skia2/gm/beziereffects.cpp
reed 1b55a963a2 Reland of add a ClassID function to GrBatch (patchset id:1 of https://codereview.chromium.org/1353043002/ )
Reason for revert:
DEPS roll seems to have landed w/o this revert, so revert it again

Original issue's description:
> Revert of add a ClassID function to GrBatch (patchset  id:80001 of https://codereview.chromium.org/1352813003/ )
>
> Reason for revert:
> Speculative revert to unblock DEPS roll
>
> Original issue's description:
> > add a ClassID function to GrBatch
> >
> > BUG=skia:
> >
> > Committed: https://skia.googlesource.com/skia/+/4078d529e9e199eea13456db7bf3a63a104ab5b9
> >
> > Committed: https://skia.googlesource.com/skia/+/eb44d53cf96a7eaf103a98d76079ce1f5495e343
>
> TBR=robertphillips@google.com,bsalomon@google.com,joshualitt@google.com,joshualitt@chromium.org
> NOPRESUBMIT=true
> NOTREECHECKS=true
> NOTRY=true
> BUG=skia:
>
> Committed: https://skia.googlesource.com/skia/+/48e3a45ade15c52c0c1a10cb00907dd444897745

TBR=robertphillips@google.com,bsalomon@google.com,joshualitt@google.com,joshualitt@chromium.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:

Review URL: https://codereview.chromium.org/1344373005
2015-09-17 20:16:13 -07:00

