skia2/src/sksl/SkSLByteCodeGenerator.cpp
John Stiles 9aeed131a3 Code cleanup: Add isScalar/isVector/isMatrix helpers to Type.
These checks are made very frequently; it significantly eases
readability to have dedicated accessor methods, versus the verbose
`x.typeKind() == Type::TypeKind::kFoobar`.

Change-Id: I812b95f871cee436ccd3a5982c404f83563d44e5
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/338317
Reviewed-by: Brian Osman <brianosman@google.com>
Reviewed-by: Ethan Nicholas <ethannicholas@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
Commit-Queue: Ethan Nicholas <ethannicholas@google.com>
Auto-Submit: John Stiles <johnstiles@google.com>
2020-11-25 15:17:17 +00:00

1987 lines
79 KiB
C++

/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLByteCodeGenerator.h"
#include <algorithm>
namespace SkSL {
static TypeCategory type_category(const Type& type) {
switch (type.typeKind()) {
case Type::TypeKind::kVector:
case Type::TypeKind::kMatrix:
return type_category(type.componentType());
default:
if (type.isBoolean()) {
return TypeCategory::kBool;
}
const StringFragment& name = type.name();
if (name == "int" ||
name == "short" ||
name == "$intLiteral") {
return TypeCategory::kSigned;
}
if (name == "uint" ||
name == "ushort") {
return TypeCategory::kUnsigned;
}
SkASSERT(name == "float" ||
name == "half" ||
name == "$floatLiteral");
return TypeCategory::kFloat;
}
}
ByteCodeGenerator::ByteCodeGenerator(const Context* context, const Program* program,
ErrorReporter* errors, ByteCode* output)
: INHERITED(program, errors, nullptr)
, fContext(*context)
, fOutput(output)
, fSynthetics(errors, /*builtin=*/true)
// If you're adding new intrinsics here, ensure that they're declared in sksl_interp.sksl or
// sksl_public.sksl, so they're available to "generic" interpreter programs (eg particles).
// You can probably copy the declarations from sksl_gpu.sksl.
, fIntrinsics {
{ "abs", ByteCodeInstruction::kAbs },
{ "acos", ByteCodeInstruction::kACos },
{ "asin", ByteCodeInstruction::kASin },
{ "atan", SpecialIntrinsic::kATan },
{ "ceil", ByteCodeInstruction::kCeil },
{ "clamp", SpecialIntrinsic::kClamp },
{ "cos", ByteCodeInstruction::kCos },
{ "distance", SpecialIntrinsic::kDistance },
{ "dot", SpecialIntrinsic::kDot },
{ "exp", ByteCodeInstruction::kExp },
{ "exp2", ByteCodeInstruction::kExp2 },
{ "floor", ByteCodeInstruction::kFloor },
{ "fract", ByteCodeInstruction::kFract },
{ "inverse", ByteCodeInstruction::kInverse2x2 },
{ "inversesqrt", ByteCodeInstruction::kInvSqrt },
{ "length", SpecialIntrinsic::kLength },
{ "log", ByteCodeInstruction::kLog },
{ "log2", ByteCodeInstruction::kLog2 },
{ "max", SpecialIntrinsic::kMax },
{ "min", SpecialIntrinsic::kMin },
{ "mix", SpecialIntrinsic::kMix },
{ "mod", SpecialIntrinsic::kMod },
{ "normalize", SpecialIntrinsic::kNormalize },
{ "pow", ByteCodeInstruction::kPow },
{ "sample", SpecialIntrinsic::kSample },
{ "saturate", SpecialIntrinsic::kSaturate },
{ "sign", ByteCodeInstruction::kSign },
{ "sin", ByteCodeInstruction::kSin },
{ "smoothstep", SpecialIntrinsic::kSmoothstep },
{ "step", SpecialIntrinsic::kStep },
{ "sqrt", ByteCodeInstruction::kSqrt },
{ "tan", ByteCodeInstruction::kTan },
{ "lessThan", { ByteCodeInstruction::kCompareFLT,
ByteCodeInstruction::kCompareSLT,
ByteCodeInstruction::kCompareULT } },
{ "lessThanEqual", { ByteCodeInstruction::kCompareFLTEQ,
ByteCodeInstruction::kCompareSLTEQ,
ByteCodeInstruction::kCompareULTEQ } },
{ "greaterThan", { ByteCodeInstruction::kCompareFGT,
ByteCodeInstruction::kCompareSGT,
ByteCodeInstruction::kCompareUGT } },
{ "greaterThanEqual", { ByteCodeInstruction::kCompareFGTEQ,
ByteCodeInstruction::kCompareSGTEQ,
ByteCodeInstruction::kCompareUGTEQ } },
{ "equal", { ByteCodeInstruction::kCompareFEQ,
ByteCodeInstruction::kCompareIEQ,
ByteCodeInstruction::kCompareIEQ } },
{ "notEqual", { ByteCodeInstruction::kCompareFNEQ,
ByteCodeInstruction::kCompareINEQ,
ByteCodeInstruction::kCompareINEQ } },
{ "any", SpecialIntrinsic::kAny },
{ "all", SpecialIntrinsic::kAll },
{ "not", ByteCodeInstruction::kNotB },
} {}
int ByteCodeGenerator::SlotCount(const Type& type) {
switch (type.typeKind()) {
case Type::TypeKind::kOther:
return 0;
case Type::TypeKind::kStruct: {
int slots = 0;
for (const auto& f : type.fields()) {
slots += SlotCount(*f.fType);
}
SkASSERT(slots <= 255);
return slots;
}
case Type::TypeKind::kArray: {
int columns = type.columns();
SkASSERT(columns >= 0);
int slots = columns * SlotCount(type.componentType());
SkASSERT(slots <= 255);
return slots;
}
default:
return type.columns() * type.rows();
}
}
static inline bool is_uniform(const SkSL::Variable& var) {
return var.modifiers().fFlags & Modifiers::kUniform_Flag;
}
static inline bool is_in(const SkSL::Variable& var) {
return var.modifiers().fFlags & Modifiers::kIn_Flag;
}
void ByteCodeGenerator::gatherUniforms(const Type& type, const String& name) {
switch (type.typeKind()) {
case Type::TypeKind::kOther:
break;
case Type::TypeKind::kStruct:
for (const auto& f : type.fields()) {
this->gatherUniforms(*f.fType, name + "." + f.fName);
}
break;
case Type::TypeKind::kArray:
for (int i = 0; i < type.columns(); ++i) {
this->gatherUniforms(type.componentType(), String::printf("%s[%d]", name.c_str(),
i));
}
break;
default:
fOutput->fUniforms.push_back({ name, type_category(type), type.rows(), type.columns(),
fOutput->fUniformSlotCount });
fOutput->fUniformSlotCount += type.columns() * type.rows();
}
}
bool ByteCodeGenerator::generateCode() {
for (const ProgramElement* e : fProgram.elements()) {
switch (e->kind()) {
case ProgramElement::Kind::kFunction: {
std::unique_ptr<ByteCodeFunction> f =
this->writeFunction(e->as<FunctionDefinition>());
if (!f) {
return false;
}
fOutput->fFunctions.push_back(std::move(f));
fFunctions.push_back(&e->as<FunctionDefinition>());
break;
}
case ProgramElement::Kind::kGlobalVar: {
const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
const Variable& declVar = decl.declaration()->as<VarDeclaration>().var();
if (declVar.type() == *fContext.fFragmentProcessor_Type) {
fOutput->fChildFPCount++;
}
if (declVar.modifiers().fLayout.fBuiltin >= 0 || is_in(declVar)) {
continue;
}
if (is_uniform(declVar)) {
this->gatherUniforms(declVar.type(), declVar.name());
} else {
fOutput->fGlobalSlotCount += SlotCount(declVar.type());
}
break;
}
default:
; // ignore
}
}
return 0 == fErrors.errorCount();
}
std::unique_ptr<ByteCodeFunction> ByteCodeGenerator::writeFunction(const FunctionDefinition& f) {
fFunction = &f;
std::unique_ptr<ByteCodeFunction> result(new ByteCodeFunction(&f.declaration()));
fParameterCount = result->fParameterCount;
fLoopCount = fMaxLoopCount = 0;
fConditionCount = fMaxConditionCount = 0;
fStackCount = fMaxStackCount = 0;
fCode = &result->fCode;
this->writeStatement(*f.body());
if (0 == fErrors.errorCount()) {
SkASSERT(fLoopCount == 0);
SkASSERT(fConditionCount == 0);
SkASSERT(fStackCount == 0);
}
this->write(ByteCodeInstruction::kReturn, 0);
result->fLocalCount = fLocals.size();
result->fConditionCount = fMaxConditionCount;
result->fLoopCount = fMaxLoopCount;
result->fStackCount = fMaxStackCount;
const Type& returnType = f.declaration().returnType();
if (returnType != *fContext.fVoid_Type) {
result->fReturnCount = SlotCount(returnType);
}
fLocals.clear();
fFunction = nullptr;
return result;
}
// If the expression is a reference to a builtin global variable, return the builtin ID.
