f98d0d31c4
This first tries to JIT while hoisting all constants, and if that fails, tries again hoisting no constants. I figure this is one of those 80/20 deals for how to handle constant hoisting and register pressure. This probably mostly moots doing anything fancy like using memory operands with AVX or lane operands with NEON. This _doesn't_ moot hoisting the NEON tbl arguments, which is not yet done here, but probably my next CL. Change-Id: Id09d5cdddcdb45207bdfc914a5a3128a481a26f3 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/229058 Reviewed-by: Mike Klein <mtklein@google.com> Commit-Queue: Mike Klein <mtklein@google.com>
883 lines
28 KiB
C++
883 lines
28 KiB
C++
/*
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkColorPriv.h"
|
|
#include "include/private/SkColorData.h"
|
|
#include "src/core/SkVM.h"
|
|
#include "tests/Test.h"
|
|
#include "tools/Resources.h"
|
|
#include "tools/SkVMBuilders.h"
|
|
|
|
using Fmt = SrcoverBuilder_F32::Fmt;
|
|
const char* fmt_name(Fmt fmt) {
|
|
switch (fmt) {
|
|
case Fmt::A8: return "A8";
|
|
case Fmt::G8: return "G8";
|
|
case Fmt::RGBA_8888: return "RGBA_8888";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
namespace {
|
|
using namespace skvm;
|
|
|
|
struct V { Val id; };
|
|
struct R { Reg id; };
|
|
struct Shift { int bits; };
|
|
struct Splat { int bits; };
|
|
struct Hex { int bits; };
|
|
|
|
static void write(SkWStream* o, const char* s) {
|
|
o->writeText(s);
|
|
}
|
|
|
|
static void write(SkWStream* o, Arg a) {
|
|
write(o, "arg(");
|
|
o->writeDecAsText(a.ix);
|
|
write(o, ")");
|
|
}
|
|
static void write(SkWStream* o, V v) {
|
|
write(o, "v");
|
|
o->writeDecAsText(v.id);
|
|
}
|
|
static void write(SkWStream* o, R r) {
|
|
write(o, "r");
|
|
o->writeDecAsText(r.id);
|
|
}
|
|
static void write(SkWStream* o, Shift s) {
|
|
o->writeDecAsText(s.bits);
|
|
}
|
|
static void write(SkWStream* o, Splat s) {
|
|
float f;
|
|
memcpy(&f, &s.bits, 4);
|
|
o->writeHexAsText(s.bits);
|
|
write(o, " (");
|
|
o->writeScalarAsText(f);
|
|
write(o, ")");
|
|
}
|
|
static void write(SkWStream* o, Hex h) {
|
|
o->writeHexAsText(h.bits);
|
|
}
|
|
|
|
template <typename T, typename... Ts>
|
|
static void write(SkWStream* o, T first, Ts... rest) {
|
|
write(o, first);
|
|
write(o, " ");
|
|
write(o, rest...);
|
|
}
|
|
|
|
static void dump_builder(const Builder& builder, SkWStream* o) {
|
|
const std::vector<Builder::Instruction> program = builder.program();
|
|
|
|
o->writeDecAsText(program.size());
|
|
o->writeText(" values:\n");
|
|
for (Val id = 0; id < (Val)program.size(); id++) {
|
|
const Builder::Instruction& inst = program[id];
|
|
Op op = inst.op;
|
|
Val x = inst.x,
|
|
y = inst.y,
|
|
z = inst.z;
|
|
int imm = inst.imm;
|
|
write(o, inst.death == 0 ? "☠️ " :
|
|
inst.hoist ? "↑ " : " ");
|
|
switch (op) {
|
|
case Op::store8: write(o, "store8" , Arg{imm}, V{x}); break;
|
|
case Op::store32: write(o, "store32", Arg{imm}, V{x}); break;
|
|
|
|
case Op::load8: write(o, V{id}, "= load8" , Arg{imm}); break;
|
|
case Op::load32: write(o, V{id}, "= load32", Arg{imm}); break;
|
|
|
|
case Op::splat: write(o, V{id}, "= splat", Splat{imm}); break;
|
|
|
|
case Op::add_f32: write(o, V{id}, "= add_f32", V{x}, V{y} ); break;
|
|
case Op::sub_f32: write(o, V{id}, "= sub_f32", V{x}, V{y} ); break;
|
|
case Op::mul_f32: write(o, V{id}, "= mul_f32", V{x}, V{y} ); break;
