skia2/tests/PathTest.cpp
Robert Phillips 6d34ac6778 Limit range of startAngle in SkPath::arcTo
Large startAngle values (combined w/ an almost 360 sweep angle) can
cause an infinite loop in angles_to_unit_vectors in the loop that
tweaks the stop vector.

Bug: oss-fuzz:19916
Bug: oss-fuzz:48241
Change-Id: I914aac45aeeb302f23dc5b4b669182fd985cba4f
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/556696
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Robert Phillips <robertphillips@google.com>
2022-07-08 13:54:49 +00:00

5914 lines
243 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkFont.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRRect.h"
#include "include/core/SkSize.h"
#include "include/core/SkStream.h"
#include "include/core/SkStrokeRec.h"
#include "include/core/SkSurface.h"
#include "include/private/SkIDChangeListener.h"
#include "include/private/SkTo.h"
#include "include/utils/SkNullCanvas.h"
#include "include/utils/SkParse.h"
#include "include/utils/SkParsePath.h"
#include "include/utils/SkRandom.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkGeometry.h"
#include "src/core/SkPathPriv.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkWriteBuffer.h"
#include "tests/Test.h"
#include <cmath>
#include <utility>
#include <vector>
static void set_radii(SkVector radii[4], int index, float rad) {
sk_bzero(radii, sizeof(SkVector) * 4);
radii[index].set(rad, rad);
}
static void test_add_rrect(skiatest::Reporter* reporter, const SkRect& bounds,
const SkVector radii[4]) {
SkRRect rrect;
rrect.setRectRadii(bounds, radii);
REPORTER_ASSERT(reporter, bounds == rrect.rect());
SkPath path;
// this line should not assert in the debug build (from validate)
path.addRRect(rrect);
REPORTER_ASSERT(reporter, bounds == path.getBounds());
}
static void test_skbug_3469(skiatest::Reporter* reporter) {
SkPath path;
path.moveTo(20, 20);
path.quadTo(20, 50, 80, 50);
path.quadTo(20, 50, 20, 80);
REPORTER_ASSERT(reporter, !path.isConvex());
}
static void test_skbug_3239(skiatest::Reporter* reporter) {
const float min = SkBits2Float(0xcb7f16c8); /* -16717512.000000 */
const float max = SkBits2Float(0x4b7f1c1d); /* 16718877.000000 */
const float big = SkBits2Float(0x4b7f1bd7); /* 16718807.000000 */
const float rad = 33436320;
const SkRect rectx = SkRect::MakeLTRB(min, min, max, big);
const SkRect recty = SkRect::MakeLTRB(min, min, big, max);
SkVector radii[4];
for (int i = 0; i < 4; ++i) {
set_radii(radii, i, rad);
test_add_rrect(reporter, rectx, radii);
test_add_rrect(reporter, recty, radii);
}
}
static void make_path_crbug364224(SkPath* path) {
path->reset();
path->moveTo(3.747501373f, 2.724499941f);
path->lineTo(3.747501373f, 3.75f);
path->cubicTo(3.747501373f, 3.88774991f, 3.635501385f, 4.0f, 3.497501373f, 4.0f);
path->lineTo(0.7475013733f, 4.0f);
path->cubicTo(0.6095013618f, 4.0f, 0.4975013733f, 3.88774991f, 0.4975013733f, 3.75f);
path->lineTo(0.4975013733f, 1.0f);
path->cubicTo(0.4975013733f, 0.8622499704f, 0.6095013618f, 0.75f, 0.7475013733f,0.75f);
path->lineTo(3.497501373f, 0.75f);
path->cubicTo(3.50275135f, 0.75f, 3.5070014f, 0.7527500391f, 3.513001442f, 0.753000021f);
path->lineTo(3.715001345f, 0.5512499809f);
path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f);
path->lineTo(0.7475013733f, 0.4999999702f);
path->cubicTo(0.4715013802f, 0.4999999702f, 0.2475013733f, 0.7239999771f, 0.2475013733f, 1.0f);
path->lineTo(0.2475013733f, 3.75f);
path->cubicTo(0.2475013733f, 4.026000023f, 0.4715013504f, 4.25f, 0.7475013733f, 4.25f);
path->lineTo(3.497501373f, 4.25f);
path->cubicTo(3.773501396f, 4.25f, 3.997501373f, 4.026000023f, 3.997501373f, 3.75f);
path->lineTo(3.997501373f, 2.474750042f);
path->lineTo(3.747501373f, 2.724499941f);
path->close();
}
static void make_path_crbug364224_simplified(SkPath* path) {
path->moveTo(3.747501373f, 2.724499941f);
path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f);
path->close();
}
static void test_sect_with_horizontal_needs_pinning() {
// Test that sect_with_horizontal in SkLineClipper.cpp needs to pin after computing the
// intersection.
SkPath path;
path.reset();
path.moveTo(-540000, -720000);
path.lineTo(-9.10000017e-05f, 9.99999996e-13f);
path.lineTo(1, 1);
// Without the pinning code in sect_with_horizontal(), this would assert in the lineclipper
SkPaint paint;
SkSurface::MakeRasterN32Premul(10, 10)->getCanvas()->drawPath(path, paint);
}
static void test_iterative_intersect_line() {
// crbug.com/1320467
// SkLineClipper::IntersectLine used to clip against the horizontal segment. Then, if it still
// needed clipping, would clip against the vertical segment, but start over from the un-clipped
// endpoints. With that version, this draw would trigger an assert.