// Otherwise, return -1.
static int expression_as_builtin(const Expression& e) {
if (e.is<VariableReference>()) {
const Variable& var(*e.as<VariableReference>().variable());
if (var.storage() == Variable::Storage::kGlobal) {
return var.modifiers().fLayout.fBuiltin;
}
}
return -1;
}
// A "simple" Swizzle is based on a variable (or a compound variable like a struct or array), and
// that references consecutive values, such that it can be implemented using normal load/store ops
// with an offset. Note that all single-component swizzles (of suitable base types) are simple.
static bool swizzle_is_simple(const Swizzle& s) {
// Builtin variables use dedicated instructions that don't allow subset loads
if (expression_as_builtin(*s.base()) >= 0) {
return false;
}
switch (s.base()->kind()) {
case Expression::Kind::kFieldAccess:
case Expression::Kind::kIndex:
case Expression::Kind::kVariableReference:
break;
default:
return false;
}
for (size_t i = 1; i < s.components().size(); ++i) {
if (s.components()[i] != s.components()[i - 1] + 1) {
return false;
}
}
return true;
}
int ByteCodeGenerator::StackUsage(ByteCodeInstruction inst, int count_) {
// Ensures that we use count iff we're passed a non-default value. Most instructions have an
// implicit count, so the caller shouldn't need to worry about it (or count makes no sense).
// The asserts avoids callers thinking they're supplying useful information in that scenario,
// or failing to supply necessary information for the ops that need a count.
struct CountValue {
operator int() {
SkASSERT(val != ByteCodeGenerator::kUnusedStackCount);
SkDEBUGCODE(used = true);
return val;
}
~CountValue() {
SkASSERT(used || val == ByteCodeGenerator::kUnusedStackCount);
}
int val;
SkDEBUGCODE(bool used = false;)
} count = { count_ };
switch (inst) {
// Unary functions/operators that don't change stack depth at all:
#define VEC_UNARY(inst) case ByteCodeInstruction::inst: return count - count;
VEC_UNARY(kConvertFtoI)
VEC_UNARY(kConvertStoF)
VEC_UNARY(kConvertUtoF)
VEC_UNARY(kAbs)
VEC_UNARY(kACos)
VEC_UNARY(kASin)
VEC_UNARY(kATan)
VEC_UNARY(kCeil)
VEC_UNARY(kCos)
VEC_UNARY(kExp)
VEC_UNARY(kExp2)
VEC_UNARY(kFloor)
VEC_UNARY(kFract)
VEC_UNARY(kInvSqrt)
VEC_UNARY(kLog)
VEC_UNARY(kLog2)
VEC_UNARY(kSign)
VEC_UNARY(kSin)
VEC_UNARY(kSqrt)
VEC_UNARY(kTan)
VEC_UNARY(kNegateF)
VEC_UNARY(kNegateI)
VEC_UNARY(kNotB)
#undef VEC_UNARY
case ByteCodeInstruction::kInverse2x2:
case ByteCodeInstruction::kInverse3x3:
case ByteCodeInstruction::kInverse4x4: return 0;
case ByteCodeInstruction::kClampIndex: return 0;
case ByteCodeInstruction::kShiftLeft: return 0;
case ByteCodeInstruction::kShiftRightS: return 0;
case ByteCodeInstruction::kShiftRightU: return 0;
// Binary functions/operators that do a 2 -> 1 reduction, N times
case ByteCodeInstruction::kAndB: return -count;
case ByteCodeInstruction::kOrB: return -count;
case ByteCodeInstruction::kXorB: return -count;
case ByteCodeInstruction::kAddI: return -count;
case ByteCodeInstruction::kAddF: return -count;
case ByteCodeInstruction::kATan2: return -count;
case ByteCodeInstruction::kMod: return -count;
case ByteCodeInstruction::kStep: return -count;
case ByteCodeInstruction::kCompareIEQ: return -count;
case ByteCodeInstruction::kCompareFEQ: return -count;
case ByteCodeInstruction::kCompareINEQ: return -count;
case ByteCodeInstruction::kCompareFNEQ: return -count;
case ByteCodeInstruction::kCompareSGT: return -count;
case ByteCodeInstruction::kCompareUGT: return -count;
case ByteCodeInstruction::kCompareFGT: return -count;
case ByteCodeInstruction::kCompareSGTEQ: return -count;
case ByteCodeInstruction::kCompareUGTEQ: return -count;
case ByteCodeInstruction::kCompareFGTEQ: return -count;
case ByteCodeInstruction::kCompareSLT: return -count;
case ByteCodeInstruction::kCompareULT: return -count;
case ByteCodeInstruction::kCompareFLT: return -count;
case ByteCodeInstruction::kCompareSLTEQ: return -count;
case ByteCodeInstruction::kCompareULTEQ: return -count;
case ByteCodeInstruction::kCompareFLTEQ: return -count;
case ByteCodeInstruction::kDivideS: return -count;
case ByteCodeInstruction::kDivideU: return -count;
case ByteCodeInstruction::kDivideF: return -count;
case ByteCodeInstruction::kMaxF: return -count;
case ByteCodeInstruction::kMaxS: return -count;
case ByteCodeInstruction::kMinF: return -count;
case ByteCodeInstruction::kMinS: return -count;
case ByteCodeInstruction::kMultiplyI: return -count;
case ByteCodeInstruction::kMultiplyF: return -count;
case ByteCodeInstruction::kPow: return -count;
case ByteCodeInstruction::kRemainderF: return -count;
case ByteCodeInstruction::kRemainderS: return -count;
case ByteCodeInstruction::kRemainderU: return -count;
case ByteCodeInstruction::kSubtractI: return -count;
case ByteCodeInstruction::kSubtractF: return -count;
// Ops that push or load data to grow the stack:
case ByteCodeInstruction::kPushImmediate:
return 1;
case ByteCodeInstruction::kLoadFragCoord:
return 4;
case ByteCodeInstruction::kDup:
case ByteCodeInstruction::kLoad:
case ByteCodeInstruction::kLoadGlobal:
case ByteCodeInstruction::kLoadUniform:
case ByteCodeInstruction::kReadExternal:
case ByteCodeInstruction::kReserve:
return count;
// Pushes 'count' values, minus one for the 'address' that's consumed first
case ByteCodeInstruction::kLoadExtended:
case ByteCodeInstruction::kLoadExtendedGlobal:
case ByteCodeInstruction::kLoadExtendedUniform:
return count - 1;
// Ops that pop or store data to shrink the stack:
case ByteCodeInstruction::kPop:
case ByteCodeInstruction::kReturn:
case ByteCodeInstruction::kStore:
case ByteCodeInstruction::kStoreGlobal:
case ByteCodeInstruction::kWriteExternal:
return -count;
// Consumes 'count' values, plus one for the 'address'
case ByteCodeInstruction::kStoreExtended:
case ByteCodeInstruction::kStoreExtendedGlobal:
return -count - 1;
// Strange ops where the caller computes the delta for us:
case ByteCodeInstruction::kCallExternal:
case ByteCodeInstruction::kMatrixToMatrix:
case ByteCodeInstruction::kMatrixMultiply:
case ByteCodeInstruction::kScalarToMatrix:
case ByteCodeInstruction::kSwizzle:
return count;
// Miscellaneous
// () -> (R, G, B, A)
case ByteCodeInstruction::kSample: return 4;
// (X, Y) -> (R, G, B, A)
case ByteCodeInstruction::kSampleExplicit: return 4 - 2;
// (float3x3) -> (R, G, B, A)
case ByteCodeInstruction::kSampleMatrix: return 4 - 9;
// kMix does a 3 -> 1 reduction (A, B, M -> A -or- B) for each component
case ByteCodeInstruction::kMix: return -(2 * count);
// kLerp works the same way (producing lerp(A, B, T) for each component)
case ByteCodeInstruction::kLerp: return -(2 * count);
// kCall is net-zero. Max stack depth is adjusted in writeFunctionCall.
