int>(fPaintOverrides.fAntiAliasState) + 1;
}
if (ImGui::Combo("Anti-Alias", &aliasIdx,
"Default\0Alias\0Normal\0AnalyticAAEnabled\0AnalyticAAForced\0\0"))
{
gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA;
gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA;
if (aliasIdx == 0) {
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias;
fPaintOverrides.fAntiAlias = false;
} else {
fPaintOverrides.fAntiAlias = true;
fPaintOverrides.fAntiAliasState = SkTo<SkPaintFields::AntiAliasState>(aliasIdx-1);
fPaint.setAntiAlias(aliasIdx > 1);
switch (fPaintOverrides.fAntiAliasState) {
case SkPaintFields::AntiAliasState::Alias:
break;
case SkPaintFields::AntiAliasState::Normal:
break;
case SkPaintFields::AntiAliasState::AnalyticAAEnabled:
gSkUseAnalyticAA = true;
gSkForceAnalyticAA = false;
break;
case SkPaintFields::AntiAliasState::AnalyticAAForced:
gSkUseAnalyticAA = gSkForceAnalyticAA = true;
break;
}
}
paramsChanged = true;
}
auto paintFlag = [this, &paramsChanged](const char* label, const char* items,
bool SkPaintFields::* flag,
bool (SkPaint::* isFlag)() const,
void (SkPaint::* setFlag)(bool) )
{
int itemIndex = 0;
if (fPaintOverrides.*flag) {
itemIndex = (fPaint.*isFlag)() ? 2 : 1;
}
if (ImGui::Combo(label, &itemIndex, items)) {
if (itemIndex == 0) {
fPaintOverrides.*flag = false;
} else {
fPaintOverrides.*flag = true;
(fPaint.*setFlag)(itemIndex == 2);
}
paramsChanged = true;
}
};
paintFlag("Dither",
"Default\0No Dither\0Dither\0\0",
&SkPaintFields::fDither,
&SkPaint::isDither, &SkPaint::setDither);
int filterQualityIdx = 0;
if (fPaintOverrides.fFilterQuality) {
filterQualityIdx = SkTo<int>(fPaint.getFilterQuality()) + 1;
}
if (ImGui::Combo("Filter Quality", &filterQualityIdx,
"Default\0None\0Low\0Medium\0High\0\0"))
{
if (filterQualityIdx == 0) {
fPaintOverrides.fFilterQuality = false;
fPaint.setFilterQuality(kNone_SkFilterQuality);
} else {
fPaint.setFilterQuality(SkTo<SkFilterQuality>(filterQualityIdx - 1));
fPaintOverrides.fFilterQuality = true;
}
paramsChanged = true;
}
}
if (ImGui::CollapsingHeader("Font")) {
int hintingIdx = 0;
if (fFontOverrides.fHinting) {
hintingIdx = SkTo<int>(fFont.getHinting()) + 1;
}
if (ImGui::Combo("Hinting", &hintingIdx,
"Default\0None\0Slight\0Normal\0Full\0\0"))
{
if (hintingIdx == 0) {
fFontOverrides.fHinting = false;
fFont.setHinting(SkFontHinting::kNone);
} else {
fFont.setHinting(SkTo<SkFontHinting>(hintingIdx - 1));
fFontOverrides.fHinting = true;
}
paramsChanged = true;
}
auto fontFlag = [this, &paramsChanged](const char* label, const char* items,
bool SkFontFields::* flag,
bool (SkFont::* isFlag)() const,
void (SkFont::* setFlag)(bool) )
{
int itemIndex = 0;
if (fFontOverrides.*flag) {
itemIndex = (fFont.*isFlag)() ? 2 : 1;
}
if (ImGui::Combo(label, &itemIndex, items)) {
if (itemIndex == 0) {
fFontOverrides.*flag = false;
} else {
fFontOverrides.*flag = true;
(fFont.*setFlag)(itemIndex == 2);
}
paramsChanged = true;
}
};
fontFlag("Fake Bold Glyphs",
"Default\0No Fake Bold\0Fake Bold\0\0",
&SkFontFields::fEmbolden,
&SkFont::isEmbolden, &SkFont::setEmbolden);
fontFlag("Baseline Snapping",
"Default\0No Baseline Snapping\0Baseline Snapping\0\0",
&SkFontFields::fBaselineSnap,
&SkFont::isBaselineSnap, &SkFont::setBaselineSnap);
fontFlag("Linear Text",
"Default\0No Linear Text\0Linear Text\0\0",
&SkFontFields::fLinearMetrics,
&SkFont::isLinearMetrics, &SkFont::setLinearMetrics);
fontFlag("Subpixel Position Glyphs",
"Default\0Pixel Text\0Subpixel Text\0\0",
&SkFontFields::fSubpixel,
&SkFont::isSubpixel, &SkFont::setSubpixel);
fontFlag("Embedded Bitmap Text",
"Default\0No Embedded Bitmaps\0Embedded Bitmaps\0\0",