// With the fix (iteratively clipping the intermediate results after the first operation),
// this shouldn't assert:
SkPath path;
path.moveTo(-478.805145f, 153.862549f);
path.lineTo(6.27216804e+19f, 6.27216804e+19f);
path.lineTo(-666.754272f, 155.086304f);
path.close();
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
SkSurface::MakeRasterN32Premul(256, 256)->getCanvas()->drawPath(path, paint);
}
static void test_path_crbug364224() {
SkPath path;
SkPaint paint;
auto surface(SkSurface::MakeRasterN32Premul(84, 88));
SkCanvas* canvas = surface->getCanvas();
make_path_crbug364224_simplified(&path);
canvas->drawPath(path, paint);
make_path_crbug364224(&path);
canvas->drawPath(path, paint);
}
static void test_draw_AA_path(int width, int height, const SkPath& path) {
auto surface(SkSurface::MakeRasterN32Premul(width, height));
SkCanvas* canvas = surface->getCanvas();
SkPaint paint;
paint.setAntiAlias(true);
canvas->drawPath(path, paint);
}
// this is a unit test instead of a GM because it doesn't draw anything
static void test_fuzz_crbug_638223() {
SkPath path;
path.moveTo(SkBits2Float(0x47452a00), SkBits2Float(0x43211d01)); // 50474, 161.113f
path.conicTo(SkBits2Float(0x401c0000), SkBits2Float(0x40680000),
SkBits2Float(0x02c25a81), SkBits2Float(0x981a1fa0),
SkBits2Float(0x6bf9abea)); // 2.4375f, 3.625f, 2.85577e-37f, -1.992e-24f, 6.03669e+26f
test_draw_AA_path(250, 250, path);
}
static void test_fuzz_crbug_643933() {
SkPath path;
path.moveTo(0, 0);
path.conicTo(SkBits2Float(0x002001f2), SkBits2Float(0x4161ffff), // 2.93943e-39f, 14.125f
SkBits2Float(0x49f7224d), SkBits2Float(0x45eec8df), // 2.02452e+06f, 7641.11f
SkBits2Float(0x721aee0c)); // 3.0687e+30f
test_draw_AA_path(250, 250, path);
path.reset();
path.moveTo(0, 0);
path.conicTo(SkBits2Float(0x00007ff2), SkBits2Float(0x4169ffff), // 4.58981e-41f, 14.625f
SkBits2Float(0x43ff2261), SkBits2Float(0x41eeea04), // 510.269f, 29.8643f
SkBits2Float(0x5d06eff8)); // 6.07704e+17f
test_draw_AA_path(250, 250, path);
}
static void test_fuzz_crbug_647922() {
SkPath path;
path.moveTo(0, 0);
path.conicTo(SkBits2Float(0x00003939), SkBits2Float(0x42487fff), // 2.05276e-41f, 50.125f
SkBits2Float(0x48082361), SkBits2Float(0x4408e8e9), // 139406, 547.639f
SkBits2Float(0x4d1ade0f)); // 1.6239e+08f
test_draw_AA_path(250, 250, path);
}
static void test_fuzz_crbug_662780() {
auto surface(SkSurface::MakeRasterN32Premul(250, 250));
SkCanvas* canvas = surface->getCanvas();
SkPaint paint;
paint.setAntiAlias(true);
SkPath path;
path.moveTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158
path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x42f00000)); // 8, 120
// 8, 8, 8.00002f, 8, 0.707107f
path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x41000000),
SkBits2Float(0x41000010), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3));
path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000)); // 308, 8
// 308, 8, 308, 8, 0.707107f
path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000),
SkBits2Float(0x439a0000), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3));
path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000)); // 308, 158
// 308, 158, 308, 158, 0.707107f
path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000),
SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3));
path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158
// 8, 158, 8, 158, 0.707107f
path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000),
SkBits2Float(0x41000000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3));
path.close();
canvas->clipPath(path, true);
canvas->drawRect(SkRect::MakeWH(250, 250), paint);
}
static void test_mask_overflow() {
SkPath path;
path.moveTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341
path.lineTo(SkBits2Float(0x43de6000), SkBits2Float(0x43aa8000)); // 444.75f, 341
// 440.47f, 341, 437, 344.47f, 437, 348.75f
path.cubicTo(SkBits2Float(0x43dc3c29), SkBits2Float(0x43aa8000),
SkBits2Float(0x43da8000), SkBits2Float(0x43ac3c29),
SkBits2Float(0x43da8000), SkBits2Float(0x43ae6000));
path.lineTo(SkBits2Float(0x43da8000), SkBits2Float(0x43b18000)); // 437, 355
path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43b18000)); // 453, 355
path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341
test_draw_AA_path(500, 500, path);
}
static void test_fuzz_crbug_668907() {
SkPath path;
path.moveTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f
path.quadTo(SkBits2Float(0x41410041), SkBits2Float(0xc1414141), SkBits2Float(0x41414141),
SkBits2Float(0x414100ff)); // 12.0626f, -12.0784f, 12.0784f, 12.0627f
path.lineTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f
path.close();
test_draw_AA_path(400, 500, path);
}
/**
* In debug mode, this path was causing an assertion to fail in
* SkPathStroker::preJoinTo() and, in Release, the use of an unitialized value.