case ByteCodeInstruction::kCall: return 0;
case ByteCodeInstruction::kBranch: return 0;
case ByteCodeInstruction::kBranchIfAllFalse: return 0;
case ByteCodeInstruction::kMaskPush: return -1;
case ByteCodeInstruction::kMaskPop: return 0;
case ByteCodeInstruction::kMaskNegate: return 0;
case ByteCodeInstruction::kMaskBlend: return -count;
case ByteCodeInstruction::kLoopBegin: return 0;
case ByteCodeInstruction::kLoopNext: return 0;
case ByteCodeInstruction::kLoopMask: return -1;
case ByteCodeInstruction::kLoopEnd: return 0;
case ByteCodeInstruction::kLoopBreak: return 0;
case ByteCodeInstruction::kLoopContinue: return 0;
}
SkUNREACHABLE;
}
ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Variable& var) {
// given that we seldom have more than a couple of variables, linear search is probably the most
// efficient way to handle lookups
switch (var.storage()) {
case Variable::Storage::kLocal: {
for (int i = fLocals.size() - 1; i >= 0; --i) {
if (fLocals[i] == &var) {
SkASSERT(fParameterCount + i <= 255);
return { fParameterCount + i, Storage::kLocal };
}
}
int result = fParameterCount + fLocals.size();
fLocals.push_back(&var);
for (int i = 0; i < SlotCount(var.type()) - 1; ++i) {
fLocals.push_back(nullptr);
}
SkASSERT(result <= 255);
return { result, Storage::kLocal };
}
case Variable::Storage::kParameter: {
int offset = 0;
for (const auto& p : fFunction->declaration().parameters()) {
if (p == &var) {
SkASSERT(offset <= 255);
return { offset, Storage::kLocal };
}
offset += SlotCount(p->type());
}
SkASSERT(false);
return Location::MakeInvalid();
}
case Variable::Storage::kGlobal: {
if (var.type() == *fContext.fFragmentProcessor_Type) {
int offset = 0;
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
const Variable& declVar = decl.declaration()->as<VarDeclaration>().var();
if (declVar.type() != *fContext.fFragmentProcessor_Type) {
continue;
}
if (&declVar == &var) {
SkASSERT(offset <= 255);
return { offset, Storage::kChildFP };
}
offset++;
}
}
SkASSERT(false);
return Location::MakeInvalid();
}
if (is_in(var)) {
// If you see this error, it means the program is using raw 'in' variables. You
// should either specialize the program (Compiler::specialize) to bake in the final
// values of the 'in' variables, or not use 'in' variables (maybe you meant to use
// 'uniform' instead?).
fErrors.error(var.fOffset,
"'in' variable is not specialized or has unsupported type");
return Location::MakeInvalid();
}
int offset = 0;
bool isUniform = is_uniform(var);
for (const ProgramElement* e : fProgram.elements()) {
if (e->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
const Variable& declVar = decl.declaration()->as<VarDeclaration>().var();
if (declVar.modifiers().fLayout.fBuiltin >= 0 || is_in(declVar)) {
continue;
}
if (isUniform != is_uniform(declVar)) {
continue;
}
if (&declVar == &var) {
SkASSERT(offset <= 255);
return { offset, isUniform ? Storage::kUniform : Storage::kGlobal };
}
offset += SlotCount(declVar.type());
}
}
SkASSERT(false);
return Location::MakeInvalid();
}
default:
SkASSERT(false);
return Location::MakeInvalid();
}
}
ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Expression& expr) {
switch (expr.kind()) {
case Expression::Kind::kFieldAccess: {
const FieldAccess& f = expr.as<FieldAccess>();
Location baseLoc = this->getLocation(*f.base());
int offset = 0;
for (int i = 0; i < f.fieldIndex(); ++i) {
offset += SlotCount(*f.base()->type().fields()[i].fType);
}
if (baseLoc.isOnStack()) {
if (offset != 0) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(offset);
this->write(ByteCodeInstruction::kAddI, 1);
}
return baseLoc;
} else {
return baseLoc + offset;
}
}
case Expression::Kind::kIndex: {
const IndexExpression& i = expr.as<IndexExpression>();
int stride = SlotCount(i.type());
int length = i.base()->type().columns();
SkASSERT(length <= 255);
int offset = -1;
const Expression& base = *i.base();
const Expression& index = *i.index();
if (index.isCompileTimeConstant()) {
int64_t indexValue = index.getConstantInt();
if (indexValue < 0 || indexValue >= length) {
fErrors.error(index.fOffset, "Array index out of bounds.");
return Location::MakeInvalid();
}
offset = indexValue * stride;
} else {
if (index.hasSideEffects()) {
// Having a side-effect in an indexer is technically safe for an rvalue,
// but with lvalues we have to evaluate the indexer twice, so make it an error.
fErrors.error(index.fOffset,
"Index expressions with side-effects not supported in byte code.");
return Location::MakeInvalid();
}
this->writeExpression(index);
this->write(ByteCodeInstruction::kClampIndex);
this->write8(length);
if (stride != 1) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(stride);
this->write(ByteCodeInstruction::kMultiplyI, 1);
}
}
Location baseLoc = this->getLocation(base);
// Are both components known statically?
if (!baseLoc.isOnStack() && offset >= 0) {
return baseLoc + offset;
}
// At least one component is dynamic (and on the stack).
// If the other component is zero, we're done
if (baseLoc.fSlot == 0 || offset == 0) {
return baseLoc.makeOnStack();
}
// Push the non-dynamic component (if any) to the stack, then add the two
if (!baseLoc.isOnStack()) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(baseLoc.fSlot);
}
if (offset >= 0) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(offset);
}
this->write(ByteCodeInstruction::kAddI, 1);
return baseLoc.makeOnStack();
}
case Expression::Kind::kSwizzle: {
const Swizzle& s = expr.as<Swizzle>();
SkASSERT(swizzle_is_simple(s));
Location baseLoc = this->getLocation(*s.base());
int offset = s.components()[0];
if (baseLoc.isOnStack()) {
if (offset != 0) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(offset);
this->write(ByteCodeInstruction::kAddI, 1);
}
return baseLoc;
} else {
return baseLoc + offset;
}
}
case Expression::Kind::kVariableReference: {
const Variable& var = *expr.as<VariableReference>().variable();
return this->getLocation(var);
}
default:
SkASSERT(false);
return Location::MakeInvalid();
}
}
void ByteCodeGenerator::write8(uint8_t b) {
fCode->push_back(b);
}
void ByteCodeGenerator::write16(uint16_t i) {
size_t n = fCode->size();
fCode->resize(n+2);
memcpy(fCode->data() + n, &i, 2);
}
void ByteCodeGenerator::write32(uint32_t i) {
size_t n = fCode->size();
fCode->resize(n+4);
memcpy(fCode->data() + n, &i, 4);
}
void ByteCodeGenerator::write(ByteCodeInstruction i, int count) {
switch (i) {
case ByteCodeInstruction::kLoopBegin: this->enterLoop(); break;
case ByteCodeInstruction::kLoopEnd: this->exitLoop(); break;
case ByteCodeInstruction::kMaskPush: this->enterCondition(); break;
case ByteCodeInstruction::kMaskPop:
case ByteCodeInstruction::kMaskBlend: this->exitCondition(); break;
default: /* Do nothing */ break;
}
this->write8((uint8_t)i);
fStackCount += StackUsage(i, count);
fMaxStackCount = std::max(fMaxStackCount, fStackCount);
// Most ops have an explicit count byte after them (passed here as 'count')
// Ops that don't have a count byte pass the default (kUnusedStackCount)
// There are a handful of strange ops that pass in a computed stack delta as count, but where
// that value should *not* be written as a count byte (it may even be negative!)