|
|
case Op::div_f32: write(o, V{id}, "= div_f32", V{x}, V{y} ); break;
|
|
case Op::mad_f32: write(o, V{id}, "= mad_f32", V{x}, V{y}, V{z}); break;
|
|
|
|
case Op::add_i32: write(o, V{id}, "= add_i32", V{x}, V{y}); break;
|
|
case Op::sub_i32: write(o, V{id}, "= sub_i32", V{x}, V{y}); break;
|
|
case Op::mul_i32: write(o, V{id}, "= mul_i32", V{x}, V{y}); break;
|
|
|
|
case Op::sub_i16x2: write(o, V{id}, "= sub_i16x2", V{x}, V{y}); break;
|
|
case Op::mul_i16x2: write(o, V{id}, "= mul_i16x2", V{x}, V{y}); break;
|
|
case Op::shr_i16x2: write(o, V{id}, "= shr_i16x2", V{x}, Shift{imm}); break;
|
|
|
|
case Op::bit_and : write(o, V{id}, "= bit_and" , V{x}, V{y}); break;
|
|
case Op::bit_or : write(o, V{id}, "= bit_or" , V{x}, V{y}); break;
|
|
case Op::bit_xor : write(o, V{id}, "= bit_xor" , V{x}, V{y}); break;
|
|
case Op::bit_clear: write(o, V{id}, "= bit_clear", V{x}, V{y}); break;
|
|
|
|
case Op::shl: write(o, V{id}, "= shl", V{x}, Shift{imm}); break;
|
|
case Op::shr: write(o, V{id}, "= shr", V{x}, Shift{imm}); break;
|
|
case Op::sra: write(o, V{id}, "= sra", V{x}, Shift{imm}); break;
|
|
|
|
case Op::extract: write(o, V{id}, "= extract", V{x}, Shift{imm}, V{y}); break;
|
|
case Op::pack: write(o, V{id}, "= pack", V{x}, V{y}, Shift{imm}); break;
|
|
|
|
case Op::bytes: write(o, V{id}, "= bytes", V{x}, Hex{imm}); break;
|
|
|
|
case Op::to_f32: write(o, V{id}, "= to_f32", V{x}); break;
|
|
case Op::to_i32: write(o, V{id}, "= to_i32", V{x}); break;
|
|
}
|
|
|
|
write(o, "\n");
|
|
}
|
|
}
|
|
|
|
static void dump_program(const Program& program, SkWStream* o) {
|
|
const std::vector<Program::Instruction> instructions = program.instructions();
|
|
const int nregs = program.nregs();
|
|
const int loop = program.loop();
|
|
|
|
o->writeDecAsText(nregs);
|
|
o->writeText(" registers, ");
|
|
o->writeDecAsText(instructions.size());
|
|
o->writeText(" instructions:\n");
|
|
for (int i = 0; i < (int)instructions.size(); i++) {
|
|
if (i == loop) {
|
|
write(o, "loop:\n");
|
|
}
|
|
const Program::Instruction& inst = instructions[i];
|
|
Op op = inst.op;
|
|
Reg d = inst.d,
|
|
x = inst.x,
|
|
y = inst.y,
|
|
z = inst.z;
|
|
int imm = inst.imm;
|
|
switch (op) {
|
|
case Op::store8: write(o, "store8" , Arg{imm}, R{x}); break;
|
|
case Op::store32: write(o, "store32", Arg{imm}, R{x}); break;
|
|
|
|
case Op::load8: write(o, R{d}, "= load8" , Arg{imm}); break;
|
|
case Op::load32: write(o, R{d}, "= load32", Arg{imm}); break;
|
|
|
|
case Op::splat: write(o, R{d}, "= splat", Splat{imm}); break;
|
|
|
|
case Op::add_f32: write(o, R{d}, "= add_f32", R{x}, R{y} ); break;
|
|
case Op::sub_f32: write(o, R{d}, "= sub_f32", R{x}, R{y} ); break;
|
|
case Op::mul_f32: write(o, R{d}, "= mul_f32", R{x}, R{y} ); break;
|
|
case Op::div_f32: write(o, R{d}, "= div_f32", R{x}, R{y} ); break;
|
|
case Op::mad_f32: write(o, R{d}, "= mad_f32", R{x}, R{y}, R{z}); break;
|
|
|
|
case Op::add_i32: write(o, R{d}, "= add_i32", R{x}, R{y}); break;
|
|
case Op::sub_i32: write(o, R{d}, "= sub_i32", R{x}, R{y}); break;
|
|
case Op::mul_i32: write(o, R{d}, "= mul_i32", R{x}, R{y}); break;
|
|
|
|
case Op::sub_i16x2: write(o, R{d}, "= sub_i16x2", R{x}, R{y}); break;
|
|
case Op::mul_i16x2: write(o, R{d}, "= mul_i16x2", R{x}, R{y}); break;
|
|
case Op::shr_i16x2: write(o, R{d}, "= shr_i16x2", R{x}, Shift{imm}); break;
