skia2/samplecode/SampleCCPRGeometry.cpp
Brian Salomon fb27c9a25f Revert "Revert "Don't build GL on Metal, Vulkan, Dawn, Direct3D bots""
This reverts commit 00ba5ef4a6.

Bug: skia:10051

Change-Id: I13fd5494b7e7e64159e6330f168ab8c16a2db149
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/277609
Commit-Queue: Brian Salomon <bsalomon@google.com>
Reviewed-by: Greg Daniel <egdaniel@google.com>
2020-03-18 18:12:11 +00:00

508 lines
19 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkTypes.h"
#if SK_SUPPORT_GPU
#include "include/core/SkCanvas.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "samplecode/Sample.h"
#include "src/core/SkRectPriv.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/ccpr/GrCCCoverageProcessor.h"
#include "src/gpu/ccpr/GrCCFillGeometry.h"
#include "src/gpu/ccpr/GrCCStroker.h"
#include "src/gpu/ccpr/GrGSCoverageProcessor.h"
#include "src/gpu/ccpr/GrVSCoverageProcessor.h"
#include "src/gpu/geometry/GrPathUtils.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/ops/GrDrawOp.h"
#ifdef SK_GL
#include "src/gpu/gl/GrGLGpu.h"
#endif
using TriPointInstance = GrCCCoverageProcessor::TriPointInstance;
using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance;
using PrimitiveType = GrCCCoverageProcessor::PrimitiveType;
static constexpr float kDebugBloat = 40;
/**
* This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
* increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
* coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different
* geometry processors.
*/
class CCPRGeometryView : public Sample {
void onOnceBeforeDraw() override { this->updateGpuData(); }
void onDrawContent(SkCanvas*) override;
Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) override;
bool onClick(Sample::Click*) override;
bool onChar(SkUnichar) override;
SkString name() override { return SkString("CCPRGeometry"); }
class Click;
class DrawCoverageCountOp;
class VisualizeCoverageCountFP;
void updateAndInval() { this->updateGpuData(); }
void updateGpuData();
PrimitiveType fPrimitiveType = PrimitiveType::kTriangles;
SkCubicType fCubicType;
SkMatrix fCubicKLM;
SkPoint fPoints[4] = {
{100.05f, 100.05f}, {400.75f, 100.05f}, {400.75f, 300.95f}, {100.05f, 300.95f}};
float fConicWeight = .5;
float fStrokeWidth = 40;
bool fDoStroke = false;
SkTArray<TriPointInstance> fTriPointInstances;
SkTArray<QuadPointInstance> fQuadPointInstances;
SkPath fPath;
};
class CCPRGeometryView::DrawCoverageCountOp : public GrDrawOp {
DEFINE_OP_CLASS_ID
public:
DrawCoverageCountOp(CCPRGeometryView* view) : INHERITED(ClassID()), fView(view) {
this->setBounds(SkRect::MakeIWH(fView->width(), fView->height()), GrOp::HasAABloat::kNo,
GrOp::IsHairline::kNo);
}
const char* name() const override {
return "[Testing/Sample code] CCPRGeometryView::DrawCoverageCountOp";
}
private:
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*,
bool hasMixedSampledCoverage, GrClampType) override {
return GrProcessorSet::EmptySetAnalysis();
}
void onPrePrepare(GrRecordingContext*,
const GrSurfaceProxyView* outputView,
GrAppliedClip*,
const GrXferProcessor::DstProxyView&) override {}
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
CCPRGeometryView* fView;
typedef GrDrawOp INHERITED;
};
class CCPRGeometryView::VisualizeCoverageCountFP : public GrFragmentProcessor {
public:
VisualizeCoverageCountFP() : GrFragmentProcessor(kTestFP_ClassID, kNone_OptimizationFlags) {}
private:
const char* name() const override {
return "[Testing/Sample code] CCPRGeometryView::VisualizeCoverageCountFP";
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::make_unique<VisualizeCoverageCountFP>();
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
class Impl : public GrGLSLFragmentProcessor {
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("half count = %s.a;", args.fInputColor);
f->codeAppendf("%s = half4(clamp(-count, 0, 1), clamp(+count, 0, 1), 0, abs(count));",
args.fOutputColor);
}
};
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new Impl; }
};
static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3], SkColor color) {
SkPoint p1, p2;
if (SkScalarAbs(line[1]) > SkScalarAbs(line[0])) {
// Draw from vertical edge to vertical edge.