if (count != kUnusedStackCount) {
switch (i) {
// Odd instructions that have a non-default count, but we shouldn't write it
case ByteCodeInstruction::kCallExternal:
case ByteCodeInstruction::kMatrixToMatrix:
case ByteCodeInstruction::kMatrixMultiply:
case ByteCodeInstruction::kScalarToMatrix:
case ByteCodeInstruction::kSwizzle:
break;
default:
this->write8(count);
break;
}
}
}
void ByteCodeGenerator::writeTypedInstruction(const Type& type,
ByteCodeInstruction s,
ByteCodeInstruction u,
ByteCodeInstruction f,
int count) {
switch (type_category(type)) {
case TypeCategory::kBool:
case TypeCategory::kSigned: this->write(s, count); break;
case TypeCategory::kUnsigned: this->write(u, count); break;
case TypeCategory::kFloat: this->write(f, count); break;
default:
SkASSERT(false);
}
}
bool ByteCodeGenerator::writeBinaryExpression(const BinaryExpression& b, bool discard) {
const Expression& left = *b.left();
const Expression& right = *b.right();
Token::Kind op = b.getOperator();
if (op == Token::Kind::TK_EQ) {
std::unique_ptr<LValue> lvalue = this->getLValue(left);
this->writeExpression(right);
lvalue->store(discard);
discard = false;
return discard;
}
const Type& lType = left.type();
const Type& rType = right.type();
bool lVecOrMtx = (lType.isVector() || lType.isMatrix());
bool rVecOrMtx = (rType.isVector() || rType.isMatrix());
std::unique_ptr<LValue> lvalue;
if (Compiler::IsAssignment(op)) {
lvalue = this->getLValue(left);
lvalue->load();
op = Compiler::RemoveAssignment(op);
} else {
this->writeExpression(left);
if (!lVecOrMtx && rVecOrMtx) {
for (int i = SlotCount(rType); i > 1; --i) {
this->write(ByteCodeInstruction::kDup, 1);
}
}
}
int count = std::max(SlotCount(lType), SlotCount(rType));
SkDEBUGCODE(TypeCategory tc = type_category(lType));
switch (op) {
case Token::Kind::TK_LOGICALAND: {
SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1);
this->write(ByteCodeInstruction::kDup, 1);
this->write(ByteCodeInstruction::kMaskPush);
this->write(ByteCodeInstruction::kBranchIfAllFalse);
DeferredLocation falseLocation(this);
this->writeExpression(right);
this->write(ByteCodeInstruction::kAndB, 1);
falseLocation.set();
this->write(ByteCodeInstruction::kMaskPop);
return false;
}
case Token::Kind::TK_LOGICALOR: {
SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1);
this->write(ByteCodeInstruction::kDup, 1);
this->write(ByteCodeInstruction::kNotB, 1);
this->write(ByteCodeInstruction::kMaskPush);
this->write(ByteCodeInstruction::kBranchIfAllFalse);
DeferredLocation falseLocation(this);
this->writeExpression(right);
this->write(ByteCodeInstruction::kOrB, 1);
falseLocation.set();
this->write(ByteCodeInstruction::kMaskPop);
return false;
}
case Token::Kind::TK_SHL:
case Token::Kind::TK_SHR: {
SkASSERT(count == 1 && (tc == SkSL::TypeCategory::kSigned ||
tc == SkSL::TypeCategory::kUnsigned));
if (!right.isCompileTimeConstant()) {
fErrors.error(right.fOffset, "Shift amounts must be constant");
return false;
}
int64_t shift = right.getConstantInt();
if (shift < 0 || shift > 31) {
fErrors.error(right.fOffset, "Shift amount out of range");
return false;
}
if (op == Token::Kind::TK_SHL) {
this->write(ByteCodeInstruction::kShiftLeft);
} else {
this->write(type_category(lType) == TypeCategory::kSigned
? ByteCodeInstruction::kShiftRightS
: ByteCodeInstruction::kShiftRightU);
}
this->write8(shift);
return false;
}
default:
break;
}
this->writeExpression(right);
if (lVecOrMtx && !rVecOrMtx) {
for (int i = SlotCount(lType); i > 1; --i) {
this->write(ByteCodeInstruction::kDup, 1);
}
}
// Special case for M*V, V*M, M*M (but not V*V!)
if (op == Token::Kind::TK_STAR && lVecOrMtx && rVecOrMtx &&
!(lType.isVector() && rType.isVector())) {
this->write(ByteCodeInstruction::kMatrixMultiply,
SlotCount(b.type()) - (SlotCount(lType) + SlotCount(rType)));
int rCols = rType.columns(),
rRows = rType.rows(),
lCols = lType.columns(),
lRows = lType.rows();
// M*V treats the vector as a column
if (rType.isVector()) {
std::swap(rCols, rRows);
}
SkASSERT(lCols == rRows);
SkASSERT(SlotCount(b.type()) == lRows * rCols);
this->write8(lCols);
this->write8(lRows);
this->write8(rCols);
} else {
switch (op) {
case Token::Kind::TK_EQEQ:
this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareIEQ,
ByteCodeInstruction::kCompareIEQ,
ByteCodeInstruction::kCompareFEQ,
count);
// Collapse to a single bool
for (int i = count; i > 1; --i) {
this->write(ByteCodeInstruction::kAndB, 1);
}
break;
case Token::Kind::TK_GT:
this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGT,
ByteCodeInstruction::kCompareUGT,
ByteCodeInstruction::kCompareFGT,
count);
break;
case Token::Kind::TK_GTEQ:
this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGTEQ,
ByteCodeInstruction::kCompareUGTEQ,
ByteCodeInstruction::kCompareFGTEQ,
count);
break;
case Token::Kind::TK_LT:
this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLT,
ByteCodeInstruction::kCompareULT,
ByteCodeInstruction::kCompareFLT,
count);
break;
case Token::Kind::TK_LTEQ:
this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLTEQ,
ByteCodeInstruction::kCompareULTEQ,
ByteCodeInstruction::kCompareFLTEQ,
count);
break;
case Token::Kind::TK_MINUS:
this->writeTypedInstruction(lType, ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractF,
count);
break;
case Token::Kind::TK_NEQ:
this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareINEQ,
ByteCodeInstruction::kCompareINEQ,
ByteCodeInstruction::kCompareFNEQ,
count);
// Collapse to a single bool
for (int i = count; i > 1; --i) {
this->write(ByteCodeInstruction::kOrB, 1);
}
break;
case Token::Kind::TK_PERCENT:
this->writeTypedInstruction(lType, ByteCodeInstruction::kRemainderS,
ByteCodeInstruction::kRemainderU,
ByteCodeInstruction::kRemainderF,
count);
break;
case Token::Kind::TK_PLUS:
this->writeTypedInstruction(lType, ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddF,
count);
break;
case Token::Kind::TK_SLASH:
this->writeTypedInstruction(lType, ByteCodeInstruction::kDivideS,
ByteCodeInstruction::kDivideU,
ByteCodeInstruction::kDivideF,
count);
break;
case Token::Kind::TK_STAR:
this->writeTypedInstruction(lType, ByteCodeInstruction::kMultiplyI,
ByteCodeInstruction::kMultiplyI,
ByteCodeInstruction::kMultiplyF,
count);
break;
case Token::Kind::TK_LOGICALXOR:
SkASSERT(tc == SkSL::TypeCategory::kBool);
this->write(ByteCodeInstruction::kXorB, count);
break;
case Token::Kind::TK_BITWISEAND:
SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned);
this->write(ByteCodeInstruction::kAndB, count);
break;
case Token::Kind::TK_BITWISEOR:
SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned);
this->write(ByteCodeInstruction::kOrB, count);
break;
case Token::Kind::TK_BITWISEXOR:
SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned);
this->write(ByteCodeInstruction::kXorB, count);
break;
default:
fErrors.error(b.fOffset, SkSL::String::printf("Unsupported binary operator '%s'",
Compiler::OperatorName(op)));
break;
}
}
if (lvalue) {
lvalue->store(discard);
discard = false;
}
return discard;
}
void ByteCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(b.value() ? ~0 : 0);
}