|
|
|
|
case Op::bit_and : write(o, R{d}, "= bit_and" , R{x}, R{y}); break;
|
|
case Op::bit_or : write(o, R{d}, "= bit_or" , R{x}, R{y}); break;
|
|
case Op::bit_xor : write(o, R{d}, "= bit_xor" , R{x}, R{y}); break;
|
|
case Op::bit_clear: write(o, R{d}, "= bit_clear", R{x}, R{y}); break;
|
|
|
|
case Op::shl: write(o, R{d}, "= shl", R{x}, Shift{imm}); break;
|
|
case Op::shr: write(o, R{d}, "= shr", R{x}, Shift{imm}); break;
|
|
case Op::sra: write(o, R{d}, "= sra", R{x}, Shift{imm}); break;
|
|
|
|
case Op::extract: write(o, R{d}, "= extract", R{x}, Shift{imm}, R{y}); break;
|
|
case Op::pack: write(o, R{d}, "= pack", R{x}, R{y}, Shift{imm}); break;
|
|
|
|
case Op::bytes: write(o, R{d}, "= bytes", R{x}, Hex{imm}); break;
|
|
|
|
case Op::to_f32: write(o, R{d}, "= to_f32", R{x}); break;
|
|
case Op::to_i32: write(o, R{d}, "= to_i32", R{x}); break;
|
|
}
|
|
write(o, "\n");
|
|
}
|
|
}
|
|
|
|
static void dump(Builder& builder, SkWStream* o) {
|
|
skvm::Program program = builder.done();
|
|
dump_builder(builder, o);
|
|
o->writeText("\n");
|
|
dump_program(program, o);
|
|
o->writeText("\n");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <typename Fn>
|
|
static void test_jit_and_interpreter(skvm::Program&& program, Fn&& test) {
|
|
test((const skvm::Program&) program);
|
|
program.dropJIT();
|
|
test((const skvm::Program&) program);
|
|
}
|
|
|
|
DEF_TEST(SkVM, r) {
|
|
SkDynamicMemoryWStream buf;
|
|
|
|
// Write all combinations of SrcoverBuilder_F32
|
|
for (int s = 0; s < 3; s++)
|
|
for (int d = 0; d < 3; d++) {
|
|
auto srcFmt = (Fmt)s,
|
|
dstFmt = (Fmt)d;
|
|
SrcoverBuilder_F32 builder{srcFmt, dstFmt};
|
|
|
|
buf.writeText(fmt_name(srcFmt));
|
|
buf.writeText(" over ");
|
|
buf.writeText(fmt_name(dstFmt));
|
|
buf.writeText("\n");
|
|
dump(builder, &buf);
|
|
}
|
|
|
|
// Write the I32 Srcovers also.
|
|
{
|
|
SrcoverBuilder_I32_Naive builder;
|
|
buf.writeText("I32 (Naive) 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
{
|
|
SrcoverBuilder_I32 builder;
|
|
buf.writeText("I32 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
{
|
|
SrcoverBuilder_I32_SWAR builder;
|
|
buf.writeText("I32 (SWAR) 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
|
|
sk_sp<SkData> blob = buf.detachAsData();
|
|
{
|
|
|
|
sk_sp<SkData> expected = GetResourceAsData("SkVMTest.expected");
|
|
REPORTER_ASSERT(r, expected, "Couldn't load SkVMTest.expected.");
|
|
if (expected) {
|
|
if (blob->size() != expected->size()
|
|
|| 0 != memcmp(blob->data(), expected->data(), blob->size())) {
|
|
|
|
ERRORF(r, "SkVMTest expected\n%.*s\nbut got\n%.*s\n",
|
|
expected->size(), expected->data(),
|
|
blob->size(), blob->data());
|
|
}
|
|
|
|
SkFILEWStream out(GetResourcePath("SkVMTest.expected").c_str());
|
|
if (out.isValid()) {
|
|
out.write(blob->data(), blob->size());
|
|
}
|
|
}
|
|
}
|
|
|
|
auto test_8888 = [&](skvm::Program&& program) {
|
|
uint32_t src[9];
|
|
uint32_t dst[SK_ARRAY_COUNT(src)];
|
|
|
|
test_jit_and_interpreter(std::move(program), [&](const skvm::Program& program) {
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
|
|
src[i] = 0xbb007733;
|
|
dst[i] = 0xffaaccee;
|
|
}
|
|
|
|
SkPMColor expected = SkPMSrcOver(src[0], dst[0]); // 0xff2dad73
|
|
|
|
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
|
|
|
|
// dst is probably 0xff2dad72.
