skia2/bench/nanobench.cpp
Greg Daniel 81e7bf8d6d Update gpu caps for valid sample counts.
Instead of query and maxSampleCount and using that to cap, we now have
each config store its supported values and when requested returns either
the next highest or equal supported value, or if non the max config supported.

Bug: skia:
Change-Id: I8802d44c13b3b1703ee54a7e69b82102d4b8dc2d
Reviewed-on: https://skia-review.googlesource.com/24302
Commit-Queue: Greg Daniel <egdaniel@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
2017-07-19 19:13:25 +00:00

1393 lines
51 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "nanobench.h"
#include "AndroidCodecBench.h"
#include "Benchmark.h"
#include "BitmapRegionDecoderBench.h"
#include "CodecBench.h"
#include "CodecBenchPriv.h"
#include "ColorCodecBench.h"
#include "CrashHandler.h"
#include "GMBench.h"
#include "ProcStats.h"
#include "RecordingBench.h"
#include "ResultsWriter.h"
#include "SKPAnimationBench.h"
#include "SKPBench.h"
#include "SkAndroidCodec.h"
#include "SkAutoMalloc.h"
#include "SkBBoxHierarchy.h"
#include "SkBitmapRegionDecoder.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkCommonFlags.h"
#include "SkCommonFlagsConfig.h"
#include "SkCommonFlagsPathRenderer.h"
#include "SkData.h"
#include "SkDebugfTracer.h"
#include "SkGraphics.h"
#include "SkLeanWindows.h"
#include "SkOSFile.h"
#include "SkOSPath.h"
#include "SkPictureRecorder.h"
#include "SkSVGDOM.h"
#include "SkScan.h"
#include "SkString.h"
#include "SkSurface.h"
#include "SkTaskGroup.h"
#include "SkThreadUtils.h"
#include "Stats.h"
#include "ThermalManager.h"
#include "ios_utils.h"
#include <stdlib.h>
extern bool gSkForceRasterPipelineBlitter;
#ifndef SK_BUILD_FOR_WIN32
#include <unistd.h>
#endif
#if SK_SUPPORT_GPU
#include "gl/GrGLDefines.h"
#include "GrCaps.h"
#include "GrContextFactory.h"
#include "gl/GrGLUtil.h"
#include "SkGr.h"
using sk_gpu_test::GrContextFactory;
using sk_gpu_test::TestContext;
std::unique_ptr<GrContextFactory> gGrFactory;
#endif
struct GrContextOptions;
static const int kAutoTuneLoops = 0;
#if !defined(__has_feature)
#define __has_feature(x) 0
#endif
static const int kDefaultLoops =
#if defined(SK_DEBUG) || __has_feature(address_sanitizer)
1;
#else
kAutoTuneLoops;
#endif
static SkString loops_help_txt() {
SkString help;
help.printf("Number of times to run each bench. Set this to %d to auto-"
"tune for each bench. Timings are only reported when auto-tuning.",
kAutoTuneLoops);
return help;
}
static SkString to_string(int n) {
SkString str;
str.appendS32(n);
return str;
}
DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str());
DEFINE_int32(samples, 10, "Number of samples to measure for each bench.");
DEFINE_int32(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples.");
DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead.");
DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag.");
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
DEFINE_int32(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this.");
DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
DEFINE_string(zoom, "1.0,0", "Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom "
"function that ping-pongs between 1.0 and zoomMax.");
DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
DEFINE_bool(lite, false, "Use SkLiteRecorder in recording benchmarks?");
DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?");
DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?");
DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run.");
DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test.");
DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?");
DEFINE_bool(gpuStatsDump, false, "Dump GPU states after each benchmark to json");
DEFINE_bool(keepAlive, false, "Print a message every so often so that we don't time out");
DEFINE_string(useThermalManager, "0,1,10,1000", "enabled,threshold,sleepTimeMs,TimeoutMs for "
"thermalManager\n");
DEFINE_bool(csv, false, "Print status in CSV format");
DEFINE_string(sourceType, "",
"Apply usual --match rules to source type: bench, gm, skp, image, etc.");
DEFINE_string(benchType, "",
"Apply usual --match rules to bench type: micro, recording, piping, playback, skcodec, etc.");
DEFINE_bool(forceRasterPipeline, false, "sets gSkForceRasterPipelineBlitter");
#if SK_SUPPORT_GPU
DEFINE_pathrenderer_flag;
#endif
static double now_ms() { return SkTime::GetNSecs() * 1e-6; }
static SkString humanize(double ms) {
if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
return HumanizeMs(ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
bool Target::init(SkImageInfo info, Benchmark* bench) {
if (Benchmark::kRaster_Backend == config.backend) {
this->surface = SkSurface::MakeRaster(info);
if (!this->surface) {
return false;
}
}
return true;
}
bool Target::capturePixels(SkBitmap* bmp) {
SkCanvas* canvas = this->getCanvas();
if (!canvas) {
return false;
}
bmp->allocPixels(canvas->imageInfo());
if (!canvas->readPixels(*bmp, 0, 0)) {
SkDebugf("Can't read canvas pixels.\n");
return false;
}
return true;
}
#if SK_SUPPORT_GPU
struct GPUTarget : public Target {
explicit GPUTarget(const Config& c) : Target(c), context(nullptr) { }
TestContext* context;
void setup() override {
this->context->makeCurrent();
// Make sure we're done with whatever came before.