void ByteCodeGenerator::writeConstructor(const Constructor& c) {
for (const auto& arg : c.arguments()) {
this->writeExpression(*arg);
}
if (c.arguments().size() == 1) {
const Type& inType = c.arguments()[0]->type();
const Type& outType = c.type();
TypeCategory inCategory = type_category(inType);
TypeCategory outCategory = type_category(outType);
int inCount = SlotCount(inType);
int outCount = SlotCount(outType);
if (inCategory != outCategory) {
SkASSERT(inCount == outCount);
if (inCategory == TypeCategory::kFloat) {
SkASSERT(outCategory == TypeCategory::kSigned ||
outCategory == TypeCategory::kUnsigned);
this->write(ByteCodeInstruction::kConvertFtoI, outCount);
} else if (outCategory == TypeCategory::kFloat) {
if (inCategory == TypeCategory::kSigned) {
this->write(ByteCodeInstruction::kConvertStoF, outCount);
} else {
SkASSERT(inCategory == TypeCategory::kUnsigned);
this->write(ByteCodeInstruction::kConvertUtoF, outCount);
}
} else {
SkASSERT(false);
}
}
if (inType.isMatrix() && outType.isMatrix()) {
this->write(ByteCodeInstruction::kMatrixToMatrix,
SlotCount(outType) - SlotCount(inType));
this->write8(inType.columns());
this->write8(inType.rows());
this->write8(outType.columns());
this->write8(outType.rows());
} else if (inCount != outCount) {
SkASSERT(inCount == 1);
if (outType.isMatrix()) {
this->write(ByteCodeInstruction::kScalarToMatrix, SlotCount(outType) - 1);
this->write8(outType.columns());
this->write8(outType.rows());
} else {
SkASSERT(outType.isVector());
for (; inCount != outCount; ++inCount) {
this->write(ByteCodeInstruction::kDup, 1);
}
}
}
}
}
void ByteCodeGenerator::writeExternalFunctionCall(const ExternalFunctionCall& f) {
int argumentCount = 0;
for (const auto& arg : f.arguments()) {
this->writeExpression(*arg);
argumentCount += SlotCount(arg->type());
}
this->write(ByteCodeInstruction::kCallExternal, SlotCount(f.type()) - argumentCount);
SkASSERT(argumentCount <= 255);
this->write8(argumentCount);
this->write8(SlotCount(f.type()));
int index = fOutput->fExternalValues.size();
fOutput->fExternalValues.push_back(&f.function());
SkASSERT(index <= 255);
this->write8(index);
}
void ByteCodeGenerator::writeExternalValue(const ExternalValueReference& e) {
int count = SlotCount(e.value().type());
this->write(ByteCodeInstruction::kReadExternal, count);
int index = fOutput->fExternalValues.size();
fOutput->fExternalValues.push_back(&e.value());
SkASSERT(index <= 255);
this->write8(index);
}
void ByteCodeGenerator::writeVariableExpression(const Expression& expr) {
if (int builtin = expression_as_builtin(expr); builtin >= 0) {
switch (builtin) {
case SK_FRAGCOORD_BUILTIN:
this->write(ByteCodeInstruction::kLoadFragCoord);
fOutput->fUsesFragCoord = true;
break;
default:
fErrors.error(expr.fOffset, "Unsupported builtin");
break;
}
return;
}
Location location = this->getLocation(expr);
int count = SlotCount(expr.type());
if (count == 0) {
return;
}
if (location.isOnStack()) {
this->write(location.selectLoad(ByteCodeInstruction::kLoadExtended,
ByteCodeInstruction::kLoadExtendedGlobal,
ByteCodeInstruction::kLoadExtendedUniform),
count);
} else {
this->write(location.selectLoad(ByteCodeInstruction::kLoad,
ByteCodeInstruction::kLoadGlobal,
ByteCodeInstruction::kLoadUniform),
count);
this->write8(location.fSlot);
}
}
static inline uint32_t float_to_bits(float x) {
uint32_t u;
memcpy(&u, &x, sizeof(uint32_t));
return u;
}
void ByteCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(float_to_bits(f.value()));
}
void ByteCodeGenerator::writeSmoothstep(const ExpressionArray& args) {
// genType smoothstep(genType edge0, genType edge1, genType x) {
// genType t = saturate((x - edge0) / (edge1 - edge0));
// return t * t * (3 - 2 * t);
// }
// There are variants where the first two arguments are scalar
SkASSERT(args.size() == 3);
int edgeCount = SlotCount(args[0]->type()),
xCount = SlotCount(args[2]->type());
SkASSERT(edgeCount == 1 || edgeCount == xCount);
SkASSERT(edgeCount == SlotCount(args[1]->type()));
// Expand a (possibly scalar) value to be as wide as 'x'
auto dupToX = [xCount, this](int from) {
for (int i = from; i < xCount; ++i) {
this->write(ByteCodeInstruction::kDup, 1);
}
};
// Push xCount copies of 'f'
auto scalarToX = [&dupToX, this](float f) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(float_to_bits(f));
dupToX(1);
};
// To avoid possible double-eval, we store edge0 in a local
const Variable* edge0Var = fSynthetics.takeOwnershipOfSymbol(
std::make_unique<Variable>(/*offset=*/-1,
fProgram.fModifiers->addToPool(Modifiers()),
"sksl_smoothstep_edge0",
&args[0]->type(),
/*builtin=*/true,
Variable::Storage::kLocal));
Location edge0Loc = this->getLocation(*edge0Var);
this->writeExpression(*args[0]); // 'edge0'
this->write(ByteCodeInstruction::kStore, edgeCount);
this->write8(edge0Loc.fSlot);
// (x - edge0)
this->writeExpression(*args[2]); // 'x'
this->write(ByteCodeInstruction::kLoad, edgeCount); // 'edge0'
this->write8(edge0Loc.fSlot);
dupToX(edgeCount);
this->write(ByteCodeInstruction::kSubtractF, xCount);
// (edge1 - edge0)
this->writeExpression(*args[1]); // 'edge1'
this->write(ByteCodeInstruction::kLoad, edgeCount); // 'edge0'
this->write8(edge0Loc.fSlot);
this->write(ByteCodeInstruction::kSubtractF, edgeCount);
dupToX(edgeCount);
// saturate((x - edge0) / (edge1 - edge0))
this->write(ByteCodeInstruction::kDivideF, xCount);
scalarToX(0.0f);
this->write(ByteCodeInstruction::kMaxF, xCount);
scalarToX(1.0f);
this->write(ByteCodeInstruction::kMinF, xCount);
// Now, 't' is on the stack, we need three copies
this->write(ByteCodeInstruction::kDup, xCount);
this->write(ByteCodeInstruction::kDup, xCount);
// (3 - 2 * t) ... as (-2t + 3)
scalarToX(-2.0f);
this->write(ByteCodeInstruction::kMultiplyF, xCount);
scalarToX(3.0f);
this->write(ByteCodeInstruction::kAddF, xCount);
// ... * t * t
this->write(ByteCodeInstruction::kMultiplyF, xCount);
this->write(ByteCodeInstruction::kMultiplyF, xCount);
}
static bool is_generic_type(const Type* type, const Type* generic) {
const std::vector<const Type*>& concrete(generic->coercibleTypes());
return std::find(concrete.begin(), concrete.end(), type) != concrete.end();
}
void ByteCodeGenerator::writeIntrinsicCall(const FunctionCall& c) {
auto found = fIntrinsics.find(c.function().name());
if (found == fIntrinsics.end()) {
fErrors.error(c.fOffset, String::printf("Unsupported intrinsic: '%s'",
String(c.function().name()).c_str()));
return;
}
Intrinsic intrin = found->second;
const auto& args = c.arguments();
const size_t nargs = args.size();
SkASSERT(nargs >= 1);
int count = SlotCount(args[0]->type());
// Several intrinsics have variants where one argument is either scalar, or the same size as
// the first argument. Call dupSmallerType(SlotCount(argType)) to ensure equal component count.
auto dupSmallerType = [count, this](int smallCount) {
SkASSERT(smallCount == 1 || smallCount == count);
for (int i = smallCount; i < count; ++i) {
this->write(ByteCodeInstruction::kDup, 1);
}
};
if (intrin.is_special && intrin.special == SpecialIntrinsic::kSample) {
// Sample is very special, the first argument is an FP, which can't be pushed to the stack.