|
|
for (auto got : dst) {
|
|
auto want = expected;
|
|
for (int i = 0; i < 4; i++) {
|
|
uint8_t d = got & 0xff,
|
|
w = want & 0xff;
|
|
if (abs(d-w) >= 2) {
|
|
SkDebugf("d %02x, w %02x\n", d,w);
|
|
}
|
|
REPORTER_ASSERT(r, abs(d-w) < 2);
|
|
got >>= 8;
|
|
want >>= 8;
|
|
}
|
|
}
|
|
});
|
|
};
|
|
|
|
test_8888(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::RGBA_8888}.done("srcover_f32"));
|
|
test_8888(SrcoverBuilder_I32_Naive{}.done("srcover_i32_naive"));
|
|
test_8888(SrcoverBuilder_I32{}.done("srcover_i32"));
|
|
test_8888(SrcoverBuilder_I32_SWAR{}.done("srcover_i32_SWAR"));
|
|
|
|
test_jit_and_interpreter(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::G8}.done(),
|
|
[&](const skvm::Program& program) {
|
|
uint32_t src[9];
|
|
uint8_t dst[SK_ARRAY_COUNT(src)];
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
|
|
src[i] = 0xbb007733;
|
|
dst[i] = 0x42;
|
|
}
|
|
|
|
SkPMColor over = SkPMSrcOver(SkPackARGB32(0xbb, 0x33, 0x77, 0x00),
|
|
0xff424242);
|
|
|
|
uint8_t want = SkComputeLuminance(SkGetPackedR32(over),
|
|
SkGetPackedG32(over),
|
|
SkGetPackedB32(over));
|
|
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
|
|
|
|
for (auto got : dst) {
|
|
REPORTER_ASSERT(r, abs(got-want) < 3);
|
|
}
|
|
});
|
|
|
|
test_jit_and_interpreter(SrcoverBuilder_F32{Fmt::A8, Fmt::A8}.done(),
|
|
[&](const skvm::Program& program) {
|
|
uint8_t src[256],
|
|
dst[256];
|
|
for (int i = 0; i < 256; i++) {
|
|
src[i] = 255 - i;
|
|
dst[i] = i;
|
|
}
|
|
|
|
program.eval(256, src, dst);
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
uint8_t want = SkGetPackedA32(SkPMSrcOver(SkPackARGB32(src[i], 0,0,0),
|
|
SkPackARGB32( i, 0,0,0)));
|
|
REPORTER_ASSERT(r, abs(dst[i]-want) < 2);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_LoopCounts, r) {
|
|
// Make sure we cover all the exact N we want.
|
|
|
|
// buf[i] += 1
|
|
skvm::Builder b;
|
|
skvm::Arg arg = b.arg<int>();
|
|
b.store32(arg,
|
|
b.add(b.splat(1),
|
|
b.load32(arg)));
|
|
|
|
test_jit_and_interpreter(b.done(), [&](const skvm::Program& program) {
|
|
int buf[64];
|
|
for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) {
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
buf[i] = i;
|
|
}
|
|
program.eval(N, buf);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i+1);
|
|
}
|
|
for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_mad, r) {
|
|
// This program is designed to exercise the tricky corners of instruction
|
|
// and register selection for Op::mad_f32.
|
|
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.arg<int>();
|
|
|
|
skvm::F32 x = b.to_f32(b.load32(arg)),
|
|
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
|
|
z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok.
|
|
w = b.mad(z,z,y), // w can alias z but not y.
|
|
v = b.mad(w,y,w); // Got to stop somewhere.