this->context->finish();
}
void endTiming() override {
if (this->context) {
this->context->waitOnSyncOrSwap();
}
}
void fence() override {
this->context->finish();
}
bool needsFrameTiming(int* maxFrameLag) const override {
if (!this->context->getMaxGpuFrameLag(maxFrameLag)) {
// Frame lag is unknown.
*maxFrameLag = FLAGS_gpuFrameLag;
}
return true;
}
bool init(SkImageInfo info, Benchmark* bench) override {
uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag :
0;
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
this->surface = SkSurface::MakeRenderTarget(gGrFactory->get(this->config.ctxType,
this->config.ctxOverrides),
SkBudgeted::kNo, info,
this->config.samples, &props);
this->context = gGrFactory->getContextInfo(this->config.ctxType,
this->config.ctxOverrides).testContext();
if (!this->surface.get()) {
return false;
}
if (!this->context->fenceSyncSupport()) {
SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. "
"Timings might not be accurate.\n", this->config.name.c_str());
}
return true;
}
void fillOptions(ResultsWriter* log) override {
const GrGLubyte* version;
if (this->context->backend() == kOpenGL_GrBackend) {
const GrGLInterface* gl =
reinterpret_cast<const GrGLInterface*>(this->context->backendContext());
GR_GL_CALL_RET(gl, version, GetString(GR_GL_VERSION));
log->configOption("GL_VERSION", (const char*)(version));
GR_GL_CALL_RET(gl, version, GetString(GR_GL_RENDERER));
log->configOption("GL_RENDERER", (const char*) version);
GR_GL_CALL_RET(gl, version, GetString(GR_GL_VENDOR));
log->configOption("GL_VENDOR", (const char*) version);
GR_GL_CALL_RET(gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version);
}
}
};
#endif
static double time(int loops, Benchmark* bench, Target* target) {
SkCanvas* canvas = target->getCanvas();
if (canvas) {
canvas->clear(SK_ColorWHITE);
}
bench->preDraw(canvas);
double start = now_ms();
canvas = target->beginTiming(canvas);
bench->draw(loops, canvas);
if (canvas) {
canvas->flush();
}
target->endTiming();
double elapsed = now_ms() - start;
bench->postDraw(canvas);
return elapsed;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
double start = now_ms();
overhead += now_ms() - start;
}
return overhead / FLAGS_overheadLoops;
}
static int detect_forever_loops(int loops) {
// look for a magic run-forever value
if (loops < 0) {
loops = SK_MaxS32;
}
return loops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1. "
"There's probably something wrong with the bench.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static bool write_canvas_png(Target* target, const SkString& filename) {
if (filename.isEmpty()) {
return false;
}
if (target->getCanvas() &&
kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) {
return false;
}
SkBitmap bmp;
if (!target->capturePixels(&bmp)) {
return false;
}
SkString dir = SkOSPath::Dirname(filename.c_str());
if (!sk_mkdir(dir.c_str())) {
SkDebugf("Can't make dir %s.\n", dir.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.isValid()) {
SkDebugf("Can't write %s.\n", filename.c_str());
return false;
}
if (!SkEncodeImage(&stream, bmp, SkEncodedImageFormat::kPNG, 100)) {
SkDebugf("Can't encode a PNG.\n");
return false;
}
return true;
}
static int kFailedLoops = -2;
static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead = 0.0;
int round = 0;
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
while (bench_plus_overhead < overhead) {
if (round++ == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return kFailedLoops;
}
bench_plus_overhead = time(1, bench, target);
}
}
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ~=~ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
if (kAutoTuneLoops == loops) {
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
loops = (int)ceil(numer / denom);
loops = clamp_loops(loops);
} else {
loops = detect_forever_loops(loops);
}
return loops;
}
static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) {
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
loops = 1;
double elapsed = 0;
do {
if (1<<30 == loops) {
// We're about to wrap. Something's wrong with the bench.
loops = 0;
break;
}
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round.