*/
static void make_path_crbugskia2820(SkPath* path, skiatest::Reporter* reporter) {
SkPoint orig, p1, p2, p3;
orig = SkPoint::Make(1.f, 1.f);
p1 = SkPoint::Make(1.f - SK_ScalarNearlyZero, 1.f);
p2 = SkPoint::Make(1.f, 1.f + SK_ScalarNearlyZero);
p3 = SkPoint::Make(2.f, 2.f);
path->reset();
path->moveTo(orig);
path->cubicTo(p1, p2, p3);
path->close();
}
static void test_path_crbugskia2820(skiatest::Reporter* reporter) {
SkPath path;
make_path_crbugskia2820(&path, reporter);
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
stroke.setStrokeStyle(2 * SK_Scalar1);
stroke.applyToPath(&path, path);
}
static void test_path_crbugskia5995() {
SkPath path;
path.moveTo(SkBits2Float(0x40303030), SkBits2Float(0x3e303030)); // 2.75294f, 0.172059f
path.quadTo(SkBits2Float(0x41d63030), SkBits2Float(0x30303030), SkBits2Float(0x41013030),
SkBits2Float(0x00000000)); // 26.7735f, 6.40969e-10f, 8.07426f, 0
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
test_draw_AA_path(500, 500, path);
}
static void make_path0(SkPath* path) {
// from * https://code.google.com/p/skia/issues/detail?id=1706
path->moveTo(146.939f, 1012.84f);
path->lineTo(181.747f, 1009.18f);
path->lineTo(182.165f, 1013.16f);
path->lineTo(147.357f, 1016.82f);
path->lineTo(146.939f, 1012.84f);
path->close();
}
static void make_path1(SkPath* path) {
path->addRect(SkRect::MakeXYWH(10, 10, 10, 1));
}
typedef void (*PathProc)(SkPath*);
/*
* Regression test: we used to crash (overwrite internal storage) during
* construction of the region when the path was INVERSE. That is now fixed,
* so test these regions (which used to assert/crash).
*
* https://code.google.com/p/skia/issues/detail?id=1706
*/
static void test_path_to_region(skiatest::Reporter* reporter) {
PathProc procs[] = {
make_path0,
make_path1,
};
SkRegion clip;
clip.setRect({0, 0, 1255, 1925});
for (size_t i = 0; i < std::size(procs); ++i) {
SkPath path;
procs[i](&path);
SkRegion rgn;
rgn.setPath(path, clip);
path.toggleInverseFillType();
rgn.setPath(path, clip);
}
}
#ifdef SK_BUILD_FOR_WIN
#define SUPPRESS_VISIBILITY_WARNING
#else
#define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden")))
#endif
static void test_path_close_issue1474(skiatest::Reporter* reporter) {
// This test checks that r{Line,Quad,Conic,Cubic}To following a close()
// are relative to the point we close to, not relative to the point we close from.
SkPath path;
SkPoint last;
// Test rLineTo().
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close(); // Returns us back to 0,0.
path.rLineTo(50, 50); // This should go to 50,50.
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 50 == last.fX);
REPORTER_ASSERT(reporter, 50 == last.fY);
// Test rQuadTo().
path.rewind();
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close();
path.rQuadTo(50, 50, 75, 75);
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 75 == last.fX);
REPORTER_ASSERT(reporter, 75 == last.fY);
// Test rConicTo().
path.rewind();
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close();
path.rConicTo(50, 50, 85, 85, 2);
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 85 == last.fX);
REPORTER_ASSERT(reporter, 85 == last.fY);
// Test rCubicTo().
path.rewind();
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close();
path.rCubicTo(50, 50, 85, 85, 95, 95);
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 95 == last.fX);
REPORTER_ASSERT(reporter, 95 == last.fY);
}
static void test_gen_id(skiatest::Reporter* reporter) {
SkPath a, b;
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());
a.moveTo(0, 0);
const uint32_t z = a.getGenerationID();
REPORTER_ASSERT(reporter, z != b.getGenerationID());
a.reset();
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());
a.moveTo(1, 1);
const uint32_t y = a.getGenerationID();
REPORTER_ASSERT(reporter, z != y);
b.moveTo(2, 2);
const uint32_t x = b.getGenerationID();
REPORTER_ASSERT(reporter, x != y && x != z);
a.swap(b);
REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x);
b = a;
REPORTER_ASSERT(reporter, b.getGenerationID() == x);
SkPath c(a);
REPORTER_ASSERT(reporter, c.getGenerationID() == x);
c.lineTo(3, 3);
const uint32_t w = c.getGenerationID();
REPORTER_ASSERT(reporter, b.getGenerationID() == x);
REPORTER_ASSERT(reporter, a.getGenerationID() == x);
REPORTER_ASSERT(reporter, w != x);
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
static bool kExpectGenIDToIgnoreFill = false;
#else
static bool kExpectGenIDToIgnoreFill = true;
#endif
c.toggleInverseFillType();
const uint32_t v = c.getGenerationID();
REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill);
c.rewind();
REPORTER_ASSERT(reporter, v != c.getGenerationID());
}
// This used to assert in the debug build, as the edges did not all line-up.
static void test_bad_cubic_crbug234190() {
SkPath path;
path.moveTo(13.8509f, 3.16858f);
path.cubicTo(-2.35893e+08f, -4.21044e+08f,
-2.38991e+08f, -4.26573e+08f,
-2.41016e+08f, -4.30188e+08f);
test_draw_AA_path(84, 88, path);
}
static void test_bad_cubic_crbug229478() {
const SkPoint pts[] = {
{ 4595.91064f, -11596.9873f },
{ 4597.2168f, -11595.9414f },
{ 4598.52344f, -11594.8955f },
{ 4599.83008f, -11593.8496f },
};
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(20);
SkPath dst;
// Before the fix, this would infinite-recurse, and run out of stack
// because we would keep trying to subdivide a degenerate cubic segment.