|
|
b.store32(arg, b.to_i32(v));
|
|
}
|
|
|
|
test_jit_and_interpreter(b.done(), [&](const skvm::Program& program) {
|
|
int x = 2;
|
|
program.eval(1, &x);
|
|
// x = 2
|
|
// y = 2*2 + 2 = 6
|
|
// z = 6*6 + 2 = 38
|
|
// w = 38*38 + 6 = 1450
|
|
// v = 1450*6 + 1450 = 10150
|
|
REPORTER_ASSERT(r, x == 10150);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_hoist, r) {
|
|
// This program uses enough constants that it will fail to JIT if we hoist them.
|
|
// The JIT will try again without hoisting, and that'll just need 2 registers.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.arg<int>();
|
|
skvm::I32 x = b.load32(arg);
|
|
for (int i = 0; i < 32; i++) {
|
|
x = b.add(x, b.splat(i));
|
|
}
|
|
b.store32(arg, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(b.done(), [&](const skvm::Program& program) {
|
|
int x = 4;
|
|
program.eval(1, &x);
|
|
// x += 0 + 1 + 2 + 3 + ... + 30 + 31
|
|
// x += 496
|
|
REPORTER_ASSERT(r, x == 500);
|
|
});
|
|
}
|
|
|
|
|
|
template <typename Fn>
|
|
static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) {
|
|
uint8_t buf[4096];
|
|
skvm::Assembler a{buf};
|
|
fn(a);
|
|
|
|
REPORTER_ASSERT(r, a.size() == expected.size());
|
|
|
|
auto got = (const uint8_t*)buf,
|
|
want = expected.begin();
|
|
for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) {
|
|
REPORTER_ASSERT(r, got[i] == want[i],
|
|
"byte %d was %02x, want %02x", i, got[i], want[i]);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_Assembler, r) {
|
|
// Easiest way to generate test cases is
|
|
//
|
|
// echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel
|
|
//
|
|
// The -x86-asm-syntax=intel bit is optional, controlling the
|
|
// input syntax only; the output will always be AT&T op x,y,dst style.
|
|
// Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find
|
|
// that a bit easier to use here, despite maybe favoring AT&T overall.
|
|
|
|
using A = skvm::Assembler;
|
|
// Our exit strategy from AVX code.
|
|
test_asm(r, [&](A& a) {
|
|
a.vzeroupper();
|
|
a.ret();
|
|
},{
|
|
0xc5, 0xf8, 0x77,
|
|
0xc3,
|
|
});
|
|
|
|
// Align should pad with zero
|
|
test_asm(r, [&](A& a) {
|
|
a.ret();
|
|
a.align(4);
|
|
},{
|
|
0xc3,
|
|
0x00, 0x00, 0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.add(A::rax, 8); // Always good to test rax.
|
|
a.sub(A::rax, 32);
|
|
|
|
a.add(A::rdi, 12); // Last 0x48 REX
|
|
a.sub(A::rdi, 8);
|
|
|
|
a.add(A::r8 , 7); // First 0x49 REX
|
|
a.sub(A::r8 , 4);
|
|
|
|
a.add(A::rsi, 128); // Requires 4 byte immediate.
|
|
a.sub(A::r8 , 1000000);
|
|
},{
|
|
0x48, 0x83, 0b11'000'000, 0x08,
|
|
0x48, 0x83, 0b11'101'000, 0x20,
|
|
|
|
0x48, 0x83, 0b11'000'111, 0x0c,
|
|
0x48, 0x83, 0b11'101'111, 0x08,
|
|
|
|
0x49, 0x83, 0b11'000'000, 0x07,
|
|
0x49, 0x83, 0b11'101'000, 0x04,
|
|
|
|
0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00,
|
|
0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00,
|
|
});
|
|
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX.
|
|
a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX.
|
|
a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX.
|
|
a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right.