for (int i = 0; i < maxGpuFrameLag; i++) {
elapsed = time(loops, bench, target);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
loops = clamp_loops(loops);
// Make sure we're not still timing our calibration.
target->fence();
} else {
loops = detect_forever_loops(loops);
}
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < maxGpuFrameLag - 1; i++) {
time(loops, bench, target);
}
return loops;
}
#if SK_SUPPORT_GPU
#define kBogusContextType GrContextFactory::kGL_ContextType
#define kBogusContextOverrides GrContextFactory::ContextOverrides::kNone
#else
#define kBogusContextType 0
#define kBogusContextOverrides 0
#endif
static void create_config(const SkCommandLineConfig* config, SkTArray<Config>* configs) {
#if SK_SUPPORT_GPU
if (const auto* gpuConfig = config->asConfigGpu()) {
if (!FLAGS_gpu)
return;
const auto ctxType = gpuConfig->getContextType();
const auto ctxOverrides = gpuConfig->getContextOverrides();
const auto sampleCount = gpuConfig->getSamples();
const auto colorType = gpuConfig->getColorType();
auto colorSpace = gpuConfig->getColorSpace();
if (const GrContext* ctx = gGrFactory->get(ctxType, ctxOverrides)) {
GrPixelConfig grPixConfig = SkImageInfo2GrPixelConfig(colorType, colorSpace,
*ctx->caps());
int supportedSampleCount = ctx->caps()->getSampleCount(sampleCount, grPixConfig);
if (sampleCount != supportedSampleCount) {
SkDebugf("Configuration sample count %d is not a supported sample count.\n",
sampleCount);
return;
}
} else {
SkDebugf("No context was available matching config type and options.\n");
return;
}
Config target = {
gpuConfig->getTag(),
Benchmark::kGPU_Backend,
colorType,
kPremul_SkAlphaType,
sk_ref_sp(colorSpace),
sampleCount,
ctxType,
ctxOverrides,
gpuConfig->getUseDIText()
};
configs->push_back(target);
return;
}
#endif
#define CPU_CONFIG(name, backend, color, alpha, colorSpace) \
if (config->getTag().equals(#name)) { \
Config config = { \
SkString(#name), Benchmark::backend, color, alpha, colorSpace, \
0, kBogusContextType, kBogusContextOverrides, false \
}; \
configs->push_back(config); \
return; \
}
if (FLAGS_cpu) {
CPU_CONFIG(nonrendering, kNonRendering_Backend,
kUnknown_SkColorType, kUnpremul_SkAlphaType, nullptr)
CPU_CONFIG(8888, kRaster_Backend,
kN32_SkColorType, kPremul_SkAlphaType, nullptr)
CPU_CONFIG(565, kRaster_Backend,
kRGB_565_SkColorType, kOpaque_SkAlphaType, nullptr)
auto srgbColorSpace = SkColorSpace::MakeSRGB();
CPU_CONFIG(srgb, kRaster_Backend,
kN32_SkColorType, kPremul_SkAlphaType, srgbColorSpace)
auto srgbLinearColorSpace = SkColorSpace::MakeSRGBLinear();
CPU_CONFIG(f16, kRaster_Backend,
kRGBA_F16_SkColorType, kPremul_SkAlphaType, srgbLinearColorSpace)
}
#undef CPU_CONFIG
}
// Append all configs that are enabled and supported.
void create_configs(SkTArray<Config>* configs) {
SkCommandLineConfigArray array;
ParseConfigs(FLAGS_config, &array);
for (int i = 0; i < array.count(); ++i) {
create_config(array[i].get(), configs);
}
}
// disable warning : switch statement contains default but no 'case' labels
#if defined _WIN32
#pragma warning ( push )
#pragma warning ( disable : 4065 )
#endif
// If bench is enabled for config, returns a Target* for it, otherwise nullptr.
static Target* is_enabled(Benchmark* bench, const Config& config) {
if (!bench->isSuitableFor(config.backend)) {
return nullptr;
}
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
config.color, config.alpha, config.colorSpace);
Target* target = nullptr;
switch (config.backend) {
#if SK_SUPPORT_GPU
case Benchmark::kGPU_Backend:
target = new GPUTarget(config);
break;
#endif
default:
target = new Target(config);
break;
}
if (!target->init(info, bench)) {
delete target;
return nullptr;
}
return target;
}
#if defined _WIN32
#pragma warning ( pop )
#endif
static bool valid_brd_bench(sk_sp<SkData> encoded, SkColorType colorType, uint32_t sampleSize,
uint32_t minOutputSize, int* width, int* height) {
std::unique_ptr<SkBitmapRegionDecoder> brd(
SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy));
if (nullptr == brd.get()) {
// This is indicates that subset decoding is not supported for a particular image format.
return false;
}
if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize >
(uint32_t) brd->height()) {
// This indicates that the image is not large enough to decode a
// minOutputSize x minOutputSize subset at the given sampleSize.
return false;
}
// Set the image width and height. The calling code will use this to choose subsets to decode.