&SkFontFields::fEmbeddedBitmaps,
&SkFont::isEmbeddedBitmaps, &SkFont::setEmbeddedBitmaps);
fontFlag("Force Auto-Hinting",
"Default\0No Force Auto-Hinting\0Force Auto-Hinting\0\0",
&SkFontFields::fForceAutoHinting,
&SkFont::isForceAutoHinting, &SkFont::setForceAutoHinting);
int edgingIdx = 0;
if (fFontOverrides.fEdging) {
edgingIdx = SkTo<int>(fFont.getEdging()) + 1;
}
if (ImGui::Combo("Edging", &edgingIdx,
"Default\0Alias\0Antialias\0Subpixel Antialias\0\0"))
{
if (edgingIdx == 0) {
fFontOverrides.fEdging = false;
fFont.setEdging(SkFont::Edging::kAlias);
} else {
fFont.setEdging(SkTo<SkFont::Edging>(edgingIdx-1));
fFontOverrides.fEdging = true;
}
paramsChanged = true;
}
ImGui::Checkbox("Override Size", &fFontOverrides.fSize);
if (fFontOverrides.fSize) {
ImGui::DragFloat2("TextRange", fFontOverrides.fSizeRange,
0.001f, -10.0f, 300.0f, "%.6f", 2.0f);
float textSize = fFont.getSize();
if (ImGui::DragFloat("TextSize", &textSize, 0.001f,
fFontOverrides.fSizeRange[0],
fFontOverrides.fSizeRange[1],
"%.6f", 2.0f))
{
fFont.setSize(textSize);
paramsChanged = true;
}
}
ImGui::Checkbox("Override ScaleX", &fFontOverrides.fScaleX);
if (fFontOverrides.fScaleX) {
float scaleX = fFont.getScaleX();
if (ImGui::SliderFloat("ScaleX", &scaleX, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) {
fFont.setScaleX(scaleX);
paramsChanged = true;
}
}
ImGui::Checkbox("Override SkewX", &fFontOverrides.fSkewX);
if (fFontOverrides.fSkewX) {
float skewX = fFont.getSkewX();
if (ImGui::SliderFloat("SkewX", &skewX, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) {
fFont.setSkewX(skewX);
paramsChanged = true;
}
}
}
{
SkMetaData controls;
if (fSlides[fCurrentSlide]->onGetControls(&controls)) {
if (ImGui::CollapsingHeader("Current Slide")) {
SkMetaData::Iter iter(controls);
const char* name;
SkMetaData::Type type;
int count;
while ((name = iter.next(&type, &count)) != nullptr) {
if (type == SkMetaData::kScalar_Type) {
float val[3];
SkASSERT(count == 3);
controls.findScalars(name, &count, val);
if (ImGui::SliderFloat(name, &val[0], val[1], val[2])) {
controls.setScalars(name, 3, val);
}
} else if (type == SkMetaData::kBool_Type) {
bool val;
SkASSERT(count == 1);
controls.findBool(name, &val);
if (ImGui::Checkbox(name, &val)) {
controls.setBool(name, val);
}
}
}
fSlides[fCurrentSlide]->onSetControls(controls);
}
}
}
if (fShowSlidePicker) {
ImGui::SetNextTreeNodeOpen(true);
}
if (ImGui::CollapsingHeader("Slide")) {
static ImGuiTextFilter filter;
static ImVector<const char*> filteredSlideNames;
static ImVector<int> filteredSlideIndices;
if (fShowSlidePicker) {
ImGui::SetKeyboardFocusHere();
fShowSlidePicker = false;
}
filter.Draw();
filteredSlideNames.clear();
filteredSlideIndices.clear();
int filteredIndex = 0;
for (int i = 0; i < fSlides.count(); ++i) {
const char* slideName = fSlides[i]->getName().c_str();
if (filter.PassFilter(slideName) || i == fCurrentSlide) {
if (i == fCurrentSlide) {
filteredIndex = filteredSlideIndices.size();
}
filteredSlideNames.push_back(slideName);
filteredSlideIndices.push_back(i);
}
}
if (ImGui::ListBox("", &filteredIndex, filteredSlideNames.begin(),
filteredSlideNames.size(), 20)) {
this->setCurrentSlide(filteredSlideIndices[filteredIndex]);
}
}
if (ImGui::CollapsingHeader("Color Mode")) {
ColorMode newMode = fColorMode;
auto cmButton = [&](ColorMode mode, const char* label) {
if (ImGui::RadioButton(label, mode == fColorMode)) {
newMode = mode;
}
};
cmButton(ColorMode::kLegacy, "Legacy 8888");
cmButton(ColorMode::kColorManaged8888, "Color Managed 8888");
cmButton(ColorMode::kColorManagedF16, "Color Managed F16");