|
|
},{
|
|
/* VEX */ /*op*/ /*modRM*/
|
|
0xc5, 0xf5, 0xfe, 0xc2,
|
|
0xc5, 0x75, 0xfe, 0xc2,
|
|
0xc5, 0xbd, 0xfe, 0xc2,
|
|
0xc4, 0xc1, 0x75, 0xfe, 0xc0,
|
|
0xc4, 0xe2, 0x75, 0x40, 0xc2,
|
|
0xc5, 0xf5, 0xfa, 0xc2,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpsrld(A::ymm15, A::ymm2, 8);
|
|
a.vpsrld(A::ymm0 , A::ymm8, 5);
|
|
},{
|
|
0xc5, 0x85, 0x72,0xd2, 0x08,
|
|
0xc4,0xc1,0x7d, 0x72,0xd0, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpermq(A::ymm1, A::ymm2, 5);
|
|
},{
|
|
0xc4,0xe3,0xfd, 0x00,0xca, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l = a.here();
|
|
a.byte(1);
|
|
a.byte(2);
|
|
a.byte(3);
|
|
a.byte(4);
|
|
|
|
a.vbroadcastss(A::ymm0 , &l);
|
|
a.vbroadcastss(A::ymm1 , &l);
|
|
a.vbroadcastss(A::ymm8 , &l);
|
|
a.vbroadcastss(A::ymm15, &l);
|
|
|
|
a.vpshufb(A::ymm4, A::ymm3, &l);
|
|
},{
|
|
0x01, 0x02, 0x03, 0x4,
|
|
|
|
/* VEX */ /*op*/ /* ModRM */ /* offset */
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40
|
|
|
|
0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l = a.here();
|
|
a.jne(&l);
|
|
a.jne(&l);
|
|
a.je (&l);
|
|
a.jmp(&l);
|
|
a.jl (&l);
|
|
|
|
a.cmp(A::rdx, 0);
|
|
a.cmp(A::rax, 12);
|
|
a.cmp(A::r14, 2000000000);
|
|
},{
|
|
0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes
|
|
0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes
|
|
0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes
|
|
0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes
|
|
0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes
|
|
|
|
0x48,0x83,0xfa,0x00,
|
|
0x48,0x83,0xf8,0x0c,
|
|
0x49,0x81,0xfe,0x00,0x94,0x35,0x77,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vmovups(A::ymm5, A::rsi);
|
|
a.vmovups(A::rsi, A::ymm5);
|
|
|
|
a.vpmovzxbd(A::ymm4, A::rsi);
|
|
|
|
a.vmovq(A::rdx, A::xmm15);
|
|
},{
|
|
/* VEX */ /*Op*/ /* ModRM */
|
|
0xc5, 0xfc, 0x10, 0b00'101'110,
|
|
0xc5, 0xfc, 0x11, 0b00'101'110,
|
|
|
|
0xc4,0xe2,0x7d, 0x31, 0b00'100'110,
|
|
|
|
0xc5, 0x79, 0xd6, 0b00'111'010,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.movzbl(A::rax, A::rsi); // Low registers for src and dst.
|
|
a.movzbl(A::rax, A::r8); // High src register.
|
|
a.movzbl(A::r8 , A::rsi); // High dst register.
|
|
|
|
a.vmovd(A::rax, A::xmm0);
|
|
a.vmovd(A::rax, A::xmm8);
|
|
a.vmovd(A::r8, A::xmm0);
|
|
|
|
a.vmovd(A::xmm0, A::rax);
|
|
a.vmovd(A::xmm8, A::rax);
|
|
a.vmovd(A::xmm0, A::r8);
|
|
|
|
a.vmovd_direct(A::rax, A::xmm0);
|
|
a.vmovd_direct(A::rax, A::xmm8);
|
|
a.vmovd_direct(A::r8, A::xmm0);
|
|
|
|
a.vmovd_direct(A::xmm0, A::rax);
|
|
a.vmovd_direct(A::xmm8, A::rax);
|
|
a.vmovd_direct(A::xmm0, A::r8);
|
|
|
|
a.movb(A::rdx, A::rax);
|
|
a.movb(A::rdx, A::r8);
|
|
a.movb(A::r8 , A::rax);
|
|
},{
|
|
0x0f,0xb6,0x06,
|
|
0x41,0x0f,0xb6,0x00,
|
|
0x44,0x0f,0xb6,0x06,
|
|
|
|
0xc5,0xf9,0x7e,0x00,
|
|
0xc5,0x79,0x7e,0x00,
|
|
0xc4,0xc1,0x79,0x7e,0x00,
|
|
|
|
0xc5,0xf9,0x6e,0x00,
|
|
0xc5,0x79,0x6e,0x00,
|
|
0xc4,0xc1,0x79,0x6e,0x00,
|
|
|
|
0xc5,0xf9,0x7e,0xc0,
|
|
0xc5,0x79,0x7e,0xc0,
|
|
0xc4,0xc1,0x79,0x7e,0xc0,
|
|
|
|
0xc5,0xf9,0x6e,0xc0,
|
|