*width = brd->width();
*height = brd->height();
return true;
}
static void cleanup_run(Target* target) {
delete target;
#if SK_SUPPORT_GPU
if (FLAGS_abandonGpuContext) {
gGrFactory->abandonContexts();
}
if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) {
gGrFactory->destroyContexts();
}
#endif
}
static void collect_files(const SkCommandLineFlags::StringArray& paths, const char* ext,
SkTArray<SkString>* list) {
for (int i = 0; i < paths.count(); ++i) {
if (SkStrEndsWith(paths[i], ext)) {
list->push_back(SkString(paths[i]));
} else {
SkOSFile::Iter it(paths[i], ext);
SkString path;
while (it.next(&path)) {
list->push_back(SkOSPath::Join(paths[i], path.c_str()));
}
}
}
}
class BenchmarkStream {
public:
BenchmarkStream() : fBenches(BenchRegistry::Head())
, fGMs(skiagm::GMRegistry::Head())
, fCurrentRecording(0)
, fCurrentPiping(0)
, fCurrentScale(0)
, fCurrentSKP(0)
, fCurrentSVG(0)
, fCurrentUseMPD(0)
, fCurrentCodec(0)
, fCurrentAndroidCodec(0)
, fCurrentBRDImage(0)
, fCurrentColorImage(0)
, fCurrentColorType(0)
, fCurrentAlphaType(0)
, fCurrentSubsetType(0)
, fCurrentSampleSize(0)
, fCurrentAnimSKP(0) {
collect_files(FLAGS_skps, ".skp", &fSKPs);
collect_files(FLAGS_svgs, ".svg", &fSVGs);
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
exit(1);
}
for (int i = 0; i < FLAGS_scales.count(); i++) {
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
exit(1);
}
}
if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) {
SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]);
exit(1);
}
if (FLAGS_mpd) {
fUseMPDs.push_back() = true;
}
fUseMPDs.push_back() = false;
// Prepare the images for decoding
if (!CollectImages(FLAGS_images, &fImages)) {
exit(1);
}
if (!CollectImages(FLAGS_colorImages, &fColorImages)) {
exit(1);
}
// Choose the candidate color types for image decoding
fColorTypes.push_back(kN32_SkColorType);
if (!FLAGS_simpleCodec) {
fColorTypes.push_back(kRGB_565_SkColorType);
fColorTypes.push_back(kAlpha_8_SkColorType);
fColorTypes.push_back(kGray_8_SkColorType);
}
}
static sk_sp<SkPicture> ReadPicture(const char* path) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) {
return nullptr;
}
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path);
if (!stream) {
SkDebugf("Could not read %s.\n", path);
return nullptr;
}
return SkPicture::MakeFromStream(stream.get());
}
static sk_sp<SkPicture> ReadSVGPicture(const char* path) {
SkFILEStream stream(path);
if (!stream.isValid()) {
SkDebugf("Could not read %s.\n", path);
return nullptr;
}
sk_sp<SkSVGDOM> svgDom = SkSVGDOM::MakeFromStream(stream);
if (!svgDom) {
SkDebugf("Could not parse %s.\n", path);
return nullptr;
}
// Use the intrinsic SVG size if available, otherwise fall back to a default value.
static const SkSize kDefaultContainerSize = SkSize::Make(128, 128);
if (svgDom->containerSize().isEmpty()) {
svgDom->setContainerSize(kDefaultContainerSize);
}
SkPictureRecorder recorder;
svgDom->render(recorder.beginRecording(svgDom->containerSize().width(),
svgDom->containerSize().height()));
return recorder.finishRecordingAsPicture();
}
Benchmark* next() {
std::unique_ptr<Benchmark> bench;
do {
bench.reset(this->rawNext());
if (!bench) {
return nullptr;
}
} while(SkCommandLineFlags::ShouldSkip(FLAGS_sourceType, fSourceType) ||
SkCommandLineFlags::ShouldSkip(FLAGS_benchType, fBenchType));
return bench.release();
}
Benchmark* rawNext() {
if (fBenches) {
Benchmark* bench = fBenches->factory()(nullptr);
fBenches = fBenches->next();
fSourceType = "bench";
fBenchType = "micro";
return bench;
}
while (fGMs) {
std::unique_ptr<skiagm::GM> gm(fGMs->factory()(nullptr));
fGMs = fGMs->next();
if (gm->runAsBench()) {
fSourceType = "gm";
fBenchType = "micro";
return new GMBench(gm.release());
}
}
// First add all .skps as RecordingBenches.