paint.getFillPath(path, &dst, nullptr);
}
static void build_path_170666(SkPath& path) {
path.moveTo(17.9459f, 21.6344f);
path.lineTo(139.545f, -47.8105f);
path.lineTo(139.545f, -47.8105f);
path.lineTo(131.07f, -47.3888f);
path.lineTo(131.07f, -47.3888f);
path.lineTo(122.586f, -46.9532f);
path.lineTo(122.586f, -46.9532f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(18085.1f, 31390.5f);
path.lineTo(18085.1f, 31390.5f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(17955, 31460.3f);
path.lineTo(17955, 31460.3f);
path.lineTo(17963.5f, 31459.9f);
path.lineTo(17963.5f, 31459.9f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(17.9551f, 21.6205f);
path.lineTo(17.9551f, 21.6205f);
path.lineTo(9.47091f, 22.0561f);
path.lineTo(9.47091f, 22.0561f);
path.lineTo(17.9459f, 21.6344f);
path.lineTo(17.9459f, 21.6344f);
path.close();path.moveTo(0.995934f, 22.4779f);
path.lineTo(0.986725f, 22.4918f);
path.lineTo(0.986725f, 22.4918f);
path.lineTo(17955, 31460.4f);
path.lineTo(17955, 31460.4f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(18093.6f, 31390.1f);
path.lineTo(18093.6f, 31390.1f);
path.lineTo(18093.6f, 31390);
path.lineTo(18093.6f, 31390);
path.lineTo(139.555f, -47.8244f);
path.lineTo(139.555f, -47.8244f);
path.lineTo(122.595f, -46.9671f);
path.lineTo(122.595f, -46.9671f);
path.lineTo(0.995934f, 22.4779f);
path.lineTo(0.995934f, 22.4779f);
path.close();
path.moveTo(5.43941f, 25.5223f);
path.lineTo(798267, -28871.1f);
path.lineTo(798267, -28871.1f);
path.lineTo(3.12512e+06f, -113102);
path.lineTo(3.12512e+06f, -113102);
path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813);
path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f);
path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f);
path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f);
path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f);
path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f);
path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f);
path.lineTo(2.78271e+08f, -1.00733e+07f);
path.lineTo(2.78271e+08f, -1.00733e+07f);
path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f);
path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f);
path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f);
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
path.lineTo(2.77473e+08f, -1.00444e+07f);
path.lineTo(2.77473e+08f, -1.00444e+07f);
path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f);
path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f);
path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f);
path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f);
path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f);
path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814);
path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103);
path.lineTo(798284, -28872);
path.lineTo(798284, -28872);
path.lineTo(22.4044f, 24.6677f);
path.lineTo(22.4044f, 24.6677f);
path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f);
path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f);
path.close();
}
static void build_path_simple_170666(SkPath& path) {
path.moveTo(126.677f, 24.1591f);
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
}
// This used to assert in the SK_DEBUG build, as the clip step would fail with
// too-few interations in our cubic-line intersection code. That code now runs
// 24 interations (instead of 16).
static void test_crbug_170666() {
SkPath path;
build_path_simple_170666(path);
test_draw_AA_path(1000, 1000, path);
build_path_170666(path);
test_draw_AA_path(1000, 1000, path);
}
static void test_tiny_path_convexity(skiatest::Reporter* reporter, const char* pathBug,
SkScalar tx, SkScalar ty, SkScalar scale) {
SkPath smallPath;
SkAssertResult(SkParsePath::FromSVGString(pathBug, &smallPath));
bool smallConvex = smallPath.isConvex();
SkPath largePath;
SkAssertResult(SkParsePath::FromSVGString(pathBug, &largePath));
SkMatrix matrix;
matrix.reset();
matrix.preTranslate(100, 100);
matrix.preScale(scale, scale);
largePath.transform(matrix);
bool largeConvex = largePath.isConvex();
REPORTER_ASSERT(reporter, smallConvex == largeConvex);
}
static void test_crbug_493450(skiatest::Reporter* reporter) {
const char reducedCase[] =
"M0,0"
"L0.0002, 0"
"L0.0002, 0.0002"
"L0.0001, 0.0001"
"L0,0.0002"
"Z";
test_tiny_path_convexity(reporter, reducedCase, 100, 100, 100000);
const char originalFiddleData[] =
"M-0.3383152268862998,-0.11217565719203619L-0.33846085183212765,-0.11212264406895281"
"L-0.338509393480737,-0.11210607966681395L-0.33857792286700894,-0.1121889121487573"
"L-0.3383866116636664,-0.11228834570924921L-0.33842087635680235,-0.11246078673250548"
"L-0.33809536177201055,-0.11245415228342878L-0.33797257995493996,-0.11216571641452182"
"L-0.33802112160354925,-0.11201996164188659L-0.33819815585141844,-0.11218559834671019Z";
test_tiny_path_convexity(reporter, originalFiddleData, 280081.4116670522f, 93268.04618493588f,
826357.3384828606f);
}
static void test_crbug_495894(skiatest::Reporter* reporter) {
const char originalFiddleData[] =
"M-0.34004273849857214,-0.11332803232216355L-0.34008271397389744,-0.11324483772714951"
"L-0.3401940742265893,-0.11324483772714951L-0.34017694188002134,-0.11329807920275889"
"L-0.3402026403998733,-0.11333468903941245L-0.34029972369709194,-0.11334134592705701"
"L-0.3403054344792813,-0.11344121970007795L-0.3403140006525653,-0.11351115418399343"
"L-0.34024261587519866,-0.11353446986281181L-0.3402197727464413,-0.11360442946144192"
"L-0.34013696640469604,-0.11359110237029302L-0.34009128014718143,-0.1135877707043939"
"L-0.3400598708451401,-0.11360776134112742L-0.34004273849857214,-0.11355112520064405"
"L-0.3400113291965308,-0.11355112520064405L-0.3399970522410575,-0.11359110237029302"
"L-0.33997135372120546,-0.11355112520064405L-0.3399627875479215,-0.11353780084493197"
"L-0.3399485105924481,-0.11350782354357004L-0.3400027630232468,-0.11346452910331437"
"L-0.3399485105924481,-0.11340126558629839L-0.33993994441916414,-0.11340126558629839"
"L-0.33988283659727087,-0.11331804756574679L-0.33989140277055485,-0.11324483772714951"
"L-0.33997991989448945,-0.11324483772714951L-0.3399856306766788,-0.11324483772714951"
"L-0.34002560615200417,-0.11334467443478255ZM-0.3400684370184241,-0.11338461985124307"
"L-0.340154098751264,-0.11341791238732665L-0.340162664924548,-0.1134378899559977"
"L-0.34017979727111597,-0.11340126558629839L-0.3401655203156427,-0.11338129083212668"
"L-0.34012268944922275,-0.11332137577529414L-0.34007414780061346,-0.11334467443478255Z"
"M-0.3400027630232468,-0.11290567901106024L-0.3400113291965308,-0.11298876531245433"
"L-0.33997991989448945,-0.11301535852306784L-0.33990282433493346,-0.11296217481488612"
"L-0.33993994441916414,-0.11288906492739594Z";
test_tiny_path_convexity(reporter, originalFiddleData, 22682.240000000005f,7819.72220766405f,
65536);
}
static void test_crbug_613918() {
SkPath path;
path.conicTo(-6.62478e-08f, 4.13885e-08f, -6.36935e-08f, 3.97927e-08f, 0.729058f);
path.quadTo(2.28206e-09f, -1.42572e-09f, 3.91919e-09f, -2.44852e-09f);
path.cubicTo(-16752.2f, -26792.9f, -21.4673f, 10.9347f, -8.57322f, -7.22739f);
// This call could lead to an assert or uninitialized read due to a failure
// to check the return value from SkCubicClipper::ChopMonoAtY.