cmButton(ColorMode::kColorManagedF16Norm, "Color Managed F16 Norm");
if (newMode != fColorMode) {
this->setColorMode(newMode);
}
// Pick from common gamuts:
int primariesIdx = 4; // Default: Custom
for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) {
if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) {
primariesIdx = i;
break;
}
}
// Let user adjust the gamma
ImGui::SliderFloat("Gamma", &fColorSpaceTransferFn.g, 0.5f, 3.5f);
if (ImGui::Combo("Primaries", &primariesIdx,
"sRGB\0AdobeRGB\0P3\0Rec. 2020\0Custom\0\0")) {
if (primariesIdx >= 0 && primariesIdx <= 3) {
fColorSpacePrimaries = *gNamedPrimaries[primariesIdx].fPrimaries;
}
}
// Allow direct editing of gamut
ImGui_Primaries(&fColorSpacePrimaries, &fImGuiGamutPaint);
}
if (ImGui::CollapsingHeader("Animation")) {
bool isPaused = AnimTimer::kPaused_State == fAnimTimer.state();
if (ImGui::Checkbox("Pause", &isPaused)) {
fAnimTimer.togglePauseResume();
}
float speed = fAnimTimer.getSpeed();
if (ImGui::DragFloat("Speed", &speed, 0.1f)) {
fAnimTimer.setSpeed(speed);
}
}
bool backendIsGL = Window::kNativeGL_BackendType == fBackendType
#if SK_ANGLE && defined(SK_BUILD_FOR_WIN)
|| Window::kANGLE_BackendType == fBackendType
#endif
;
// HACK: If we get here when SKSL caching isn't enabled, and we're on a backend other
// than GL, we need to force it on. Just do that on the first frame after the backend
// switch, then resume normal operation.
if (!backendIsGL &&
params.fGrContextOptions.fShaderCacheStrategy !=
GrContextOptions::ShaderCacheStrategy::kSkSL) {
params.fGrContextOptions.fShaderCacheStrategy =
GrContextOptions::ShaderCacheStrategy::kSkSL;
paramsChanged = true;
fPersistentCache.reset();
} else if (ImGui::CollapsingHeader("Shaders")) {
// To re-load shaders from the currently active programs, we flush all caches on one
// frame, then set a flag to poll the cache on the next frame.
static bool gLoadPending = false;
if (gLoadPending) {
auto collectShaders = [this](sk_sp<const SkData> key, sk_sp<SkData> data,
int hitCount) {
CachedGLSL& entry(fCachedGLSL.push_back());
entry.fKey = key;
SkMD5 hash;
hash.write(key->bytes(), key->size());
SkMD5::Digest digest = hash.finish();
for (int i = 0; i < 16; ++i) {
entry.fKeyString.appendf("%02x", digest.data[i]);
}
SkReader32 reader(data->data(), data->size());
entry.fShaderType = GrPersistentCacheUtils::GetType(&reader);
GrPersistentCacheUtils::UnpackCachedShaders(&reader, entry.fShader,
entry.fInputs,
kGrShaderTypeCount);
};
fCachedGLSL.reset();
fPersistentCache.foreach(collectShaders);
gLoadPending = false;
}
// Defer actually doing the load/save logic so that we can trigger a save when we
// start or finish hovering on a tree node in the list below:
bool doLoad = ImGui::Button("Load"); ImGui::SameLine();
bool doSave = ImGui::Button("Save");
if (backendIsGL) {
ImGui::SameLine();
bool sksl = params.fGrContextOptions.fShaderCacheStrategy ==
GrContextOptions::ShaderCacheStrategy::kSkSL;
if (ImGui::Checkbox("SkSL", &sksl)) {
params.fGrContextOptions.fShaderCacheStrategy = sksl
? GrContextOptions::ShaderCacheStrategy::kSkSL
: GrContextOptions::ShaderCacheStrategy::kBackendSource;
paramsChanged = true;
doLoad = true;
fDeferredActions.push_back([=]() { fPersistentCache.reset(); });
}
}
ImGui::BeginChild("##ScrollingRegion");
for (auto& entry : fCachedGLSL) {
bool inTreeNode = ImGui::TreeNode(entry.fKeyString.c_str());
bool hovered = ImGui::IsItemHovered();
if (hovered != entry.fHovered) {
// Force a save to patch the highlight shader in/out
entry.fHovered = hovered;
doSave = true;
}
if (inTreeNode) {
// Full width, and a reasonable amount of space for each shader.