if (nargs > 2 || args[0]->type() != *fContext.fFragmentProcessor_Type ||
(nargs == 2 && (args[1]->type() != *fContext.fFloat2_Type &&
args[1]->type() != *fContext.fFloat3x3_Type))) {
fErrors.error(c.fOffset, "Unsupported form of sample");
return;
}
if (nargs == 2) {
// Write our coords or matrix
this->writeExpression(*args[1]);
this->write(args[1]->type() == *fContext.fFloat3x3_Type
? ByteCodeInstruction::kSampleMatrix
: ByteCodeInstruction::kSampleExplicit);
} else {
this->write(ByteCodeInstruction::kSample);
}
Location childLoc = this->getLocation(*args[0]);
SkASSERT(childLoc.fStorage == Storage::kChildFP);
this->write8(childLoc.fSlot);
return;
}
if (intrin.is_special && intrin.special == SpecialIntrinsic::kSmoothstep) {
this->writeSmoothstep(args);
return;
}
if (intrin.is_special && intrin.special == SpecialIntrinsic::kStep) {
// There are variants where the *first* argument is scalar
SkASSERT(nargs == 2);
int xCount = SlotCount(args[1]->type());
SkASSERT(count == 1 || count == xCount);
this->writeExpression(*args[0]); // 'edge'
// Not 'dupSmallerType', because we're duping the first to match the second
for (int i = count; i < xCount; ++i) {
this->write(ByteCodeInstruction::kDup, 1);
}
this->writeExpression(*args[1]); // 'x'
this->write(ByteCodeInstruction::kStep, xCount);
return;
}
if (intrin.is_special && (intrin.special == SpecialIntrinsic::kClamp ||
intrin.special == SpecialIntrinsic::kSaturate)) {
// These intrinsics are extra-special, we need instructions interleaved with arguments
bool saturate = (intrin.special == SpecialIntrinsic::kSaturate);
SkASSERT(nargs == (saturate ? 1 : 3));
int limitCount = saturate ? 1 : SlotCount(args[1]->type());
// 'x'
this->writeExpression(*args[0]);
// 'minVal'
if (saturate) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(float_to_bits(0.0f));
} else {
this->writeExpression(*args[1]);
}
dupSmallerType(limitCount);
this->writeTypedInstruction(args[0]->type(),
ByteCodeInstruction::kMaxS,
ByteCodeInstruction::kMaxS,
ByteCodeInstruction::kMaxF,
count);
// 'maxVal'
if (saturate) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(float_to_bits(1.0f));
} else {
SkASSERT(limitCount == SlotCount(args[2]->type()));
this->writeExpression(*args[2]);
}
dupSmallerType(limitCount);
this->writeTypedInstruction(args[0]->type(),
ByteCodeInstruction::kMinS,
ByteCodeInstruction::kMinS,
ByteCodeInstruction::kMinF,
count);
return;
}
// All other intrinsics can handle their arguments being on the stack in order
for (const auto& arg : args) {
this->writeExpression(*arg);
}
if (intrin.is_special) {
auto doDotProduct = [count, this] {
this->write(ByteCodeInstruction::kMultiplyF, count);
for (int i = count - 1; i-- > 0;) {
this->write(ByteCodeInstruction::kAddF, 1);
}
};
auto doLength = [count, this, &doDotProduct] {
this->write(ByteCodeInstruction::kDup, count);
doDotProduct();
this->write(ByteCodeInstruction::kSqrt, 1);
};
switch (intrin.special) {
case SpecialIntrinsic::kAll: {
for (int i = count-1; i --> 0;) {
this->write(ByteCodeInstruction::kAndB, 1);
}
} break;
case SpecialIntrinsic::kAny: {
for (int i = count-1; i --> 0;) {
this->write(ByteCodeInstruction::kOrB, 1);
}
} break;
case SpecialIntrinsic::kATan: {
// GLSL uses "atan" for both 'atan' and 'atan2'
SkASSERT(nargs == 1 || (nargs == 2 && count == SlotCount(args[1]->type())));
this->write(nargs == 1 ? ByteCodeInstruction::kATan : ByteCodeInstruction::kATan2,
count);
} break;
case SpecialIntrinsic::kDistance: {
SkASSERT(nargs == 2 && count == SlotCount(args[1]->type()));
this->write(ByteCodeInstruction::kSubtractF, count);
doLength();
} break;
case SpecialIntrinsic::kDot: {
SkASSERT(nargs == 2 && count == SlotCount(args[1]->type()));
doDotProduct();
} break;
case SpecialIntrinsic::kLength: {
SkASSERT(nargs == 1);
doLength();
} break;
case SpecialIntrinsic::kMax:
case SpecialIntrinsic::kMin: {
SkASSERT(nargs == 2);
// There are variants where the second argument is scalar
dupSmallerType(SlotCount(args[1]->type()));
if (intrin.special == SpecialIntrinsic::kMax) {
this->writeTypedInstruction(args[0]->type(),
ByteCodeInstruction::kMaxS,
ByteCodeInstruction::kMaxS,
ByteCodeInstruction::kMaxF,
count);
} else {
this->writeTypedInstruction(args[0]->type(),
ByteCodeInstruction::kMinS,
ByteCodeInstruction::kMinS,
ByteCodeInstruction::kMinF,
count);
}
} break;
case SpecialIntrinsic::kMix: {
// Two main variants of mix to handle
SkASSERT(nargs == 3);
SkASSERT(count == SlotCount(args[1]->type()));
int selectorCount = SlotCount(args[2]->type());
if (is_generic_type(&args[2]->type(), fContext.fGenBType_Type.get())) {
// mix(genType, genType, genBoolType)
SkASSERT(selectorCount == count);
this->write(ByteCodeInstruction::kMix, count);
} else {
// mix(genType, genType, genType) or mix(genType, genType, float)
dupSmallerType(selectorCount);
this->write(ByteCodeInstruction::kLerp, count);
}
} break;
case SpecialIntrinsic::kMod: {
SkASSERT(nargs == 2);
// There are variants where the second argument is scalar
dupSmallerType(SlotCount(args[1]->type()));
this->write(ByteCodeInstruction::kMod, count);
} break;
case SpecialIntrinsic::kNormalize: {
SkASSERT(nargs == 1);
this->write(ByteCodeInstruction::kDup, count);
doLength();
dupSmallerType(1);
this->write(ByteCodeInstruction::kDivideF, count);
} break;
default:
SkASSERT(false);
}
} else {
switch (intrin.inst_f) {
case ByteCodeInstruction::kInverse2x2: {
auto op = ByteCodeInstruction::kInverse2x2;
switch (count) {
case 4: break; // float2x2
case 9: op = ByteCodeInstruction::kInverse3x3; break;
case 16: op = ByteCodeInstruction::kInverse4x4; break;
default: SkASSERT(false);
}
this->write(op);
break;
}
default:
this->writeTypedInstruction(args[0]->type(),
intrin.inst_s,
intrin.inst_u,
intrin.inst_f,
count);
break;
}
}
}
void ByteCodeGenerator::writeFunctionCall(const FunctionCall& f) {
// Find the index of the function we're calling. We explicitly do not allow calls to functions
// before they're defined. This is an easy-to-understand rule that prevents recursion.
int idx = -1;
for (size_t i = 0; i < fFunctions.size(); ++i) {
if (f.function().matches(fFunctions[i]->declaration())) {
idx = i;
break;
}
}
if (idx == -1) {
this->writeIntrinsicCall(f);
return;
}
if (idx > 255) {
fErrors.error(f.fOffset, "Function count limit exceeded");
return;
} else if (idx >= (int) fFunctions.size()) {
fErrors.error(f.fOffset, "Call to undefined function");
return;
}
// We may need to deal with out parameters, so the sequence is tricky
if (int returnCount = SlotCount(f.type())) {
this->write(ByteCodeInstruction::kReserve, returnCount);
}
int argCount = f.arguments().size();
std::vector<std::unique_ptr<LValue>> lvalues;
for (int i = 0; i < argCount; ++i) {
const auto& param = f.function().parameters()[i];
const auto& arg = f.arguments()[i];
if (param->modifiers().fFlags & Modifiers::kOut_Flag) {
lvalues.emplace_back(this->getLValue(*arg));
lvalues.back()->load();
} else {
this->writeExpression(*arg);
}
}
// The space used by the call is based on the callee, but it also unwinds all of that before
// we continue execution. We adjust our max stack depths below.
this->write(ByteCodeInstruction::kCall);
this->write8(idx);
const ByteCodeFunction* callee = fOutput->fFunctions[idx].get();
fMaxLoopCount = std::max(fMaxLoopCount, fLoopCount + callee->fLoopCount);
fMaxConditionCount = std::max(fMaxConditionCount, fConditionCount + callee->fConditionCount);
fMaxStackCount = std::max(fMaxStackCount, fStackCount + callee->fLocalCount
+ callee->fStackCount);
// After the called function returns, the stack will still contain our arguments. We have to
// pop them (storing any out parameters back to their lvalues as we go). We glob together slot
// counts for all parameters that aren't out-params, so we can pop them in one big chunk.