path.contains(-1.84817e-08f, 1.15465e-08f);
}
static void test_addrect(skiatest::Reporter* reporter) {
SkPath path;
path.lineTo(0, 0);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isRect(nullptr));
path.reset();
path.lineTo(FLT_EPSILON, FLT_EPSILON);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
path.reset();
path.quadTo(0, 0, 0, 0);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
path.reset();
path.conicTo(0, 0, 0, 0, 0.5f);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
path.reset();
path.cubicTo(0, 0, 0, 0, 0, 0);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
}
// Make sure we stay non-finite once we get there (unless we reset or rewind).
static void test_addrect_isfinite(skiatest::Reporter* reporter) {
SkPath path;
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isFinite());
path.moveTo(0, 0);
path.lineTo(SK_ScalarInfinity, 42);
REPORTER_ASSERT(reporter, !path.isFinite());
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isFinite());
path.reset();
REPORTER_ASSERT(reporter, path.isFinite());
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isFinite());
}
static void build_big_path(SkPath* path, bool reducedCase) {
if (reducedCase) {
path->moveTo(577330, 1971.72f);
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
} else {
path->moveTo(60.1631f, 7.70567f);
path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f);
path->lineTo(577379, 1977.77f);
path->quadTo(577364, 1979.57f, 577325, 1980.26f);
path->quadTo(577286, 1980.95f, 577245, 1980.13f);
path->quadTo(577205, 1979.3f, 577187, 1977.45f);
path->quadTo(577168, 1975.6f, 577183, 1973.8f);
path->quadTo(577198, 1972, 577238, 1971.31f);
path->quadTo(577277, 1970.62f, 577317, 1971.45f);
path->quadTo(577330, 1971.72f, 577341, 1972.11f);
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
path->moveTo(306.718f, -32.912f);
path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f);
}
}
static void test_clipped_cubic() {
auto surface(SkSurface::MakeRasterN32Premul(640, 480));
// This path used to assert, because our cubic-chopping code incorrectly
// moved control points after the chop. This test should be run in SK_DEBUG
// mode to ensure that we no long assert.
SkPath path;
for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) {
build_big_path(&path, SkToBool(doReducedCase));
SkPaint paint;
for (int doAA = 0; doAA <= 1; ++doAA) {
paint.setAntiAlias(SkToBool(doAA));
surface->getCanvas()->drawPath(path, paint);
}
}
}
static void dump_if_ne(skiatest::Reporter* reporter, const SkRect& expected, const SkRect& bounds) {
if (expected != bounds) {
ERRORF(reporter, "path.getBounds() returned [%g %g %g %g], but expected [%g %g %g %g]",
bounds.left(), bounds.top(), bounds.right(), bounds.bottom(),
expected.left(), expected.top(), expected.right(), expected.bottom());
}
}
static void test_bounds_crbug_513799(skiatest::Reporter* reporter) {
SkPath path;
#if 0
// As written these tests were failing on LLVM 4.2 MacMini Release mysteriously, so we've
// rewritten them to avoid this (compiler-bug?).
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(0, 0, 0, 0) == path.getBounds());
path.moveTo(-5, -8);
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, -5, -8) == path.getBounds());
path.addRect(SkRect::MakeLTRB(1, 2, 3, 4));
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds());
path.moveTo(1, 2);
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds());
#else
dump_if_ne(reporter, SkRect::MakeLTRB(0, 0, 0, 0), path.getBounds());
path.moveTo(-5, -8); // should set the bounds
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, -5, -8), path.getBounds());
path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); // should extend the bounds
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds());
path.moveTo(1, 2); // don't expect this to have changed the bounds
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds());
#endif
}
#include "include/core/SkSurface.h"
static void test_fuzz_crbug_627414(skiatest::Reporter* reporter) {
SkPath path;
path.moveTo(0, 0);
path.conicTo(3.58732e-43f, 2.72084f, 3.00392f, 3.00392f, 8.46e+37f);
test_draw_AA_path(100, 100, path);
}
// Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/
// which triggered an assert, from a tricky cubic. This test replicates that
// example, so we can ensure that we handle it (in SkEdge.cpp), and don't
// assert in the SK_DEBUG build.