640 lines
22 KiB
C++

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This test only works with the GPU backend.
#include "gm.h"
#if SK_SUPPORT_GPU
#include "GrBatchFlushState.h"
#include "GrContext.h"
#include "GrPathUtils.h"
#include "GrTest.h"
#include "SkColorPriv.h"
#include "SkDevice.h"
#include "SkGeometry.h"
#include "batches/GrTestBatch.h"
#include "effects/GrBezierEffect.h"
static inline SkScalar eval_line(const SkPoint& p, const SkScalar lineEq[3], SkScalar sign) {
return sign * (lineEq[0] * p.fX + lineEq[1] * p.fY + lineEq[2]);
}
namespace skiagm {
class BezierCubicOrConicTestBatch : public GrTestBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry : public GrTestBatch::Geometry {
SkRect fBounds;
};
const char* name() const override { return "BezierCubicOrConicTestBatch"; }
static GrDrawBatch* Create(const GrGeometryProcessor* gp, const Geometry& geo,
const SkScalar klmEqs[9], SkScalar sign) {
return new BezierCubicOrConicTestBatch(gp, geo, klmEqs, sign);
}
private:
BezierCubicOrConicTestBatch(const GrGeometryProcessor* gp, const Geometry& geo,
const SkScalar klmEqs[9], SkScalar sign)
: INHERITED(ClassID(), gp, geo.fBounds) {
for (int i = 0; i < 9; i++) {
fKlmEqs[i] = klmEqs[i];
}
fGeometry = geo;
fSign = sign;
}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
Geometry* geoData(int index) override {
SkASSERT(0 == index);
return &fGeometry;
}
const Geometry* geoData(int index) const override {
SkASSERT(0 == index);
return &fGeometry;
}
void generateGeometry(Target* target) override {
QuadHelper helper;
size_t vertexStride = this->geometryProcessor()->getVertexStride();
SkASSERT(vertexStride == sizeof(Vertex));
Vertex* verts = reinterpret_cast<Vertex*>(helper.init(target, vertexStride, 1));
if (!verts) {
return;
}
verts[0].fPosition.setRectFan(fGeometry.fBounds.fLeft, fGeometry.fBounds.fTop,
fGeometry.fBounds.fRight, fGeometry.fBounds.fBottom,
sizeof(Vertex));
for (int v = 0; v < 4; ++v) {
verts[v].fKLM[0] = eval_line(verts[v].fPosition, fKlmEqs + 0, fSign);
verts[v].fKLM[1] = eval_line(verts[v].fPosition, fKlmEqs + 3, fSign);
verts[v].fKLM[2] = eval_line(verts[v].fPosition, fKlmEqs + 6, 1.f);
}
helper.recordDraw(target);
}
Geometry fGeometry;
SkScalar fKlmEqs[9];
SkScalar fSign;
static const int kVertsPerCubic = 4;
static const int kIndicesPerCubic = 6;
typedef GrTestBatch INHERITED;
};
/**
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
*/
class BezierCubicEffects : public GM {
public:
BezierCubicEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
SkString onShortName() override {
return SkString("bezier_cubic_effects");
}
SkISize onISize() override {
return SkISize::Make(800, 800);
}
void onDraw(SkCanvas* canvas) override {
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
if (nullptr == rt) {
skiagm::GM::DrawGpuOnlyMessage(canvas);
return;
}
GrContext* context = rt->getContext();
if (nullptr == context) {
return;
}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
static const int kNumCubics = 15;
SkRandom rand;
// Mult by 3 for each edge effect type
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols);
SkScalar w = SkIntToScalar(rt->width()) / numCols;
SkScalar h = SkIntToScalar(rt->height()) / numRows;
int row = 0;
int col = 0;
static const GrColor color = 0xff000000;
for (int i = 0; i < kNumCubics; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
SkAutoTUnref<GrGeometryProcessor> gp;
{ // scope to contain GrTestTarget
GrTestTarget tt;
context->getTestTarget(&tt);
if (nullptr == tt.target()) {
continue;
}
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
gp.reset(GrCubicEffect::Create(color, SkMatrix::I(), et,
*tt.target()->caps()));
if (!gp) {
continue;
}
}
SkScalar x = SkScalarMul(col, w);
SkScalar y = SkScalarMul(row, h);
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY},
{x + baseControlPts[3].fX, y + baseControlPts[3].fY}
};
SkPoint chopped[10];
SkScalar klmEqs[9];
SkScalar klmSigns[3];
int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts,
chopped,
klmEqs,
klmSigns);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 4; ++i) {
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = chopped + 3 * c;
for (int i = 0; i < 4; ++i) {
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
}
SkRect bounds;
bounds.set(pts, 4);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
GrTestTarget tt;
context->getTestTarget(&tt);
SkASSERT(tt.target());
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(rt);
BezierCubicOrConicTestBatch::Geometry geometry;
geometry.fColor = color;
geometry.fBounds = bounds;
SkAutoTUnref<GrDrawBatch> batch(
BezierCubicOrConicTestBatch::Create(gp, geometry, klmEqs, klmSigns[c]));
tt.target()->drawBatch(pipelineBuilder, batch);
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
/**
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
*/
class BezierConicEffects : public GM {
public:
BezierConicEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
SkString onShortName() override {
return SkString("bezier_conic_effects");
}
SkISize onISize() override {
return SkISize::Make(800, 800);
}
void onDraw(SkCanvas* canvas) override {
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
if (nullptr == rt) {
skiagm::GM::DrawGpuOnlyMessage(canvas);
return;
}
GrContext* context = rt->getContext();
if (nullptr == context) {
return;
}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
static const int kNumConics = 10;
SkRandom rand;
// Mult by 3 for each edge effect type
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols);
SkScalar w = SkIntToScalar(rt->width()) / numCols;
SkScalar h = SkIntToScalar(rt->height()) / numRows;
int row = 0;
int col = 0;
static const GrColor color = 0xff000000;
for (int i = 0; i < kNumConics; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
SkScalar weight = rand.nextRangeF(0.f, 2.f);
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
SkAutoTUnref<GrGeometryProcessor> gp;
{ // scope to contain GrTestTarget
GrTestTarget tt;
context->getTestTarget(&tt);
if (nullptr == tt.target()) {
continue;
}
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
