f3c4a829c6
This is the mechanism for syncing a bunch of things with contiguous memory like vector<>, array<> and SkSpan<>. In a following CL, a convenience function SkMakeZip will easily convert most containers into a zip. Change-Id: Icda5b1774ae21c4c163a663f6d2b0f119f63ccba Reviewed-on: https://skia-review.googlesource.com/c/skia/+/240200 Commit-Queue: Herb Derby <herb@google.com> Reviewed-by: Ben Wagner <bungeman@google.com>
328 lines
10 KiB
C++
328 lines
10 KiB
C++
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkRefCnt.h"
|
|
#include "include/utils/SkRandom.h"
|
|
#include "src/core/SkSpan.h"
|
|
#include "src/core/SkTSearch.h"
|
|
#include "src/core/SkTSort.h"
|
|
#include "src/core/SkZip.h"
|
|
#include "tests/Test.h"
|
|
|
|
#include <array>
|
|
#include <initializer_list>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
class RefClass : public SkRefCnt {
|
|
public:
|
|
RefClass(int n) : fN(n) {}
|
|
int get() const { return fN; }
|
|
|
|
private:
|
|
int fN;
|
|
|
|
typedef SkRefCnt INHERITED;
|
|
};
|
|
|
|
static void test_autounref(skiatest::Reporter* reporter) {
|
|
RefClass obj(0);
|
|
REPORTER_ASSERT(reporter, obj.unique());
|
|
|
|
sk_sp<RefClass> tmp(&obj);
|
|
REPORTER_ASSERT(reporter, &obj == tmp.get());
|
|
REPORTER_ASSERT(reporter, obj.unique());
|
|
|
|
REPORTER_ASSERT(reporter, &obj == tmp.release());
|
|
REPORTER_ASSERT(reporter, obj.unique());
|
|
REPORTER_ASSERT(reporter, nullptr == tmp.release());
|
|
REPORTER_ASSERT(reporter, nullptr == tmp.get());
|
|
|
|
obj.ref();
|
|
REPORTER_ASSERT(reporter, !obj.unique());
|
|
{
|
|
sk_sp<RefClass> tmp2(&obj);
|
|
}
|
|
REPORTER_ASSERT(reporter, obj.unique());
|
|
}
|
|
|
|
static void test_autostarray(skiatest::Reporter* reporter) {
|
|
RefClass obj0(0);
|
|
RefClass obj1(1);
|
|
REPORTER_ASSERT(reporter, obj0.unique());
|
|
REPORTER_ASSERT(reporter, obj1.unique());
|
|
|
|
{
|
|
SkAutoSTArray<2, sk_sp<RefClass> > tmp;
|
|
REPORTER_ASSERT(reporter, 0 == tmp.count());
|
|
|
|
tmp.reset(0); // test out reset(0) when already at 0
|
|
tmp.reset(4); // this should force a new allocation
|
|
REPORTER_ASSERT(reporter, 4 == tmp.count());
|
|
tmp[0].reset(SkRef(&obj0));
|
|
tmp[1].reset(SkRef(&obj1));
|
|
REPORTER_ASSERT(reporter, !obj0.unique());
|
|
REPORTER_ASSERT(reporter, !obj1.unique());
|
|
|
|
// test out reset with data in the array (and a new allocation)
|
|
tmp.reset(0);
|
|
REPORTER_ASSERT(reporter, 0 == tmp.count());
|
|
REPORTER_ASSERT(reporter, obj0.unique());
|
|
REPORTER_ASSERT(reporter, obj1.unique());
|
|
|
|
tmp.reset(2); // this should use the preexisting allocation
|
|
REPORTER_ASSERT(reporter, 2 == tmp.count());
|
|
tmp[0].reset(SkRef(&obj0));
|
|
tmp[1].reset(SkRef(&obj1));
|
|
}
|
|
|
|
// test out destructor with data in the array (and using existing allocation)
|
|
REPORTER_ASSERT(reporter, obj0.unique());
|
|
REPORTER_ASSERT(reporter, obj1.unique());
|
|
|
|
{
|
|
// test out allocating ctor (this should allocate new memory)
|
|
SkAutoSTArray<2, sk_sp<RefClass> > tmp(4);
|
|
REPORTER_ASSERT(reporter, 4 == tmp.count());
|
|
|
|
tmp[0].reset(SkRef(&obj0));
|
|
tmp[1].reset(SkRef(&obj1));
|
|
REPORTER_ASSERT(reporter, !obj0.unique());
|
|
REPORTER_ASSERT(reporter, !obj1.unique());
|
|
|
|
// Test out resut with data in the array and malloced storage
|
|
tmp.reset(0);
|
|