while (fCurrentRecording < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentRecording++];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "recording";
fSKPBytes = static_cast<double>(pic->approximateBytesUsed());
fSKPOps = pic->approximateOpCount();
return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh, FLAGS_lite);
}
// Add all .skps as PipeBenches.
while (fCurrentPiping < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentPiping++];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "piping";
fSKPBytes = static_cast<double>(pic->approximateBytesUsed());
fSKPOps = pic->approximateOpCount();
return new PipingBench(name.c_str(), pic.get());
}
// Then once each for each scale as SKPBenches (playback).
while (fCurrentScale < fScales.count()) {
while (fCurrentSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentSKP];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
fCurrentSKP++;
continue;
}
while (fCurrentUseMPD < fUseMPDs.count()) {
if (FLAGS_bbh) {
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
SkRTreeFactory factory;
SkPictureRecorder recorder;
pic->playback(recorder.beginRecording(pic->cullRect().width(),
pic->cullRect().height(),
&factory,
0));
pic = recorder.finishRecordingAsPicture();
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "playback";
return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale],
fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP);
}
fCurrentUseMPD = 0;
fCurrentSKP++;
}
while (fCurrentSVG++ < fSVGs.count()) {
const char* path = fSVGs[fCurrentSVG - 1].c_str();
if (sk_sp<SkPicture> pic = ReadSVGPicture(path)) {
fSourceType = "svg";
fBenchType = "playback";
return new SKPBench(SkOSPath::Basename(path).c_str(), pic.get(), fClip,
fScales[fCurrentScale], false, FLAGS_loopSKP);
}
}
fCurrentSKP = 0;
fCurrentSVG = 0;
fCurrentScale++;
}
// Now loop over each skp again if we have an animation
if (fZoomMax != 1.0f && fZoomPeriodMs > 0) {
while (fCurrentAnimSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentAnimSKP];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
fCurrentAnimSKP++;
continue;
}
fCurrentAnimSKP++;
SkString name = SkOSPath::Basename(path.c_str());
sk_sp<SKPAnimationBench::Animation> animation(
SKPAnimationBench::CreateZoomAnimation(fZoomMax, fZoomPeriodMs));
return new SKPAnimationBench(name.c_str(), pic.get(), fClip, animation.get(),
FLAGS_loopSKP);
}
}
for (; fCurrentCodec < fImages.count(); fCurrentCodec++) {
fSourceType = "image";
fBenchType = "skcodec";
const SkString& path = fImages[fCurrentCodec];
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
std::unique_ptr<SkCodec> codec(SkCodec::NewFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
const SkColorType colorType = fColorTypes[fCurrentColorType];
SkAlphaType alphaType = codec->getInfo().alphaType();
if (FLAGS_simpleCodec) {
if (kUnpremul_SkAlphaType == alphaType) {
alphaType = kPremul_SkAlphaType;
}
fCurrentColorType++;
} else {
switch (alphaType) {
case kOpaque_SkAlphaType:
// We only need to test one alpha type (opaque).
fCurrentColorType++;
break;
case kUnpremul_SkAlphaType:
case kPremul_SkAlphaType:
if (0 == fCurrentAlphaType) {
// Test unpremul first.
alphaType = kUnpremul_SkAlphaType;
fCurrentAlphaType++;
} else {
// Test premul.
alphaType = kPremul_SkAlphaType;
fCurrentAlphaType = 0;
fCurrentColorType++;
}
break;
default:
SkASSERT(false);
fCurrentColorType++;
break;
}
}
// Make sure we can decode to this color type and alpha type.
SkImageInfo info =
codec->getInfo().makeColorType(colorType).makeAlphaType(alphaType);
const size_t rowBytes = info.minRowBytes();
SkAutoMalloc storage(info.getSafeSize(rowBytes));
const SkCodec::Result result = codec->getPixels(
info, storage.get(), rowBytes);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
return new CodecBench(SkOSPath::Basename(path.c_str()),
encoded.get(), colorType, alphaType);
case SkCodec::kInvalidConversion:
// This is okay. Not all conversions are valid.
break;
default:
// This represents some sort of failure.