p1 = {0, -line[2] / line[1]};
p2 = {(SkScalar)w, (-line[2] - w * line[0]) / line[1]};
} else {
// Draw from horizontal edge to horizontal edge.
p1 = {-line[2] / line[0], 0};
p2 = {(-line[2] - h * line[1]) / line[0], (SkScalar)h};
}
SkPaint linePaint;
linePaint.setColor(color);
linePaint.setAlpha(128);
linePaint.setStyle(SkPaint::kStroke_Style);
linePaint.setStrokeWidth(0);
linePaint.setAntiAlias(true);
canvas->drawLine(p1, p2, linePaint);
}
void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
canvas->clear(SK_ColorBLACK);
if (!fDoStroke) {
SkPaint outlinePaint;
outlinePaint.setColor(0x80ffffff);
outlinePaint.setStyle(SkPaint::kStroke_Style);
outlinePaint.setStrokeWidth(0);
outlinePaint.setAntiAlias(true);
canvas->drawPath(fPath, outlinePaint);
}
#if 0
SkPaint gridPaint;
gridPaint.setColor(0x10000000);
gridPaint.setStyle(SkPaint::kStroke_Style);
gridPaint.setStrokeWidth(0);
gridPaint.setAntiAlias(true);
for (int y = 0; y < this->height(); y += kDebugBloat) {
canvas->drawLine(0, y, this->width(), y, gridPaint);
}
for (int x = 0; x < this->width(); x += kDebugBloat) {
canvas->drawLine(x, 0, x, this->height(), outlinePaint);
}
#endif
SkString caption;
if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) {
// Render coverage count.
GrContext* ctx = canvas->getGrContext();
SkASSERT(ctx);
GrOpMemoryPool* pool = ctx->priv().opMemoryPool();
int width = this->width();
int height = this->height();
auto ccbuff = GrRenderTargetContext::Make(
ctx, GrColorType::kAlpha_F16, nullptr, SkBackingFit::kApprox, {width, height});
SkASSERT(ccbuff);
ccbuff->clear(nullptr, SK_PMColor4fTRANSPARENT,
GrRenderTargetContext::CanClearFullscreen::kYes);
ccbuff->priv().testingOnly_addDrawOp(pool->allocate<DrawCoverageCountOp>(this));
// Visualize coverage count in main canvas.
GrPaint paint;
paint.addColorFragmentProcessor(
GrTextureEffect::Make(ccbuff->readSurfaceView(), ccbuff->colorInfo().alphaType()));
paint.addColorFragmentProcessor(
std::make_unique<VisualizeCoverageCountFP>());
paint.setPorterDuffXPFactory(SkBlendMode::kSrcOver);
rtc->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::MakeIWH(this->width(), this->height()));
// Add label.
caption.appendf("PrimitiveType_%s",
GrCCCoverageProcessor::PrimitiveTypeName(fPrimitiveType));
if (PrimitiveType::kCubics == fPrimitiveType) {
caption.appendf(" (%s)", SkCubicTypeName(fCubicType));
} else if (PrimitiveType::kConics == fPrimitiveType) {
caption.appendf(" (w=%f)", fConicWeight);
}
if (fDoStroke) {
caption.appendf(" (stroke_width=%f)", fStrokeWidth);
}
} else {
caption = "Use GPU backend to visualize geometry.";
}
SkPaint pointsPaint;
pointsPaint.setColor(SK_ColorBLUE);
pointsPaint.setStrokeWidth(8);
pointsPaint.setAntiAlias(true);
if (PrimitiveType::kCubics == fPrimitiveType) {
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
if (!fDoStroke) {
int w = this->width(), h = this->height();
draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW);
draw_klm_line(w, h, canvas, &fCubicKLM[3], SK_ColorBLUE);
draw_klm_line(w, h, canvas, &fCubicKLM[6], SK_ColorRED);
}
} else {
canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint);
}
SkFont font(nullptr, 20);
SkPaint captionPaint;
captionPaint.setColor(SK_ColorWHITE);
canvas->drawString(caption, 10, 30, font, captionPaint);
}
void CCPRGeometryView::updateGpuData() {
using Verb = GrCCFillGeometry::Verb;
fTriPointInstances.reset();
fQuadPointInstances.reset();
fPath.reset();
fPath.moveTo(fPoints[0]);
if (PrimitiveType::kCubics == fPrimitiveType) {
double t[2], s[2];
fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s);
GrCCFillGeometry geometry;
geometry.beginContour(fPoints[0]);
geometry.cubicTo(fPoints, kDebugBloat / 2, kDebugBloat / 2);
geometry.endContour();
int ptsIdx = 0;
for (Verb verb : geometry.verbs()) {