static void test_tricky_cubic() {
const SkPoint pts[] = {
{ SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) },
{ SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) },
{ SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) },
{ SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) },
};
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
test_draw_AA_path(19, 130, path);
}
// Inspired by http://code.google.com/p/chromium/issues/detail?id=141651
//
static void test_isfinite_after_transform(skiatest::Reporter* reporter) {
SkPath path;
path.quadTo(157, 366, 286, 208);
path.arcTo(37, 442, 315, 163, 957494590897113.0f);
SkMatrix matrix;
matrix.setScale(1000*1000, 1000*1000);
// Be sure that path::transform correctly updates isFinite and the bounds
// if the transformation overflows. The previous bug was that isFinite was
// set to true in this case, but the bounds were not set to empty (which
// they should be).
while (path.isFinite()) {
REPORTER_ASSERT(reporter, path.getBounds().isFinite());
REPORTER_ASSERT(reporter, !path.getBounds().isEmpty());
path.transform(matrix);
}
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
path.transform(matrix);
// we need to still be non-finite
REPORTER_ASSERT(reporter, !path.isFinite());
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
}
static void add_corner_arc(SkPath* path, const SkRect& rect,
SkScalar xIn, SkScalar yIn,
int startAngle)
{
SkScalar rx = std::min(rect.width(), xIn);
SkScalar ry = std::min(rect.height(), yIn);
SkRect arcRect;
arcRect.setLTRB(-rx, -ry, rx, ry);
switch (startAngle) {
case 0:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom);
break;
case 90:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom);
break;
case 180:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop);
break;
case 270:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop);
break;
default:
break;
}
path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false);
}
static void make_arb_round_rect(SkPath* path, const SkRect& r,
SkScalar xCorner, SkScalar yCorner) {
// we are lazy here and use the same x & y for each corner
add_corner_arc(path, r, xCorner, yCorner, 270);
add_corner_arc(path, r, xCorner, yCorner, 0);
add_corner_arc(path, r, xCorner, yCorner, 90);
add_corner_arc(path, r, xCorner, yCorner, 180);
path->close();
}
// Chrome creates its own round rects with each corner possibly being different.
// Performance will suffer if they are not convex.
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) {
SkRandom rand;
SkRect r;
for (int i = 0; i < 5000; ++i) {
SkScalar size = rand.nextUScalar1() * 30;
if (size < SK_Scalar1) {
continue;
}
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * size;
r.fBottom = r.fTop + 2 * size;
SkPath temp;
make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15);
REPORTER_ASSERT(reporter, temp.isConvex());
}
}
// Chrome will sometimes create a 0 radius round rect. The degenerate
// quads prevent the path from being converted to a rect
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) {
SkRandom rand;
SkRect r;
for (int i = 0; i < 5000; ++i) {
SkScalar size = rand.nextUScalar1() * 30;
if (size < SK_Scalar1) {
continue;
}
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * size;
r.fBottom = r.fTop + 2 * size;
SkPath temp;
make_arb_round_rect(&temp, r, 0, 0);
SkRect result;
REPORTER_ASSERT(reporter, temp.isRect(&result));
REPORTER_ASSERT(reporter, r == result);
}
}
static void test_rect_isfinite(skiatest::Reporter* reporter) {
const SkScalar inf = SK_ScalarInfinity;
const SkScalar negInf = SK_ScalarNegativeInfinity;
const SkScalar nan = SK_ScalarNaN;
SkRect r;
r.setEmpty();
REPORTER_ASSERT(reporter, r.isFinite());
r.setLTRB(0, 0, inf, negInf);
REPORTER_ASSERT(reporter, !r.isFinite());
r.setLTRB(0, 0, nan, 0);
REPORTER_ASSERT(reporter, !r.isFinite());
SkPoint pts[] = {
{ 0, 0 },
{ SK_Scalar1, 0 },
{ 0, SK_Scalar1 },
};
bool isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, isFine);
REPORTER_ASSERT(reporter, !r.isEmpty());
pts[1].set(inf, 0);
isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, !isFine);
REPORTER_ASSERT(reporter, r.isEmpty());
pts[1].set(nan, 0);
isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, !isFine);
REPORTER_ASSERT(reporter, r.isEmpty());
}
static void test_path_isfinite(skiatest::Reporter* reporter) {
const SkScalar inf = SK_ScalarInfinity;
const SkScalar negInf = SK_ScalarNegativeInfinity;
const SkScalar nan = SK_ScalarNaN;
SkPath path;
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
path.moveTo(SK_Scalar1, 0);
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
path.moveTo(inf, negInf);
REPORTER_ASSERT(reporter, !path.isFinite());
path.reset();
path.moveTo(nan, 0);
REPORTER_ASSERT(reporter, !path.isFinite());
}
static void test_isfinite(skiatest::Reporter* reporter) {
test_rect_isfinite(reporter);
test_path_isfinite(reporter);
}
static void test_islastcontourclosed(skiatest::Reporter* reporter) {
SkPath path;
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
path.moveTo(0, 0);
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
path.close();
REPORTER_ASSERT(reporter, path.isLastContourClosed());
path.lineTo(100, 100);
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
path.moveTo(200, 200);
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
path.close();
REPORTER_ASSERT(reporter, path.isLastContourClosed());