ImVec2 boxSize(-1.0f, ImGui::GetTextLineHeight() * 20.0f);
ImGui::InputTextMultiline("##VP", &entry.fShader[kVertex_GrShaderType],
boxSize);
ImGui::InputTextMultiline("##FP", &entry.fShader[kFragment_GrShaderType],
boxSize);
ImGui::TreePop();
}
}
ImGui::EndChild();
if (doLoad) {
fPersistentCache.reset();
fWindow->getGrContext()->priv().getGpu()->resetShaderCacheForTesting();
gLoadPending = true;
}
if (doSave) {
// The hovered item (if any) gets a special shader to make it identifiable
auto shaderCaps = ctx->priv().caps()->shaderCaps();
bool sksl = params.fGrContextOptions.fShaderCacheStrategy ==
GrContextOptions::ShaderCacheStrategy::kSkSL;
SkSL::String highlight;
if (!sksl) {
highlight = shaderCaps->versionDeclString();
if (shaderCaps->usesPrecisionModifiers()) {
highlight.append("precision mediump float;\n");
}
}
const char* f4Type = sksl ? "half4" : "vec4";
highlight.appendf("out %s sk_FragColor;\n"
"void main() { sk_FragColor = %s(1, 0, 1, 0.5); }",
f4Type, f4Type);
fPersistentCache.reset();
fWindow->getGrContext()->priv().getGpu()->resetShaderCacheForTesting();
for (auto& entry : fCachedGLSL) {
SkSL::String backup = entry.fShader[kFragment_GrShaderType];
if (entry.fHovered) {
entry.fShader[kFragment_GrShaderType] = highlight;
}
auto data = GrPersistentCacheUtils::PackCachedShaders(entry.fShaderType,
entry.fShader,
entry.fInputs,
kGrShaderTypeCount);
fPersistentCache.store(*entry.fKey, *data);
entry.fShader[kFragment_GrShaderType] = backup;
}
}
}
}
if (paramsChanged) {
fDeferredActions.push_back([=]() {
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
this->updateTitle();
});
}
ImGui::End();
}
if (gShaderErrorHandler.fErrors.count()) {
ImGui::SetNextWindowSize(ImVec2(400, 400), ImGuiCond_FirstUseEver);
ImGui::Begin("Shader Errors");
for (int i = 0; i < gShaderErrorHandler.fErrors.count(); ++i) {
ImGui::TextWrapped("%s", gShaderErrorHandler.fErrors[i].c_str());
SkSL::String sksl(gShaderErrorHandler.fShaders[i].c_str());
GrShaderUtils::VisitLineByLine(sksl, [](int lineNumber, const char* lineText) {
ImGui::TextWrapped("%4i\t%s\n", lineNumber, lineText);
});
}
ImGui::End();
gShaderErrorHandler.reset();
}
if (fShowZoomWindow && fLastImage) {
ImGui::SetNextWindowSize(ImVec2(200, 200), ImGuiCond_FirstUseEver);
if (ImGui::Begin("Zoom", &fShowZoomWindow)) {
static int zoomFactor = 8;
if (ImGui::Button("<<")) {
zoomFactor = std::max(zoomFactor / 2, 4);
}
ImGui::SameLine(); ImGui::Text("%2d", zoomFactor); ImGui::SameLine();
if (ImGui::Button(">>")) {
zoomFactor = std::min(zoomFactor * 2, 32);
}
if (!fZoomWindowFixed) {
ImVec2 mousePos = ImGui::GetMousePos();
fZoomWindowLocation = SkPoint::Make(mousePos.x, mousePos.y);
}
SkScalar x = fZoomWindowLocation.x();
SkScalar y = fZoomWindowLocation.y();
int xInt = SkScalarRoundToInt(x);
int yInt = SkScalarRoundToInt(y);
ImVec2 avail = ImGui::GetContentRegionAvail();
uint32_t pixel = 0;
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
if (fLastImage->readPixels(info, &pixel, info.minRowBytes(), xInt, yInt)) {
ImGui::SameLine();
ImGui::Text("(X, Y): %d, %d RGBA: %X %X %X %X",
xInt, yInt,
SkGetPackedR32(pixel), SkGetPackedG32(pixel),
SkGetPackedB32(pixel), SkGetPackedA32(pixel));
}
fImGuiLayer.skiaWidget(avail, [=](SkCanvas* c) {
// Translate so the region of the image that's under the mouse cursor is centered