SkASSERT(false);
break;
}
}
fCurrentColorType = 0;
}
// Run AndroidCodecBenches
const int sampleSizes[] = { 2, 4, 8 };
for (; fCurrentAndroidCodec < fImages.count(); fCurrentAndroidCodec++) {
fSourceType = "image";
fBenchType = "skandroidcodec";
const SkString& path = fImages[fCurrentAndroidCodec];
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) {
int sampleSize = sampleSizes[fCurrentSampleSize];
fCurrentSampleSize++;
if (10 * sampleSize > SkTMin(codec->getInfo().width(), codec->getInfo().height())) {
// Avoid benchmarking scaled decodes of already small images.
break;
}
return new AndroidCodecBench(SkOSPath::Basename(path.c_str()),
encoded.get(), sampleSize);
}
fCurrentSampleSize = 0;
}
// Run the BRDBenches
// We intend to create benchmarks that model the use cases in
// android/libraries/social/tiledimage. In this library, an image is decoded in 512x512
// tiles. The image can be translated freely, so the location of a tile may be anywhere in
// the image. For that reason, we will benchmark decodes in five representative locations
// in the image. Additionally, this use case utilizes power of two scaling, so we will
// test on power of two sample sizes. The output tile is always 512x512, so, when a
// sampleSize is used, the size of the subset that is decoded is always
// (sampleSize*512)x(sampleSize*512).
// There are a few good reasons to only test on power of two sample sizes at this time:
// All use cases we are aware of only scale by powers of two.
// PNG decodes use the indicated sampling strategy regardless of the sample size, so
// these tests are sufficient to provide good coverage of our scaling options.
const uint32_t brdSampleSizes[] = { 1, 2, 4, 8, 16 };
const uint32_t minOutputSize = 512;
for (; fCurrentBRDImage < fImages.count(); fCurrentBRDImage++) {
fSourceType = "image";
fBenchType = "BRD";
const SkString& path = fImages[fCurrentBRDImage];
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(brdSampleSizes)) {
while (fCurrentSubsetType <= kLastSingle_SubsetType) {
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
const SkColorType colorType = fColorTypes[fCurrentColorType];
uint32_t sampleSize = brdSampleSizes[fCurrentSampleSize];
int currentSubsetType = fCurrentSubsetType++;
int width = 0;
int height = 0;
if (!valid_brd_bench(encoded, colorType, sampleSize, minOutputSize,
&width, &height)) {
break;
}
SkString basename = SkOSPath::Basename(path.c_str());
SkIRect subset;
const uint32_t subsetSize = sampleSize * minOutputSize;
switch (currentSubsetType) {
case kTopLeft_SubsetType:
basename.append("_TopLeft");
subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize);
break;
case kTopRight_SubsetType:
basename.append("_TopRight");
subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize,
subsetSize);
break;
case kMiddle_SubsetType:
basename.append("_Middle");
subset = SkIRect::MakeXYWH((width - subsetSize) / 2,
(height - subsetSize) / 2, subsetSize, subsetSize);
break;
case kBottomLeft_SubsetType:
basename.append("_BottomLeft");
subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize,
subsetSize);
break;
case kBottomRight_SubsetType:
basename.append("_BottomRight");
subset = SkIRect::MakeXYWH(width - subsetSize,
height - subsetSize, subsetSize, subsetSize);
break;
default:
SkASSERT(false);
}
return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(),
colorType, sampleSize, subset);
}
fCurrentSubsetType = 0;
fCurrentSampleSize++;
}
fCurrentSampleSize = 0;
fCurrentColorType++;
}
fCurrentColorType = 0;
}
while (fCurrentColorImage < fColorImages.count()) {
fSourceType = "colorimage";
fBenchType = "skcolorcodec";
const SkString& path = fColorImages[fCurrentColorImage];
fCurrentColorImage++;
sk_sp<SkData> encoded = SkData::MakeFromFileName(path.c_str());
if (encoded) {
return new ColorCodecBench(SkOSPath::Basename(path.c_str()).c_str(),
std::move(encoded));
} else {
SkDebugf("Could not read file %s.\n", path.c_str());
}
}
return nullptr;
}
void fillCurrentOptions(ResultsWriter* log) const {
log->configOption("source_type", fSourceType);
log->configOption("bench_type", fBenchType);
if (0 == strcmp(fSourceType, "skp")) {
log->configOption("clip",
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
fClip.fRight, fClip.fBottom).c_str());
SkASSERT_RELEASE(fCurrentScale < fScales.count()); // debugging paranoia
log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
if (fCurrentUseMPD > 0) {
SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD);
log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false");
}
}
if (0 == strcmp(fBenchType, "recording")) {
log->metric("bytes", fSKPBytes);
log->metric("ops", fSKPOps);
}
}
private:
enum SubsetType {
kTopLeft_SubsetType = 0,
kTopRight_SubsetType = 1,
kMiddle_SubsetType = 2,
kBottomLeft_SubsetType = 3,
kBottomRight_SubsetType = 4,
kTranslate_SubsetType = 5,
kZoom_SubsetType = 6,
kLast_SubsetType = kZoom_SubsetType,
kLastSingle_SubsetType = kBottomRight_SubsetType,
};
const BenchRegistry* fBenches;
const skiagm::GMRegistry* fGMs;
SkIRect fClip;
SkTArray<SkScalar> fScales;
SkTArray<SkString> fSKPs;
SkTArray<SkString> fSVGs;
SkTArray<bool> fUseMPDs;
SkTArray<SkString> fImages;
SkTArray<SkString> fColorImages;
SkTArray<SkColorType, true> fColorTypes;
SkScalar fZoomMax;
double fZoomPeriodMs;
double fSKPBytes, fSKPOps;
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
const char* fBenchType; // How we bench it: micro, recording, playback, ...