switch (verb) {
case Verb::kLineTo:
++ptsIdx;
continue;
case Verb::kMonotonicQuadraticTo:
ptsIdx += 2;
continue;
case Verb::kMonotonicCubicTo:
fQuadPointInstances.push_back().set(&geometry.points()[ptsIdx], 0, 0);
ptsIdx += 3;
continue;
default:
continue;
}
}
fPath.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
} else if (PrimitiveType::kTriangles != fPrimitiveType) {
SkPoint P3[3] = {fPoints[0], fPoints[1], fPoints[3]};
GrCCFillGeometry geometry;
geometry.beginContour(P3[0]);
if (PrimitiveType::kQuadratics == fPrimitiveType) {
geometry.quadraticTo(P3);
fPath.quadTo(fPoints[1], fPoints[3]);
} else {
SkASSERT(PrimitiveType::kConics == fPrimitiveType);
geometry.conicTo(P3, fConicWeight);
fPath.conicTo(fPoints[1], fPoints[3], fConicWeight);
}
geometry.endContour();
int ptsIdx = 0, conicWeightIdx = 0;
for (Verb verb : geometry.verbs()) {
if (Verb::kBeginContour == verb ||
Verb::kEndOpenContour == verb ||
Verb::kEndClosedContour == verb) {
continue;
}
if (Verb::kLineTo == verb) {
++ptsIdx;
continue;
}
SkASSERT(Verb::kMonotonicQuadraticTo == verb || Verb::kMonotonicConicTo == verb);
if (PrimitiveType::kQuadratics == fPrimitiveType &&
Verb::kMonotonicQuadraticTo == verb) {
fTriPointInstances.push_back().set(
&geometry.points()[ptsIdx], Sk2f(0, 0),
TriPointInstance::Ordering::kXYTransposed);
} else if (PrimitiveType::kConics == fPrimitiveType &&
Verb::kMonotonicConicTo == verb) {
fQuadPointInstances.push_back().setW(&geometry.points()[ptsIdx], Sk2f(0, 0),
geometry.getConicWeight(conicWeightIdx++));
}
ptsIdx += 2;
}
} else {
fTriPointInstances.push_back().set(
fPoints[0], fPoints[1], fPoints[3], Sk2f(0, 0),
TriPointInstance::Ordering::kXYTransposed);
fPath.lineTo(fPoints[1]);
fPath.lineTo(fPoints[3]);
fPath.close();
}
}
void CCPRGeometryView::DrawCoverageCountOp::onExecute(GrOpFlushState* state,
const SkRect& chainBounds) {
GrResourceProvider* rp = state->resourceProvider();
GrContext* context = state->gpu()->getContext();
#ifdef SK_GL
GrGLGpu* glGpu = GrBackendApi::kOpenGL == context->backend()
? static_cast<GrGLGpu*>(state->gpu())
: nullptr;
if (glGpu) {
glGpu->handleDirtyContext();
// GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
}
#endif
GrPipeline pipeline(GrScissorTest::kDisabled, SkBlendMode::kPlus,
state->drawOpArgs().outputSwizzle());
std::unique_ptr<GrCCCoverageProcessor> proc;
if (state->caps().shaderCaps()->geometryShaderSupport()) {
proc = std::make_unique<GrGSCoverageProcessor>();
} else {
proc = std::make_unique<GrVSCoverageProcessor>();
}
SkDEBUGCODE(proc->enableDebugBloat(kDebugBloat));
GrOpsRenderPass* renderPass = state->opsRenderPass();
if (!fView->fDoStroke) {
for (int i = 0; i < proc->numSubpasses(); ++i) {
proc->reset(fView->fPrimitiveType, i, rp);
proc->bindPipeline(state, pipeline, this->bounds());
if (PrimitiveType::kCubics == fView->fPrimitiveType ||
PrimitiveType::kConics == fView->fPrimitiveType) {
sk_sp<GrGpuBuffer> instBuff(rp->createBuffer(
fView->fQuadPointInstances.count() * sizeof(QuadPointInstance),
GrGpuBufferType::kVertex, kDynamic_GrAccessPattern,
fView->fQuadPointInstances.begin()));
if (!fView->fQuadPointInstances.empty() && instBuff) {
proc->bindBuffers(renderPass, instBuff.get());
proc->drawInstances(renderPass, fView->fQuadPointInstances.count(), 0);
}
} else {
sk_sp<GrGpuBuffer> instBuff(rp->createBuffer(
fView->fTriPointInstances.count() * sizeof(TriPointInstance),
GrGpuBufferType::kVertex, kDynamic_GrAccessPattern,
fView->fTriPointInstances.begin()));
if (!fView->fTriPointInstances.empty() && instBuff) {
proc->bindBuffers(renderPass, instBuff.get());
proc->drawInstances(renderPass, fView->fTriPointInstances.count(), 0);
}
}
}
} else if (PrimitiveType::kConics != fView->fPrimitiveType) { // No conic stroke support yet.