path.moveTo(0, 0);
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
}
// assert that we always
// start with a moveTo
// only have 1 moveTo
// only have Lines after that
// end with a single close
// only have (at most) 1 close
//
static void test_poly(skiatest::Reporter* reporter, const SkPath& path,
const SkPoint srcPts[], bool expectClose) {
bool firstTime = true;
bool foundClose = false;
for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) {
switch (verb) {
case SkPathVerb::kMove:
REPORTER_ASSERT(reporter, firstTime);
REPORTER_ASSERT(reporter, pts[0] == srcPts[0]);
srcPts++;
firstTime = false;
break;
case SkPathVerb::kLine:
REPORTER_ASSERT(reporter, !firstTime);
REPORTER_ASSERT(reporter, pts[1] == srcPts[0]);
srcPts++;
break;
case SkPathVerb::kQuad:
REPORTER_ASSERT(reporter, false, "unexpected quad verb");
break;
case SkPathVerb::kConic:
REPORTER_ASSERT(reporter, false, "unexpected conic verb");
break;
case SkPathVerb::kCubic:
REPORTER_ASSERT(reporter, false, "unexpected cubic verb");
break;
case SkPathVerb::kClose:
REPORTER_ASSERT(reporter, !firstTime);
REPORTER_ASSERT(reporter, !foundClose);
REPORTER_ASSERT(reporter, expectClose);
foundClose = true;
break;
}
}
REPORTER_ASSERT(reporter, foundClose == expectClose);
}
static void test_addPoly(skiatest::Reporter* reporter) {
SkPoint pts[32];
SkRandom rand;
for (size_t i = 0; i < std::size(pts); ++i) {
pts[i].fX = rand.nextSScalar1();
pts[i].fY = rand.nextSScalar1();
}
for (int doClose = 0; doClose <= 1; ++doClose) {
for (size_t count = 1; count <= std::size(pts); ++count) {
SkPath path;
path.addPoly(pts, SkToInt(count), SkToBool(doClose));
test_poly(reporter, path, pts, SkToBool(doClose));
}
}
}
static void test_strokerec(skiatest::Reporter* reporter) {
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
REPORTER_ASSERT(reporter, rec.isFillStyle());
rec.setHairlineStyle();
REPORTER_ASSERT(reporter, rec.isHairlineStyle());
rec.setStrokeStyle(SK_Scalar1, false);
REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle());
rec.setStrokeStyle(SK_Scalar1, true);
REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle());
rec.setStrokeStyle(0, false);
REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle());
rec.setStrokeStyle(0, true);
REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle());
}
// Set this for paths that don't have a consistent direction such as a bowtie.
// (cheapComputeDirection is not expected to catch these.)
// Legal values are CW (0), CCW (1) and Unknown (2), leaving 3 as a convenient sentinel.
const SkPathFirstDirection kDontCheckDir = static_cast<SkPathFirstDirection>(3);
static void check_direction(skiatest::Reporter* reporter, const SkPath& path,
SkPathFirstDirection expected) {
if (expected == kDontCheckDir) {
return;
}
// We make a copy so that we don't cache the result on the passed in path.
SkPath copy(path); // NOLINT(performance-unnecessary-copy-initialization)
SkPathFirstDirection dir = SkPathPriv::ComputeFirstDirection(copy);
if (dir != SkPathFirstDirection::kUnknown) {
REPORTER_ASSERT(reporter, dir == expected);
}
}
static void test_direction(skiatest::Reporter* reporter) {
size_t i;
SkPath path;
REPORTER_ASSERT(reporter,
SkPathPriv::ComputeFirstDirection(path) == SkPathFirstDirection::kUnknown);
static const char* gDegen[] = {
"M 10 10",
"M 10 10 M 20 20",
"M 10 10 L 20 20",
"M 10 10 L 10 10 L 10 10",
"M 10 10 Q 10 10 10 10",
"M 10 10 C 10 10 10 10 10 10",
};
for (i = 0; i < std::size(gDegen); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gDegen[i], &path);
REPORTER_ASSERT(reporter, valid);
REPORTER_ASSERT(reporter,
SkPathPriv::ComputeFirstDirection(path) == SkPathFirstDirection::kUnknown);
}
static const char* gCW[] = {
"M 10 10 L 10 10 Q 20 10 20 20",
"M 10 10 C 20 10 20 20 20 20",
"M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max
// rect with top two corners replaced by cubics with identical middle
// control points
"M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10",
"M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif
};
for (i = 0; i < std::size(gCW); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gCW[i], &path);
REPORTER_ASSERT(reporter, valid);
check_direction(reporter, path, SkPathFirstDirection::kCW);
}
static const char* gCCW[] = {
"M 10 10 L 10 10 Q 20 10 20 -20",
"M 10 10 C 20 10 20 -20 20 -20",
"M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max
// rect with top two corners replaced by cubics with identical middle
// control points
"M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10",
"M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif
};
for (i = 0; i < std::size(gCCW); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gCCW[i], &path);
REPORTER_ASSERT(reporter, valid);
check_direction(reporter, path, SkPathFirstDirection::kCCW);
}
// Test two donuts, each wound a different direction. Only the outer contour
// determines the cheap direction
path.reset();
path.addCircle(0, 0, SkIntToScalar(2), SkPathDirection::kCW);
path.addCircle(0, 0, SkIntToScalar(1), SkPathDirection::kCCW);
check_direction(reporter, path, SkPathFirstDirection::kCW);
path.reset();
path.addCircle(0, 0, SkIntToScalar(1), SkPathDirection::kCW);
path.addCircle(0, 0, SkIntToScalar(2), SkPathDirection::kCCW);
check_direction(reporter, path, SkPathFirstDirection::kCCW);
// triangle with one point really far from the origin.