gp.reset(GrConicEffect::Create(color, SkMatrix::I(), et,
*tt.target()->caps(), SkMatrix::I(), false));
if (!gp) {
continue;
}
}
SkScalar x = SkScalarMul(col, w);
SkScalar y = SkScalarMul(row, h);
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
};
SkConic dst[4];
SkScalar klmEqs[9];
int cnt = chop_conic(controlPts, dst, weight);
GrPathUtils::getConicKLM(controlPts, weight, klmEqs);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = dst[c].fPts;
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
}
SkRect bounds;
//SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}};
//bounds.set(bPts, 2);
bounds.set(pts, 3);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
GrTestTarget tt;
context->getTestTarget(&tt);
SkASSERT(tt.target());
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(rt);
BezierCubicOrConicTestBatch::Geometry geometry;
geometry.fColor = color;
geometry.fBounds = bounds;
SkAutoTUnref<GrDrawBatch> batch(
BezierCubicOrConicTestBatch::Create(gp, geometry, klmEqs, 1.f));
tt.target()->drawBatch(pipelineBuilder, batch);
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
// Uses the max curvature function for quads to estimate
// where to chop the conic. If the max curvature is not
// found along the curve segment it will return 1 and
// dst[0] is the original conic. If it returns 2 the dst[0]
// and dst[1] are the two new conics.
int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
SkScalar t = SkFindQuadMaxCurvature(src);
if (t == 0) {
if (dst) {
dst[0].set(src, weight);
}
return 1;
} else {
if (dst) {
SkConic conic;
conic.set(src, weight);
conic.chopAt(t, dst);
}
return 2;
}
}
// Calls split_conic on the entire conic and then once more on each subsection.
// Most cases will result in either 1 conic (chop point is not within t range)
// or 3 points (split once and then one subsection is split again).
int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
SkConic dstTemp[2];
int conicCnt = split_conic(src, dstTemp, weight);
if (2 == conicCnt) {
int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
} else {
dst[0] = dstTemp[0];
}
return conicCnt;
}
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
class BezierQuadTestBatch : public GrTestBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry : public GrTestBatch::Geometry {
SkRect fBounds;
};
const char* name() const override { return "BezierQuadTestBatch"; }
static GrDrawBatch* Create(const GrGeometryProcessor* gp, const Geometry& geo,
const GrPathUtils::QuadUVMatrix& devToUV) {
return new BezierQuadTestBatch(gp, geo, devToUV);
}
private:
BezierQuadTestBatch(const GrGeometryProcessor* gp, const Geometry& geo,
const GrPathUtils::QuadUVMatrix& devToUV)
: INHERITED(ClassID(), gp, geo.fBounds)
, fGeometry(geo)
, fDevToUV(devToUV) {
}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
Geometry* geoData(int index) override {
SkASSERT(0 == index);
return &fGeometry;
}
const Geometry* geoData(int index) const override {
SkASSERT(0 == index);
return &fGeometry;
}
void generateGeometry(Target* target) override {
QuadHelper helper;
size_t vertexStride = this->geometryProcessor()->getVertexStride();
SkASSERT(vertexStride == sizeof(Vertex));
Vertex* verts = reinterpret_cast<Vertex*>(helper.init(target, vertexStride, 1));
if (!verts) {
return;
}
verts[0].fPosition.setRectFan(fGeometry.fBounds.fLeft, fGeometry.fBounds.fTop,
fGeometry.fBounds.fRight, fGeometry.fBounds.fBottom,
sizeof(Vertex));
fDevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts);
helper.recordDraw(target);
}
Geometry fGeometry;
GrPathUtils::QuadUVMatrix fDevToUV;
static const int kVertsPerCubic = 4;
static const int kIndicesPerCubic = 6;
typedef GrTestBatch INHERITED;
};
/**
* This GM directly exercises effects that draw Bezier quad curves in the GPU backend.
*/
class BezierQuadEffects : public GM {
public:
BezierQuadEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
SkString onShortName() override {
return SkString("bezier_quad_effects");
}
SkISize onISize() override {
return SkISize::Make(800, 800);
}
void onDraw(SkCanvas* canvas) override {
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
if (nullptr == rt) {
skiagm::GM::DrawGpuOnlyMessage(canvas);
return;
}
GrContext* context = rt->getContext();
if (nullptr == context) {
return;
}
struct Vertex {
SkPoint fPosition;
float fUV[4]; // The last two values are ignored. The effect expects a vec4f.
};
static const int kNumQuads = 5;
SkRandom rand;
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols);
SkScalar w = SkIntToScalar(rt->width()) / numCols;
SkScalar h = SkIntToScalar(rt->height()) / numRows;
int row = 0;
int col = 0;
static const GrColor color = 0xff000000;
for (int i = 0; i < kNumQuads; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
SkAutoTUnref<GrGeometryProcessor> gp;
{ // scope to contain GrTestTarget
GrTestTarget tt;
context->getTestTarget(&tt);
if (nullptr == tt.target()) {
continue;
}
GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
gp.reset(GrQuadEffect::Create(color, SkMatrix::I(), et,
*tt.target()->caps(), SkMatrix::I(), false));
if (!gp) {
continue;
}
}
SkScalar x = SkScalarMul(col, w);
SkScalar y = SkScalarMul(row, h);
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
};
SkPoint chopped[5];
int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = chopped + 2 * c;
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
}
SkRect bounds;
bounds.set(pts, 3);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
GrTestTarget tt;
context->getTestTarget(&tt);
SkASSERT(tt.target());
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(rt);
GrPathUtils::QuadUVMatrix DevToUV(pts);
BezierQuadTestBatch::Geometry geometry;
geometry.fColor = color;
geometry.fBounds = bounds;
SkAutoTUnref<GrDrawBatch> batch(BezierQuadTestBatch::Create(gp, geometry,
DevToUV));
tt.target()->drawBatch(pipelineBuilder, batch);
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
typedef GM INHERITED;
};
DEF_GM(return new BezierCubicEffects;)
DEF_GM(return new BezierConicEffects;)
DEF_GM(return new BezierQuadEffects;)
}
#endif