int fCurrentRecording;
int fCurrentPiping;
int fCurrentScale;
int fCurrentSKP;
int fCurrentSVG;
int fCurrentUseMPD;
int fCurrentCodec;
int fCurrentAndroidCodec;
int fCurrentBRDImage;
int fCurrentColorImage;
int fCurrentColorType;
int fCurrentAlphaType;
int fCurrentSubsetType;
int fCurrentSampleSize;
int fCurrentAnimSKP;
};
// Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung.
// This prints something every once in a while so that it knows we're still working.
static void start_keepalive() {
struct Loop {
static void forever(void*) {
for (;;) {
static const int kSec = 1200;
#if defined(SK_BUILD_FOR_WIN)
Sleep(kSec * 1000);
#else
sleep(kSec);
#endif
SkDebugf("\nBenchmarks still running...\n");
}
}
};
static SkThread* intentionallyLeaked = new SkThread(Loop::forever);
intentionallyLeaked->start();
}
int main(int argc, char** argv) {
SkCommandLineFlags::Parse(argc, argv);
if (FLAGS_trace) {
SkEventTracer::SetInstance(new SkDebugfTracer);
}
#if defined(SK_BUILD_FOR_IOS)
cd_Documents();
#endif
SetupCrashHandler();
SkAutoGraphics ag;
SkTaskGroup::Enabler enabled(FLAGS_threads);
#if SK_SUPPORT_GPU
GrContextOptions grContextOpts;
grContextOpts.fGpuPathRenderers = CollectGpuPathRenderersFromFlags();
gGrFactory.reset(new GrContextFactory(grContextOpts));
#endif
if (FLAGS_veryVerbose) {
FLAGS_verbose = true;
}
if (kAutoTuneLoops != FLAGS_loops) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
if (!FLAGS_writePath.isEmpty()) {
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
if (!sk_mkdir(FLAGS_writePath[0])) {
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
FLAGS_writePath.set(0, nullptr);
}
}
std::unique_ptr<ResultsWriter> log(new ResultsWriter);
if (!FLAGS_outResultsFile.isEmpty()) {
#if defined(SK_RELEASE)
log.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0]));
#else
SkDebugf("I'm ignoring --outResultsFile because this is a Debug build.");
return 1;
#endif
}
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
log->property(FLAGS_properties[i-1], FLAGS_properties[i]);
}
if (1 == FLAGS_key.count() % 2) {
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_key.count(); i += 2) {
log->key(FLAGS_key[i-1], FLAGS_key[i]);
}
const double overhead = estimate_timer_overhead();
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
SkTArray<double> samples;
if (kAutoTuneLoops != FLAGS_loops) {
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
} else if (FLAGS_quiet) {
SkDebugf("! -> high variance, ? -> moderate variance\n");
SkDebugf(" micros \tbench\n");
} else if (FLAGS_ms) {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n");
} else {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
FLAGS_samples, "samples");
}
SkTArray<Config> configs;
create_configs(&configs);
#ifdef THERMAL_MANAGER_SUPPORTED
int tmEnabled, tmThreshold, tmSleepTimeMs, tmTimeoutMs;
if (4 != sscanf(FLAGS_useThermalManager[0], "%d,%d,%d,%d",
&tmEnabled, &tmThreshold, &tmSleepTimeMs, &tmTimeoutMs)) {
SkDebugf("Can't parse %s from --useThermalManager.\n", FLAGS_useThermalManager[0]);
exit(1);
}
ThermalManager tm(tmThreshold, tmSleepTimeMs, tmTimeoutMs);
#endif
if (FLAGS_keepAlive) {
start_keepalive();
}
gSkUseAnalyticAA = FLAGS_analyticAA;
if (FLAGS_forceAnalyticAA) {
gSkForceAnalyticAA = true;
}
if (FLAGS_forceRasterPipeline) {
gSkForceRasterPipelineBlitter = true;
}
int runs = 0;
BenchmarkStream benchStream;
while (Benchmark* b = benchStream.next()) {
std::unique_ptr<Benchmark> bench(b);
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
continue;
}
if (!configs.empty()) {
log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
bench->delayedSetup();
}
for (int i = 0; i < configs.count(); ++i) {
#ifdef THERMAL_MANAGER_SUPPORTED
if (tmEnabled && !tm.coolOffIfNecessary()) {
SkDebugf("Could not cool off, timings will be throttled\n");
}
#endif
Target* target = is_enabled(b, configs[i]);
if (!target) {
continue;
}
// During HWUI output this canvas may be nullptr.