0xc5,0x79,0x6e,0xc0,
|
|
0xc4,0xc1,0x79,0x6e,0xc0,
|
|
|
|
0x88, 0x02,
|
|
0x44, 0x88, 0x02,
|
|
0x41, 0x88, 0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpinsrb(A::xmm1, A::xmm8, A::rsi, 4);
|
|
a.vpinsrb(A::xmm8, A::xmm1, A::r8, 12);
|
|
|
|
a.vpextrb(A::rsi, A::xmm8, 7);
|
|
a.vpextrb(A::r8, A::xmm1, 15);
|
|
},{
|
|
0xc4,0xe3,0x39, 0x20, 0x0e, 4,
|
|
0xc4,0x43,0x71, 0x20, 0x00, 12,
|
|
|
|
0xc4,0x63,0x79, 0x14, 0x06, 7,
|
|
0xc4,0xc3,0x79, 0x14, 0x08, 15,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpandn(A::ymm3, A::ymm12, A::ymm2);
|
|
},{
|
|
0xc5, 0x9d, 0xdf, 0xda,
|
|
});
|
|
|
|
// echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.and16b(A::v4, A::v3, A::v1);
|
|
a.orr16b(A::v4, A::v3, A::v1);
|
|
a.eor16b(A::v4, A::v3, A::v1);
|
|
a.bic16b(A::v4, A::v3, A::v1);
|
|
|
|
a.add4s(A::v4, A::v3, A::v1);
|
|
a.sub4s(A::v4, A::v3, A::v1);
|
|
a.mul4s(A::v4, A::v3, A::v1);
|
|
|
|
a.sub8h(A::v4, A::v3, A::v1);
|
|
a.mul8h(A::v4, A::v3, A::v1);
|
|
|
|
a.fadd4s(A::v4, A::v3, A::v1);
|
|
a.fsub4s(A::v4, A::v3, A::v1);
|
|
a.fmul4s(A::v4, A::v3, A::v1);
|
|
a.fdiv4s(A::v4, A::v3, A::v1);
|
|
|
|
a.fmla4s(A::v4, A::v3, A::v1);
|
|
},{
|
|
0x64,0x1c,0x21,0x4e,
|
|
0x64,0x1c,0xa1,0x4e,
|
|
0x64,0x1c,0x21,0x6e,
|
|
0x64,0x1c,0x61,0x4e,
|
|
|
|
0x64,0x84,0xa1,0x4e,
|
|
0x64,0x84,0xa1,0x6e,
|
|
0x64,0x9c,0xa1,0x4e,
|
|
|
|
0x64,0x84,0x61,0x6e,
|
|
0x64,0x9c,0x61,0x4e,
|
|
|
|
0x64,0xd4,0x21,0x4e,
|
|
0x64,0xd4,0xa1,0x4e,
|
|
0x64,0xdc,0x21,0x6e,
|
|
0x64,0xfc,0x21,0x6e,
|
|
|
|
0x64,0xcc,0x21,0x4e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.shl4s(A::v4, A::v3, 0);
|
|
a.shl4s(A::v4, A::v3, 1);
|
|
a.shl4s(A::v4, A::v3, 8);
|
|
a.shl4s(A::v4, A::v3, 16);
|
|
a.shl4s(A::v4, A::v3, 31);
|
|
|
|
a.sshr4s(A::v4, A::v3, 1);
|
|
a.sshr4s(A::v4, A::v3, 8);
|
|
a.sshr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr4s(A::v4, A::v3, 1);
|
|
a.ushr4s(A::v4, A::v3, 8);
|
|
a.ushr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr8h(A::v4, A::v3, 1);
|
|
a.ushr8h(A::v4, A::v3, 8);
|
|
a.ushr8h(A::v4, A::v3, 15);
|
|
},{
|
|
0x64,0x54,0x20,0x4f,
|
|
0x64,0x54,0x21,0x4f,
|
|
0x64,0x54,0x28,0x4f,
|
|
0x64,0x54,0x30,0x4f,
|
|
0x64,0x54,0x3f,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x4f,
|
|
0x64,0x04,0x38,0x4f,
|
|
0x64,0x04,0x21,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x6f,
|
|
0x64,0x04,0x38,0x6f,
|
|
0x64,0x04,0x21,0x6f,
|
|
|
|
0x64,0x04,0x1f,0x6f,
|
|
0x64,0x04,0x18,0x6f,
|
|
0x64,0x04,0x11,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.sli4s(A::v4, A::v3, 0);
|
|
a.sli4s(A::v4, A::v3, 1);
|
|
a.sli4s(A::v4, A::v3, 8);
|
|
a.sli4s(A::v4, A::v3, 16);
|
|
a.sli4s(A::v4, A::v3, 31);
|
|
},{
|
|
0x64,0x54,0x20,0x6f,
|
|
0x64,0x54,0x21,0x6f,
|
|
0x64,0x54,0x28,0x6f,
|
|
0x64,0x54,0x30,0x6f,
|
|
0x64,0x54,0x3f,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.scvtf4s (A::v4, A::v3);
|
|
a.fcvtzs4s(A::v4, A::v3);
|
|
},{
|
|
0x64,0xd8,0x21,0x4e,
|
|
0x64,0xb8,0xa1,0x4e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ret(A::x30); // Conventional ret using link register.