// in the zoom canvas:
c->scale(zoomFactor, zoomFactor);
c->translate(avail.x * 0.5f / zoomFactor - x - 0.5f,
avail.y * 0.5f / zoomFactor - y - 0.5f);
c->drawImage(this->fLastImage, 0, 0);
SkPaint outline;
outline.setStyle(SkPaint::kStroke_Style);
c->drawRect(SkRect::MakeXYWH(x, y, 1, 1), outline);
});
}
ImGui::End();
}
}
void Viewer::onIdle() {
for (int i = 0; i < fDeferredActions.count(); ++i) {
fDeferredActions[i]();
}
fDeferredActions.reset();
fStatsLayer.beginTiming(fAnimateTimer);
fAnimTimer.updateTime();
bool animateWantsInval = fSlides[fCurrentSlide]->animate(fAnimTimer.nanos());
fStatsLayer.endTiming(fAnimateTimer);
ImGuiIO& io = ImGui::GetIO();
// ImGui always has at least one "active" window, which is the default "Debug" window. It may
// not be visible, though. So we need to redraw if there is at least one visible window, or
// more than one active window. Newly created windows are active but not visible for one frame
// while they determine their layout and sizing.
if (animateWantsInval || fStatsLayer.getActive() || fRefresh ||
io.MetricsActiveWindows > 1 || io.MetricsRenderWindows > 0) {
fWindow->inval();
}
}
template <typename OptionsFunc>
static void WriteStateObject(SkJSONWriter& writer, const char* name, const char* value,
OptionsFunc&& optionsFunc) {
writer.beginObject();
{
writer.appendString(kName , name);
writer.appendString(kValue, value);
writer.beginArray(kOptions);
{
optionsFunc(writer);
}
writer.endArray();
}
writer.endObject();
}
void Viewer::updateUIState() {
if (!fWindow) {
return;
}
if (fWindow->sampleCount() < 1) {
return; // Surface hasn't been created yet.
}
SkDynamicMemoryWStream memStream;
SkJSONWriter writer(&memStream);
writer.beginArray();
// Slide state
WriteStateObject(writer, kSlideStateName, fSlides[fCurrentSlide]->getName().c_str(),
[this](SkJSONWriter& writer) {
for(const auto& slide : fSlides) {
writer.appendString(slide->getName().c_str());
}
});
// Backend state
WriteStateObject(writer, kBackendStateName, kBackendTypeStrings[fBackendType],
[](SkJSONWriter& writer) {
for (const auto& str : kBackendTypeStrings) {
writer.appendString(str);
}
});
// MSAA state
const auto countString = SkStringPrintf("%d", fWindow->sampleCount());
WriteStateObject(writer, kMSAAStateName, countString.c_str(),
[this](SkJSONWriter& writer) {
writer.appendS32(0);
if (sk_app::Window::kRaster_BackendType == fBackendType) {
return;
}
for (int msaa : {4, 8, 16}) {
writer.appendS32(msaa);
}
});
// Path renderer state
GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers;
WriteStateObject(writer, kPathRendererStateName, gPathRendererNames[pr].c_str(),
[this](SkJSONWriter& writer) {
const GrContext* ctx = fWindow->getGrContext();
if (!ctx) {
writer.appendString("Software");
} else {
const auto* caps = ctx->priv().caps();
writer.appendString(gPathRendererNames[GpuPathRenderers::kDefault].c_str());
if (fWindow->sampleCount() > 1 || caps->mixedSamplesSupport()) {
if (caps->shaderCaps()->tessellationSupport()) {
writer.appendString(
gPathRendererNames[GpuPathRenderers::kTessellation].c_str());
}
if (caps->shaderCaps()->pathRenderingSupport()) {
writer.appendString(
gPathRendererNames[GpuPathRenderers::kStencilAndCover].c_str());
}
}
if (1 == fWindow->sampleCount()) {
if(GrCoverageCountingPathRenderer::IsSupported(*caps)) {
writer.appendString(