SkCanvas* canvas = target->getCanvas();
const char* config = target->config.name.c_str();
if (FLAGS_pre_log || FLAGS_dryRun) {
SkDebugf("Running %s\t%s\n"
, bench->getUniqueName()
, config);
if (FLAGS_dryRun) {
continue;
}
}
target->setup();
bench->perCanvasPreDraw(canvas);
int maxFrameLag;
int loops = target->needsFrameTiming(&maxFrameLag)
? setup_gpu_bench(target, bench.get(), maxFrameLag)
: setup_cpu_bench(overhead, target, bench.get());
if (FLAGS_ms) {
samples.reset();
auto stop = now_ms() + FLAGS_ms;
do {
samples.push_back(time(loops, bench.get(), target) / loops);
} while (now_ms() < stop);
} else {
samples.reset(FLAGS_samples);
for (int s = 0; s < FLAGS_samples; s++) {
samples[s] = time(loops, bench.get(), target) / loops;
}
}
#if SK_SUPPORT_GPU
SkTArray<SkString> keys;
SkTArray<double> values;
bool gpuStatsDump = FLAGS_gpuStatsDump && Benchmark::kGPU_Backend == configs[i].backend;
if (gpuStatsDump) {
// TODO cache stats
bench->getGpuStats(canvas, &keys, &values);
}
#endif
bench->perCanvasPostDraw(canvas);
if (Benchmark::kNonRendering_Backend != target->config.backend &&
!FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
pngFilename.append(".png");
write_canvas_png(target, pngFilename);
}
if (kFailedLoops == loops) {
// Can't be timed. A warning note has already been printed.
cleanup_run(target);
continue;
}
Stats stats(samples);
log->config(config);
log->configOption("name", bench->getName());
benchStream.fillCurrentOptions(log.get());
target->fillOptions(log.get());
log->metric("min_ms", stats.min);
log->metrics("samples", samples);
#if SK_SUPPORT_GPU
if (gpuStatsDump) {
// dump to json, only SKPBench currently returns valid keys / values
SkASSERT(keys.count() == values.count());
for (int i = 0; i < keys.count(); i++) {
log->metric(keys[i].c_str(), values[i]);
}
}
#endif
if (runs++ % FLAGS_flushEvery == 0) {
log->flush();
}
if (kAutoTuneLoops != FLAGS_loops) {
if (configs.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%4d/%-4dMB\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, bench->getUniqueName()
, config);
} else if (FLAGS_quiet) {
const char* mark = " ";
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
if (stddev_percent > 5) mark = "?";
if (stddev_percent > 10) mark = "!";
SkDebugf("%10.2f %s\t%s\t%s\n",
stats.median*1e3, mark, bench->getUniqueName(), config);
} else if (FLAGS_csv) {
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf("%g,%g,%g,%g,%g,%s,%s\n"
, stats.min
, stats.median
, stats.mean
, stats.max
, stddev_percent
, config
, bench->getUniqueName()
);
} else {
const char* format = "%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n";
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf(format
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str()
, config
, bench->getUniqueName()
);
}
#if SK_SUPPORT_GPU
if (FLAGS_gpuStats && Benchmark::kGPU_Backend == configs[i].backend) {
GrContext* context = gGrFactory->get(configs[i].ctxType,
configs[i].ctxOverrides);
context->printCacheStats();
context->printGpuStats();
}
#endif
if (FLAGS_verbose) {
SkDebugf("Samples: ");
for (int i = 0; i < samples.count(); i++) {
SkDebugf("%s ", HUMANIZE(samples[i]));
}
SkDebugf("%s\n", bench->getUniqueName());
}
cleanup_run(target);
}
}
SkGraphics::PurgeAllCaches();
log->bench("memory_usage", 0,0);
log->config("meta");
log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB());
#if SK_SUPPORT_GPU
// Make sure we clean up the global GrContextFactory here, otherwise we might race with the
// SkEventTracer destructor
gGrFactory.reset(nullptr);
#endif
return 0;
}