GrCCStroker stroker(0,0,0);
SkPaint p;
p.setStyle(SkPaint::kStroke_Style);
p.setStrokeWidth(fView->fStrokeWidth);
p.setStrokeJoin(SkPaint::kMiter_Join);
p.setStrokeMiter(4);
// p.setStrokeCap(SkPaint::kRound_Cap);
stroker.parseDeviceSpaceStroke(fView->fPath, SkPathPriv::PointData(fView->fPath),
SkStrokeRec(p), p.getStrokeWidth(), GrScissorTest::kDisabled,
SkIRect::MakeWH(fView->width(), fView->height()), {0, 0});
GrCCStroker::BatchID batchID = stroker.closeCurrentBatch();
GrOnFlushResourceProvider onFlushRP(context->priv().drawingManager());
stroker.prepareToDraw(&onFlushRP);
SkIRect ibounds;
this->bounds().roundOut(&ibounds);
stroker.drawStrokes(state, proc.get(), batchID, ibounds);
}
#ifdef SK_GL
if (glGpu) {
context->resetContext(kMisc_GrGLBackendState);
}
#endif
}
class CCPRGeometryView::Click : public Sample::Click {
public:
Click(int ptIdx) : fPtIdx(ptIdx) {}
void doClick(SkPoint points[]) {
if (fPtIdx >= 0) {
points[fPtIdx] += fCurr - fPrev;
} else {
for (int i = 0; i < 4; ++i) {
points[i] += fCurr - fPrev;
}
}
}
private:
int fPtIdx;
};
Sample::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) {
for (int i = 0; i < 4; ++i) {
if (PrimitiveType::kCubics != fPrimitiveType && 2 == i) {
continue;
}
if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
return new Click(i);
}
}
return new Click(-1);
}
bool CCPRGeometryView::onClick(Sample::Click* click) {
Click* myClick = (Click*)click;
myClick->doClick(fPoints);
this->updateAndInval();
return true;
}
bool CCPRGeometryView::onChar(SkUnichar unichar) {
if (unichar >= '1' && unichar <= '4') {
fPrimitiveType = PrimitiveType(unichar - '1');
if (fPrimitiveType >= PrimitiveType::kWeightedTriangles) {
fPrimitiveType = (PrimitiveType) ((int)fPrimitiveType + 1);
}
this->updateAndInval();
return true;
}
float* valueToScale = nullptr;
if (fDoStroke) {
valueToScale = &fStrokeWidth;
} else if (PrimitiveType::kConics == fPrimitiveType) {
valueToScale = &fConicWeight;
}
if (valueToScale) {
if (unichar == '+') {
*valueToScale *= 2;
this->updateAndInval();
return true;
}
if (unichar == '+' || unichar == '=') {
*valueToScale *= 5/4.f;
this->updateAndInval();
return true;
}
if (unichar == '-') {
*valueToScale *= 4/5.f;
this->updateAndInval();
return true;
}
if (unichar == '_') {
*valueToScale *= .5f;
this->updateAndInval();
return true;
}
}
if (unichar == 'D') {
SkDebugf(" SkPoint fPoints[4] = {\n");
SkDebugf(" {%ff, %ff},\n", fPoints[0].x(), fPoints[0].y());
SkDebugf(" {%ff, %ff},\n", fPoints[1].x(), fPoints[1].y());
SkDebugf(" {%ff, %ff},\n", fPoints[2].x(), fPoints[2].y());
SkDebugf(" {%ff, %ff}\n", fPoints[3].x(), fPoints[3].y());
SkDebugf(" };\n");
return true;
}
if (unichar == 'S') {
fDoStroke = !fDoStroke;
this->updateAndInval();
}
return false;
}
DEF_SAMPLE(return new CCPRGeometryView;)
#endif // SK_SUPPORT_GPU