int popCount = 0;
auto pop = [&]() {
if (popCount > 0) {
this->write(ByteCodeInstruction::kPop, popCount);
}
popCount = 0;
};
for (int i = argCount - 1; i >= 0; --i) {
const auto& param = f.function().parameters()[i];
const auto& arg = f.arguments()[i];
if (param->modifiers().fFlags & Modifiers::kOut_Flag) {
pop();
lvalues.back()->store(true);
lvalues.pop_back();
} else {
popCount += SlotCount(arg->type());
}
}
pop();
}
void ByteCodeGenerator::writeIntLiteral(const IntLiteral& i) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(i.value());
}
void ByteCodeGenerator::writeNullLiteral(const NullLiteral& n) {
// not yet implemented
abort();
}
bool ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p, bool discard) {
switch (p.getOperator()) {
case Token::Kind::TK_PLUSPLUS: // fall through
case Token::Kind::TK_MINUSMINUS: {
SkASSERT(SlotCount(p.operand()->type()) == 1);
std::unique_ptr<LValue> lvalue = this->getLValue(*p.operand());
lvalue->load();
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(type_category(p.type()) == TypeCategory::kFloat ? float_to_bits(1.0f)
: 1);
if (p.getOperator() == Token::Kind::TK_PLUSPLUS) {
this->writeTypedInstruction(p.type(),
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddF,
1);
} else {
this->writeTypedInstruction(p.type(),
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractF,
1);
}
lvalue->store(discard);
discard = false;
break;
}
case Token::Kind::TK_MINUS: {
this->writeExpression(*p.operand());
this->writeTypedInstruction(p.type(),
ByteCodeInstruction::kNegateI,
ByteCodeInstruction::kNegateI,
ByteCodeInstruction::kNegateF,
SlotCount(p.operand()->type()));
break;
}
case Token::Kind::TK_LOGICALNOT:
case Token::Kind::TK_BITWISENOT: {
SkASSERT(SlotCount(p.operand()->type()) == 1);
SkDEBUGCODE(TypeCategory tc = type_category(p.operand()->type()));
SkASSERT((p.getOperator() == Token::Kind::TK_LOGICALNOT &&
tc == TypeCategory::kBool) ||
(p.getOperator() == Token::Kind::TK_BITWISENOT &&
(tc == TypeCategory::kSigned || tc == TypeCategory::kUnsigned)));
this->writeExpression(*p.operand());
this->write(ByteCodeInstruction::kNotB, 1);
break;
}
default:
SkASSERT(false);
}
return discard;
}
bool ByteCodeGenerator::writePostfixExpression(const PostfixExpression& p, bool discard) {
switch (p.getOperator()) {
case Token::Kind::TK_PLUSPLUS: // fall through
case Token::Kind::TK_MINUSMINUS: {
SkASSERT(SlotCount(p.operand()->type()) == 1);
std::unique_ptr<LValue> lvalue = this->getLValue(*p.operand());
lvalue->load();
// If we're not supposed to discard the result, then make a copy *before* the +/-
if (!discard) {
this->write(ByteCodeInstruction::kDup, 1);
}
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(type_category(p.type()) == TypeCategory::kFloat ? float_to_bits(1.0f)
: 1);
if (p.getOperator() == Token::Kind::TK_PLUSPLUS) {
this->writeTypedInstruction(p.type(),
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddF,
1);
} else {
this->writeTypedInstruction(p.type(),
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractF,
1);
}
// Always consume the result as part of the store
lvalue->store(true);
discard = false;
break;
}
default:
SkASSERT(false);
}
return discard;
}
void ByteCodeGenerator::writeSwizzle(const Swizzle& s) {
if (swizzle_is_simple(s)) {
this->writeVariableExpression(s);
return;
}
this->writeExpression(*s.base());
this->write(ByteCodeInstruction::kSwizzle, s.components().size() - s.base()->type().columns());
this->write8(s.base()->type().columns());
this->write8(s.components().size());
for (int c : s.components()) {
this->write8(c);
}
}
void ByteCodeGenerator::writeTernaryExpression(const TernaryExpression& t) {
int count = SlotCount(t.type());
SkASSERT(count == SlotCount(t.ifTrue()->type()));
SkASSERT(count == SlotCount(t.ifFalse()->type()));
this->writeExpression(*t.test());
this->write(ByteCodeInstruction::kMaskPush);
this->writeExpression(*t.ifTrue());
this->write(ByteCodeInstruction::kMaskNegate);
this->writeExpression(*t.ifFalse());
this->write(ByteCodeInstruction::kMaskBlend, count);
}
void ByteCodeGenerator::writeExpression(const Expression& e, bool discard) {
switch (e.kind()) {
case Expression::Kind::kBinary:
discard = this->writeBinaryExpression(e.as<BinaryExpression>(), discard);
break;
case Expression::Kind::kBoolLiteral:
this->writeBoolLiteral(e.as<BoolLiteral>());
break;
case Expression::Kind::kConstructor:
this->writeConstructor(e.as<Constructor>());
break;
case Expression::Kind::kExternalFunctionCall:
this->writeExternalFunctionCall(e.as<ExternalFunctionCall>());
break;
case Expression::Kind::kExternalValue:
this->writeExternalValue(e.as<ExternalValueReference>());
break;
case Expression::Kind::kFieldAccess:
case Expression::Kind::kIndex:
case Expression::Kind::kVariableReference:
this->writeVariableExpression(e);
break;
case Expression::Kind::kFloatLiteral:
this->writeFloatLiteral(e.as<FloatLiteral>());
break;
case Expression::Kind::kFunctionCall:
this->writeFunctionCall(e.as<FunctionCall>());
break;
case Expression::Kind::kIntLiteral:
this->writeIntLiteral(e.as<IntLiteral>());
break;
case Expression::Kind::kNullLiteral:
this->writeNullLiteral(e.as<NullLiteral>());
break;
case Expression::Kind::kPrefix:
discard = this->writePrefixExpression(e.as<PrefixExpression>(), discard);
break;
case Expression::Kind::kPostfix:
discard = this->writePostfixExpression(e.as<PostfixExpression>(), discard);
break;
case Expression::Kind::kSwizzle:
this->writeSwizzle(e.as<Swizzle>());
break;
case Expression::Kind::kTernary:
this->writeTernaryExpression(e.as<TernaryExpression>());
break;
default:
#ifdef SK_DEBUG
printf("unsupported expression %s\n", e.description().c_str());
#endif
SkASSERT(false);
}
if (discard) {
int count = SlotCount(e.type());
if (count > 0) {
this->write(ByteCodeInstruction::kPop, count);
}
discard = false;
}
}
class ByteCodeExternalValueLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeExternalValueLValue(ByteCodeGenerator* generator, const ExternalValue& value, int index)
: INHERITED(*generator)
, fCount(ByteCodeGenerator::SlotCount(value.type()))
, fIndex(index) {}
void load() override {
fGenerator.write(ByteCodeInstruction::kReadExternal, fCount);
fGenerator.write8(fIndex);
}
void store(bool discard) override {
if (!discard) {
fGenerator.write(ByteCodeInstruction::kDup, fCount);
}
fGenerator.write(ByteCodeInstruction::kWriteExternal, fCount);
fGenerator.write8(fIndex);
}
private:
using INHERITED = LValue;
int fCount;
int fIndex;
};
class ByteCodeSwizzleLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeSwizzleLValue(ByteCodeGenerator* generator, const Swizzle& swizzle)
: INHERITED(*generator)
, fSwizzle(swizzle) {}
void load() override {
fGenerator.writeSwizzle(fSwizzle);
}
void store(bool discard) override {
int count = fSwizzle.components().size();
if (!discard) {
fGenerator.write(ByteCodeInstruction::kDup, count);
}
// We already have the correct number of values on the stack, thanks to type checking.
// The algorithm: Walk down the values on the stack, doing 'count' single-element stores.
// For each value, use the corresponding swizzle component to offset the store location.
//
// Static locations: We (wastefully) call getLocation every time, but get good byte code.
// Note that we could (but don't) store adjacent/sequential values with fewer instructions.
//
// Dynamic locations: ... are bad. We have to recompute the base address on each iteration,
// because the stack doesn't let us retain that address between stores. Dynamic locations
// are rare though, and swizzled writes to those are even rarer, so we just live with this.
for (int i = count; i-- > 0;) {
// If we have a swizzle-of-swizzle lvalue, we need to flatten that down to the final
// component index. (getLocation can't handle this case).