|
|
a.ret(A::x13); // Can really return using any register if we like.
|
|
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
|
|
a.sub(A::x2, A::x2, 4);
|
|
a.sub(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::x2, A::x2, 4);
|
|
a.subs(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::xzr, A::x2, 4); // These are actually the same instruction!
|
|
a.cmp(A::x2, 4);
|
|
|
|
A::Label l = a.here();
|
|
a.bne(&l);
|
|
a.bne(&l);
|
|
a.blt(&l);
|
|
a.b(&l);
|
|
a.cbnz(A::x2, &l);
|
|
a.cbz(A::x2, &l);
|
|
},{
|
|
0xc0,0x03,0x5f,0xd6,
|
|
0xa0,0x01,0x5f,0xd6,
|
|
|
|
0x42,0x10,0x00,0x91,
|
|
0x43,0x80,0x00,0x91,
|
|
|
|
0x42,0x10,0x00,0xd1,
|
|
0x43,0x80,0x00,0xd1,
|
|
|
|
0x42,0x10,0x00,0xf1,
|
|
0x43,0x80,0x00,0xf1,
|
|
|
|
0x5f,0x10,0x00,0xf1,
|
|
0x5f,0x10,0x00,0xf1,
|
|
|
|
0x01,0x00,0x00,0x54, // b.ne #0
|
|
0xe1,0xff,0xff,0x54, // b.ne #-4
|
|
0xcb,0xff,0xff,0x54, // b.lt #-8
|
|
0xae,0xff,0xff,0x54, // b.al #-12
|
|
0x82,0xff,0xff,0xb5, // cbnz x2, #-16
|
|
0x62,0xff,0xff,0xb4, // cbz x2, #-20
|
|
});
|
|
|
|
// Can we cbz() to a not-yet-defined label?
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.cbz(A::x2, &l);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l);
|
|
a.ret(A::x30);
|
|
},{
|
|
0x42,0x00,0x00,0xb4, // cbz x2, #8
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xc0,0x03,0x5f,0xd6, // ret
|
|
});
|
|
|
|
// If we start a label as a backward label,
|
|
// can we redefine it to be a future label?
|
|
// (Not sure this is useful... just want to test it works.)
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l1 = a.here();
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky.
|
|
|
|
A::Label l2 = a.here(); // Start off the same...
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l2); // Looks like this will go backward...
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l2); // But no... actually forward! What a switcheroo!
|
|
},{
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xe2,0xff,0xff,0xb4, // cbz x2, #-4
|
|
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0x62,0x00,0x00,0xb4, // cbz x2, #12
|
|
0x42,0x10,0x00,0x91, // add x2, x2, #4
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrq(A::v0, A::x8);
|
|
a.strq(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0xc0,0x3d,
|
|
0x00,0x01,0x80,0x3d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.xtns2h(A::v0, A::v0);
|
|
a.xtnh2b(A::v0, A::v0);
|
|
a.strs (A::v0, A::x0);
|
|
|
|
a.ldrs (A::v0, A::x0);
|
|
a.uxtlb2h(A::v0, A::v0);
|
|
a.uxtlh2s(A::v0, A::v0);
|
|
},{
|
|
0x00,0x28,0x61,0x0e,
|
|
0x00,0x28,0x21,0x0e,
|
|
0x00,0x00,0x00,0xbd,
|
|
|
|
0x00,0x00,0x40,0xbd,
|
|
0x00,0xa4,0x08,0x2f,
|
|
0x00,0xa4,0x10,0x2f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrb(A::v0, A::x8);
|
|
a.strb(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0x40,0x3d,
|
|
0x00,0x01,0x00,0x3d,
|
|
});
|
|
}
|