REPORTER_ASSERT(reporter, obj0.unique());
|
|
REPORTER_ASSERT(reporter, obj1.unique());
|
|
|
|
tmp.reset(2); // this should use the preexisting storage
|
|
tmp[0].reset(SkRef(&obj0));
|
|
tmp[1].reset(SkRef(&obj1));
|
|
REPORTER_ASSERT(reporter, !obj0.unique());
|
|
REPORTER_ASSERT(reporter, !obj1.unique());
|
|
|
|
tmp.reset(4); // this should force a new malloc
|
|
REPORTER_ASSERT(reporter, obj0.unique());
|
|
REPORTER_ASSERT(reporter, obj1.unique());
|
|
|
|
tmp[0].reset(SkRef(&obj0));
|
|
tmp[1].reset(SkRef(&obj1));
|
|
REPORTER_ASSERT(reporter, !obj0.unique());
|
|
REPORTER_ASSERT(reporter, !obj1.unique());
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, obj0.unique());
|
|
REPORTER_ASSERT(reporter, obj1.unique());
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#define kSEARCH_COUNT 91
|
|
|
|
static void test_search(skiatest::Reporter* reporter) {
|
|
int i, array[kSEARCH_COUNT];
|
|
SkRandom rand;
|
|
|
|
for (i = 0; i < kSEARCH_COUNT; i++) {
|
|
array[i] = rand.nextS();
|
|
}
|
|
|
|
SkTHeapSort<int>(array, kSEARCH_COUNT);
|
|
// make sure we got sorted properly
|
|
for (i = 1; i < kSEARCH_COUNT; i++) {
|
|
REPORTER_ASSERT(reporter, array[i-1] <= array[i]);
|
|
}
|
|
|
|
// make sure we can find all of our values
|
|
for (i = 0; i < kSEARCH_COUNT; i++) {
|
|
int index = SkTSearch<int>(array, kSEARCH_COUNT, array[i], sizeof(int));
|
|
REPORTER_ASSERT(reporter, index == i);
|
|
}
|
|
|
|
// make sure that random values are either found, or the correct
|
|
// insertion index is returned
|
|
for (i = 0; i < 10000; i++) {
|
|
int value = rand.nextS();
|
|
int index = SkTSearch<int>(array, kSEARCH_COUNT, value, sizeof(int));
|
|
|
|
if (index >= 0) {
|
|
REPORTER_ASSERT(reporter,
|
|
index < kSEARCH_COUNT && array[index] == value);
|
|
} else {
|
|
index = ~index;
|
|
REPORTER_ASSERT(reporter, index <= kSEARCH_COUNT);
|
|
if (index < kSEARCH_COUNT) {
|
|
REPORTER_ASSERT(reporter, value < array[index]);
|
|
if (index > 0) {
|
|
REPORTER_ASSERT(reporter, value > array[index - 1]);
|
|
}
|
|
} else {
|
|
// we should append the new value
|
|
REPORTER_ASSERT(reporter, value > array[kSEARCH_COUNT - 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_TEST(Utils, reporter) {
|
|
test_search(reporter);
|
|
test_autounref(reporter);
|
|
test_autostarray(reporter);
|
|
}
|
|
|
|
DEF_TEST(SkMakeSpan, reporter) {
|
|
// Test constness preservation for SkMakeSpan.
|
|
{
|
|
std::vector<int> v = {{1, 2, 3, 4, 5}};
|
|
auto s = SkMakeSpan(v);
|
|
REPORTER_ASSERT(reporter, s[3] == 4);
|
|
s[3] = 100;
|
|
REPORTER_ASSERT(reporter, s[3] == 100);
|
|
}
|
|
|
|
{
|
|
std::vector<int> t = {{1, 2, 3, 4, 5}};
|
|
const std::vector<int>& v = t;
|
|
auto s = SkMakeSpan(v);
|
|
//s[3] = 100; // Should fail to compile
|
|
REPORTER_ASSERT(reporter, s[3] == 4);
|
|
REPORTER_ASSERT(reporter, t[3] == 4);
|
|
t[3] = 100;
|
|
REPORTER_ASSERT(reporter, s[3] == 100);
|
|
}
|
|
|
|
{
|
|
std::array<int, 5> v = {{1, 2, 3, 4, 5}};
|
|
auto s = SkMakeSpan(v);
|
|
REPORTER_ASSERT(reporter, s[3] == 4);
|
|
s[3] = 100;
|
|
REPORTER_ASSERT(reporter, s[3] == 100);
|
|
}
|
|
|
|
{
|
|
std::array<int, 5> t = {{1, 2, 3, 4, 5}};
|
|
const std::array<int, 5>& v = t;
|
|
auto s = SkMakeSpan(v);
|
|
//s[3] = 100; // Should fail to compile
|
|
REPORTER_ASSERT(reporter, s[3] == 4);
|
|
REPORTER_ASSERT(reporter, t[3] == 4);