const Expression* expr = &fSwizzle;
int component = i;
do {
component = expr->as<Swizzle>().components()[component];
expr = expr->as<Swizzle>().base().get();
} while (expr->is<Swizzle>());
ByteCodeGenerator::Location location = fGenerator.getLocation(*expr);
if (!location.isOnStack()) {
fGenerator.write(location.selectStore(ByteCodeInstruction::kStore,
ByteCodeInstruction::kStoreGlobal),
1);
fGenerator.write8(location.fSlot + component);
} else {
fGenerator.write(ByteCodeInstruction::kPushImmediate);
fGenerator.write32(component);
fGenerator.write(ByteCodeInstruction::kAddI, 1);
fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreExtended,
ByteCodeInstruction::kStoreExtendedGlobal),
1);
}
}
}
private:
const Swizzle& fSwizzle;
using INHERITED = LValue;
};
class ByteCodeExpressionLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeExpressionLValue(ByteCodeGenerator* generator, const Expression& expr)
: INHERITED(*generator)
, fExpression(expr) {}
void load() override {
fGenerator.writeVariableExpression(fExpression);
}
void store(bool discard) override {
int count = ByteCodeGenerator::SlotCount(fExpression.type());
if (!discard) {
fGenerator.write(ByteCodeInstruction::kDup, count);
}
ByteCodeGenerator::Location location = fGenerator.getLocation(fExpression);
if (location.isOnStack()) {
fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreExtended,
ByteCodeInstruction::kStoreExtendedGlobal),
count);
} else {
fGenerator.write(location.selectStore(ByteCodeInstruction::kStore,
ByteCodeInstruction::kStoreGlobal),
count);
fGenerator.write8(location.fSlot);
}
}
private:
using INHERITED = LValue;
const Expression& fExpression;
};
std::unique_ptr<ByteCodeGenerator::LValue> ByteCodeGenerator::getLValue(const Expression& e) {
switch (e.kind()) {
case Expression::Kind::kExternalValue: {
const ExternalValue& value = e.as<ExternalValueReference>().value();
int index = fOutput->fExternalValues.size();
fOutput->fExternalValues.push_back(&value);
SkASSERT(index <= 255);
return std::unique_ptr<LValue>(new ByteCodeExternalValueLValue(this, value, index));
}
case Expression::Kind::kFieldAccess:
case Expression::Kind::kIndex:
case Expression::Kind::kVariableReference:
return std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e));
case Expression::Kind::kSwizzle: {
const Swizzle& s = e.as<Swizzle>();
return swizzle_is_simple(s)
? std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e))
: std::unique_ptr<LValue>(new ByteCodeSwizzleLValue(this, s));
}
case Expression::Kind::kTernary:
default:
#ifdef SK_DEBUG
ABORT("unsupported lvalue %s\n", e.description().c_str());
#endif
return nullptr;
}
}
void ByteCodeGenerator::writeBlock(const Block& b) {
for (const std::unique_ptr<Statement>& stmt : b.children()) {
this->writeStatement(*stmt);
}
}
void ByteCodeGenerator::setBreakTargets() {
std::vector<DeferredLocation>& breaks = fBreakTargets.top();
for (DeferredLocation& b : breaks) {
b.set();
}
fBreakTargets.pop();
}
void ByteCodeGenerator::setContinueTargets() {
std::vector<DeferredLocation>& continues = fContinueTargets.top();
for (DeferredLocation& c : continues) {
c.set();
}
fContinueTargets.pop();
}
void ByteCodeGenerator::writeBreakStatement(const BreakStatement& b) {
// TODO: Include BranchIfAllFalse to top-most LoopNext
this->write(ByteCodeInstruction::kLoopBreak);
}
void ByteCodeGenerator::writeContinueStatement(const ContinueStatement& c) {
// TODO: Include BranchIfAllFalse to top-most LoopNext
this->write(ByteCodeInstruction::kLoopContinue);
}
void ByteCodeGenerator::writeDoStatement(const DoStatement& d) {
this->write(ByteCodeInstruction::kLoopBegin);
size_t start = fCode->size();
this->writeStatement(*d.statement());
this->write(ByteCodeInstruction::kLoopNext);
this->writeExpression(*d.test());
this->write(ByteCodeInstruction::kLoopMask);
// TODO: Could shorten this with kBranchIfAnyTrue
this->write(ByteCodeInstruction::kBranchIfAllFalse);
DeferredLocation endLocation(this);
this->write(ByteCodeInstruction::kBranch);
this->write16(start);
endLocation.set();
this->write(ByteCodeInstruction::kLoopEnd);
}
void ByteCodeGenerator::writeForStatement(const ForStatement& f) {
fContinueTargets.emplace();
fBreakTargets.emplace();
if (f.initializer()) {
this->writeStatement(*f.initializer());
}
this->write(ByteCodeInstruction::kLoopBegin);
size_t start = fCode->size();
if (f.test()) {
this->writeExpression(*f.test());
this->write(ByteCodeInstruction::kLoopMask);
}
this->write(ByteCodeInstruction::kBranchIfAllFalse);
DeferredLocation endLocation(this);
this->writeStatement(*f.statement());
this->write(ByteCodeInstruction::kLoopNext);
if (f.next()) {
this->writeExpression(*f.next(), true);
}
this->write(ByteCodeInstruction::kBranch);
this->write16(start);
endLocation.set();
this->write(ByteCodeInstruction::kLoopEnd);
}
void ByteCodeGenerator::writeIfStatement(const IfStatement& i) {
this->writeExpression(*i.test());
this->write(ByteCodeInstruction::kMaskPush);
this->write(ByteCodeInstruction::kBranchIfAllFalse);
DeferredLocation falseLocation(this);
this->writeStatement(*i.ifTrue());
falseLocation.set();
if (i.ifFalse()) {
this->write(ByteCodeInstruction::kMaskNegate);
this->write(ByteCodeInstruction::kBranchIfAllFalse);
DeferredLocation endLocation(this);
this->writeStatement(*i.ifFalse());
endLocation.set();
}
this->write(ByteCodeInstruction::kMaskPop);
}
void ByteCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
if (fLoopCount) {
fErrors.error(r.fOffset, "return not allowed inside loop");
return;
}
int count = SlotCount(r.expression()->type());
this->writeExpression(*r.expression());
// Technically, the kReturn also pops fOutput->fLocalCount values from the stack, too, but we
// haven't counted pushing those (they're outside the scope of our stack tracking). Instead,
// we account for those in writeFunction().
// This is all fine because we don't allow conditional returns, so we only return once anyway.
this->write(ByteCodeInstruction::kReturn, count);
}
void ByteCodeGenerator::writeSwitchStatement(const SwitchStatement& r) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeVarDeclaration(const VarDeclaration& decl) {
// we need to grab the location even if we don't use it, to ensure it has been allocated
Location location = this->getLocation(decl.var());
if (decl.value()) {
this->writeExpression(*decl.value());
int count = SlotCount(decl.value()->type());
this->write(ByteCodeInstruction::kStore, count);
this->write8(location.fSlot);
}
}
void ByteCodeGenerator::writeWhileStatement(const WhileStatement& w) {
this->write(ByteCodeInstruction::kLoopBegin);
size_t cond = fCode->size();
this->writeExpression(*w.test());
this->write(ByteCodeInstruction::kLoopMask);
this->write(ByteCodeInstruction::kBranchIfAllFalse);
DeferredLocation endLocation(this);
this->writeStatement(*w.statement());
this->write(ByteCodeInstruction::kLoopNext);
this->write(ByteCodeInstruction::kBranch);
this->write16(cond);
endLocation.set();
this->write(ByteCodeInstruction::kLoopEnd);
}
void ByteCodeGenerator::writeStatement(const Statement& s) {
switch (s.kind()) {
case Statement::Kind::kBlock:
this->writeBlock(s.as<Block>());
break;
case Statement::Kind::kBreak:
this->writeBreakStatement(s.as<BreakStatement>());
break;
case Statement::Kind::kContinue:
this->writeContinueStatement(s.as<ContinueStatement>());
break;
case Statement::Kind::kDiscard:
// not yet implemented
abort();
case Statement::Kind::kDo:
this->writeDoStatement(s.as<DoStatement>());
break;
case Statement::Kind::kExpression:
this->writeExpression(*s.as<ExpressionStatement>().expression(), true);
break;
case Statement::Kind::kFor:
this->writeForStatement(s.as<ForStatement>());
break;
case Statement::Kind::kIf:
this->writeIfStatement(s.as<IfStatement>());
break;
case Statement::Kind::kReturn:
this->writeReturnStatement(s.as<ReturnStatement>());
break;
case Statement::Kind::kSwitch:
this->writeSwitchStatement(s.as<SwitchStatement>());
break;
case Statement::Kind::kVarDeclaration:
this->writeVarDeclaration(s.as<VarDeclaration>());
break;
case Statement::Kind::kWhile:
this->writeWhileStatement(s.as<WhileStatement>());
break;
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
break;
default:
SkASSERT(false);
}
}
ByteCodeFunction::ByteCodeFunction(const FunctionDeclaration* declaration)
: fName(declaration->name()) {
fParameterCount = 0;
for (const auto& p : declaration->parameters()) {
int slots = ByteCodeGenerator::SlotCount(p->type());
fParameters.push_back({ slots, (bool)(p->modifiers().fFlags & Modifiers::kOut_Flag) });
fParameterCount += slots;
}
}
} // namespace SkSL