gPathRendererNames[GpuPathRenderers::kCoverageCounting].c_str());
}
writer.appendString(gPathRendererNames[GpuPathRenderers::kSmall].c_str());
}
writer.appendString(gPathRendererNames[GpuPathRenderers::kTriangulating].c_str());
writer.appendString(gPathRendererNames[GpuPathRenderers::kNone].c_str());
}
});
// Softkey state
WriteStateObject(writer, kSoftkeyStateName, kSoftkeyHint,
[this](SkJSONWriter& writer) {
writer.appendString(kSoftkeyHint);
for (const auto& softkey : fCommands.getCommandsAsSoftkeys()) {
writer.appendString(softkey.c_str());
}
});
writer.endArray();
writer.flush();
auto data = memStream.detachAsData();
// TODO: would be cool to avoid this copy
const SkString cstring(static_cast<const char*>(data->data()), data->size());
fWindow->setUIState(cstring.c_str());
}
void Viewer::onUIStateChanged(const SkString& stateName, const SkString& stateValue) {
// For those who will add more features to handle the state change in this function:
// After the change, please call updateUIState no notify the frontend (e.g., Android app).
// For example, after slide change, updateUIState is called inside setupCurrentSlide;
// after backend change, updateUIState is called in this function.
if (stateName.equals(kSlideStateName)) {
for (int i = 0; i < fSlides.count(); ++i) {
if (fSlides[i]->getName().equals(stateValue)) {
this->setCurrentSlide(i);
return;
}
}
SkDebugf("Slide not found: %s", stateValue.c_str());
} else if (stateName.equals(kBackendStateName)) {
for (int i = 0; i < sk_app::Window::kBackendTypeCount; i++) {
if (stateValue.equals(kBackendTypeStrings[i])) {
if (fBackendType != i) {
fBackendType = (sk_app::Window::BackendType)i;
fWindow->detach();
fWindow->attach(backend_type_for_window(fBackendType));
}
break;
}
}
} else if (stateName.equals(kMSAAStateName)) {
DisplayParams params = fWindow->getRequestedDisplayParams();
int sampleCount = atoi(stateValue.c_str());
if (sampleCount != params.fMSAASampleCount) {
params.fMSAASampleCount = sampleCount;
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
this->updateTitle();
this->updateUIState();
}
} else if (stateName.equals(kPathRendererStateName)) {
DisplayParams params = fWindow->getRequestedDisplayParams();
for (const auto& pair : gPathRendererNames) {
if (pair.second == stateValue.c_str()) {
if (params.fGrContextOptions.fGpuPathRenderers != pair.first) {
params.fGrContextOptions.fGpuPathRenderers = pair.first;
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
this->updateTitle();
this->updateUIState();
}
break;
}
}
} else if (stateName.equals(kSoftkeyStateName)) {
if (!stateValue.equals(kSoftkeyHint)) {
fCommands.onSoftkey(stateValue);
this->updateUIState(); // This is still needed to reset the value to kSoftkeyHint
}
} else if (stateName.equals(kRefreshStateName)) {
// This state is actually NOT in the UI state.
// We use this to allow Android to quickly set bool fRefresh.
fRefresh = stateValue.equals(kON);
} else {
SkDebugf("Unknown stateName: %s", stateName.c_str());
}
}
bool Viewer::onKey(skui::Key key, skui::InputState state, skui::ModifierKey modifiers) {
return fCommands.onKey(key, state, modifiers);
}
bool Viewer::onChar(SkUnichar c, skui::ModifierKey modifiers) {
if (fSlides[fCurrentSlide]->onChar(c)) {
fWindow->inval();
return true;
} else {
return fCommands.onChar(c, modifiers);
}
}