|
|
t[3] = 100;
|
|
REPORTER_ASSERT(reporter, s[3] == 100);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkZip, reporter) {
|
|
uint16_t A[] = {1, 2, 3, 4};
|
|
const float B[] = {10.f, 20.f, 30.f, 40.f};
|
|
std::vector<int> C = {{20, 30, 40, 50}};
|
|
std::array<int, 4> D = {{100, 200, 300, 400}};
|
|
SkSpan<int> S = SkMakeSpan(C);
|
|
|
|
// Check SkZip calls
|
|
SkZip<uint16_t, const float, int, int, int>
|
|
z{4, &A[0], &B[0], C.data(), D.data(), S.data()};
|
|
|
|
REPORTER_ASSERT(reporter, z.size() == 4);
|
|
REPORTER_ASSERT(reporter, !z.empty());
|
|
|
|
{
|
|
// Check front
|
|
auto t = z.front();
|
|
REPORTER_ASSERT(reporter, std::get<0>(t) == 1);
|
|
REPORTER_ASSERT(reporter, std::get<1>(t) == 10.f);
|
|
REPORTER_ASSERT(reporter, std::get<2>(t) == 20);
|
|
REPORTER_ASSERT(reporter, std::get<3>(t) == 100);
|
|
REPORTER_ASSERT(reporter, std::get<4>(t) == 20);
|
|
}
|
|
|
|
{
|
|
// Check back
|
|
auto t = z.back();
|
|
REPORTER_ASSERT(reporter, std::get<0>(t) == 4);
|
|
REPORTER_ASSERT(reporter, std::get<1>(t) == 40.f);
|
|
}
|
|
|
|
{
|
|
// Check ranged-for
|
|
int i = 0;
|
|
for (auto t : z) {
|
|
uint16_t a; float b; int c; int d; int s;
|
|
std::tie(a, b, c, d, s) = t;
|
|
REPORTER_ASSERT(reporter, a == A[i]);
|
|
REPORTER_ASSERT(reporter, b == B[i]);
|
|
REPORTER_ASSERT(reporter, c == C[i]);
|
|
REPORTER_ASSERT(reporter, d == D[i]);
|
|
REPORTER_ASSERT(reporter, s == S[i]);
|
|
|
|
i++;
|
|
}
|
|
REPORTER_ASSERT(reporter, i = 4);
|
|
}
|
|
|
|
// Check copy.
|
|
auto zz{z};
|
|
{
|
|
int i = 0;
|
|
for (auto t : zz) {
|
|
uint16_t a; float b; int c; int d; int s;
|
|
std::tie(a, b, c, d, s) = t;
|
|
REPORTER_ASSERT(reporter, a == A[i]);
|
|
REPORTER_ASSERT(reporter, b == B[i]);
|
|
REPORTER_ASSERT(reporter, c == C[i]);
|
|
REPORTER_ASSERT(reporter, d == D[i]);
|
|
REPORTER_ASSERT(reporter, s == S[i]);
|
|
|
|
i++;
|
|
}
|
|
REPORTER_ASSERT(reporter, i = 4);
|
|
}
|
|
|
|
// Check type getter
|
|
{
|
|
auto span = z.get<uint16_t>();
|
|
REPORTER_ASSERT(reporter, span[1] == 2);
|
|
}
|
|
|
|
// Check index getter
|
|
{
|
|
auto span = z.get<1>();
|
|
REPORTER_ASSERT(reporter, span[1] == 20.f);
|
|
}
|
|
|
|
// The following mutates the data.
|
|
{
|
|
// Check indexing
|
|
auto t = z[1];
|
|
REPORTER_ASSERT(reporter, std::get<0>(t) == 2);
|
|
REPORTER_ASSERT(reporter, std::get<1>(t) == 20.f);
|
|
REPORTER_ASSERT(reporter, std::get<2>(t) == 30);
|
|
REPORTER_ASSERT(reporter, std::get<3>(t) == 200);
|
|
REPORTER_ASSERT(reporter, std::get<4>(t) == 30);
|
|
|
|
// Check correct refs returned.
|
|
REPORTER_ASSERT(reporter, &std::get<0>(t) == &A[1]);
|
|
REPORTER_ASSERT(reporter, &std::get<1>(t) == &B[1]);
|
|
REPORTER_ASSERT(reporter, &std::get<2>(t) == &C[1]);
|
|
REPORTER_ASSERT(reporter, &std::get<3>(t) == &D[1]);
|
|
REPORTER_ASSERT(reporter, &std::get<4>(t) == &S[1]);
|
|
|
|
// Check assignment
|
|
std::get<0>(t) = 20;
|
|
// std::get<1>(t) = 300.f; // is const
|
|
std::get<2>(t) = 300;
|
|
std::get<3>(t) = 2000;
|
|
std::get<4>(t) = 300;
|
|
|
|
auto t1 = z[1];
|
|
REPORTER_ASSERT(reporter, std::get<0>(t1) == 20);
|
|
REPORTER_ASSERT(reporter, std::get<1>(t1) == 20.f);
|
|
REPORTER_ASSERT(reporter, std::get<2>(t1) == 300);
|
|
REPORTER_ASSERT(reporter, std::get<3>(t1) == 2000);
|
|
REPORTER_ASSERT(reporter, std::get<4>(t1) == 300);
|
|
}
|
|
}
|