path.reset();
// the first point is roughly 1.05e10, 1.05e10
path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652));
path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1);
path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1);
check_direction(reporter, path, SkPathFirstDirection::kCCW);
path.reset();
path.conicTo(20, 0, 20, 20, 0.5f);
path.close();
check_direction(reporter, path, SkPathFirstDirection::kCW);
path.reset();
path.lineTo(1, 1e7f);
path.lineTo(1e7f, 2e7f);
path.close();
REPORTER_ASSERT(reporter, path.isConvex());
check_direction(reporter, path, SkPathFirstDirection::kCCW);
}
static void add_rect(SkPath* path, const SkRect& r) {
path->moveTo(r.fLeft, r.fTop);
path->lineTo(r.fRight, r.fTop);
path->lineTo(r.fRight, r.fBottom);
path->lineTo(r.fLeft, r.fBottom);
path->close();
}
static void test_bounds(skiatest::Reporter* reporter) {
static const SkRect rects[] = {
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) },
{ SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) },
{ SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) },
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) },
};
SkPath path0, path1;
for (size_t i = 0; i < std::size(rects); ++i) {
path0.addRect(rects[i]);
add_rect(&path1, rects[i]);
}
REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds());
}
static void stroke_cubic(const SkPoint pts[4]) {
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(SK_Scalar1 * 2);
SkPath fill;
paint.getFillPath(path, &fill);
}
// just ensure this can run w/o any SkASSERTS firing in the debug build
// we used to assert due to differences in how we determine a degenerate vector
// but that was fixed with the introduction of SkPoint::CanNormalize
static void stroke_tiny_cubic() {
SkPoint p0[] = {
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
};
stroke_cubic(p0);
SkPoint p1[] = {
{ 372.0f, 92.0f },
{ 372.0007f, 92.000755f },
{ 371.99927f, 92.003922f },
{ 371.99826f, 92.003899f },
};
stroke_cubic(p1);
}
static void check_close(skiatest::Reporter* reporter, const SkPath& path) {
for (int i = 0; i < 2; ++i) {
SkPath::Iter iter(path, SkToBool(i));
SkPoint mv;
SkPoint pts[4];
SkPath::Verb v;
int nMT = 0;
int nCL = 0;
mv.set(0, 0);
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
switch (v) {
case SkPath::kMove_Verb:
mv = pts[0];
++nMT;
break;
case SkPath::kClose_Verb:
REPORTER_ASSERT(reporter, mv == pts[0]);
++nCL;
break;
default:
break;
}
}
// if we force a close on the interator we should have a close
// for every moveTo
REPORTER_ASSERT(reporter, !i || nMT == nCL);
}
}
static void test_close(skiatest::Reporter* reporter) {
SkPath closePt;
closePt.moveTo(0, 0);
closePt.close();
check_close(reporter, closePt);
SkPath openPt;
openPt.moveTo(0, 0);
check_close(reporter, openPt);
SkPath empty;
check_close(reporter, empty);
empty.close();
check_close(reporter, empty);
SkPath rect;
rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, rect);
rect.close();
check_close(reporter, rect);
SkPath quad;
quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, quad);
quad.close();
check_close(reporter, quad);
SkPath cubic;
quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1,
10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1);
check_close(reporter, cubic);
cubic.close();
check_close(reporter, cubic);
SkPath line;
line.moveTo(SK_Scalar1, SK_Scalar1);
line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, line);
line.close();
check_close(reporter, line);
SkPath rect2;
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
rect2.close();
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, rect2);
rect2.close();
check_close(reporter, rect2);
SkPath oval3;
oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100));
oval3.close();
oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200));
check_close(reporter, oval3);
oval3.close();
check_close(reporter, oval3);
SkPath moves;
moves.moveTo(SK_Scalar1, SK_Scalar1);
moves.moveTo(5 * SK_Scalar1, SK_Scalar1);
moves.moveTo(SK_Scalar1, 10 * SK_Scalar1);
moves.moveTo(10 *SK_Scalar1, SK_Scalar1);
check_close(reporter, moves);
stroke_tiny_cubic();
}
static void check_convexity(skiatest::Reporter* reporter, const SkPath& path,
bool expectedConvexity) {
// We make a copy so that we don't cache the result on the passed in path.
SkPath copy(path); // NOLINT(performance-unnecessary-copy-initialization)
bool convexity = copy.isConvex();
REPORTER_ASSERT(reporter, convexity == expectedConvexity);
}
static void test_path_crbug389050(skiatest::Reporter* reporter) {
SkPath tinyConvexPolygon;
tinyConvexPolygon.moveTo(600.131559f, 800.112512f);
tinyConvexPolygon.lineTo(600.161735f, 800.118627f);
tinyConvexPolygon.lineTo(600.148962f, 800.142338f);
tinyConvexPolygon.lineTo(600.134891f, 800.137724f);
tinyConvexPolygon.close();
tinyConvexPolygon.isConvex();
check_direction(reporter, tinyConvexPolygon, SkPathFirstDirection::kCW);
SkPath platTriangle;
platTriangle.moveTo(0, 0);
platTriangle.lineTo(200, 0);
platTriangle.lineTo(100, 0.04f);
platTriangle.close();
platTriangle.isConvex();
check_direction(reporter, platTriangle, SkPathFirstDirection::kCW);
platTriangle.reset();
platTriangle.moveTo(0, 0);
platTriangle.lineTo(200, 0);
platTriangle.lineTo(100, 0.03f);
platTriangle.close();
platTriangle.isConvex();
check_direction(reporter, platTriangle, SkPathFirstDirection::kCW);
}
static void test_convexity2(skiatest::Reporter* reporter) {
SkPath pt;
pt.moveTo(0, 0);
pt.close();
check_convexity(reporter, pt, true);
check_direction(reporter, pt, SkPathFirstDirection::kUnknown);
SkPath line;
line.moveTo(12*SK_Scalar1, 20*SK_Scalar1);
line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1);
line.close();
check_convexity(reporter, line, true);
check_direction(reporter, line, SkPathFirstDirection::kUnknown);
SkPath triLeft;
triLeft.moveTo(0, 0);
triLeft.lineTo(SK_Scalar1, 0);
triLeft.lineTo(SK_Scalar1, SK_Scalar1);
triLeft.close();
check_convexity(reporter, triLeft, true);
check_direction(reporter, triLeft, SkPathFirstDirection::kCW);
SkPath triRight;
triRight.moveTo(0, 0);
triRight.lineTo(-SK_Scalar1, 0);
triRight.lineTo(SK_Scalar1, SK_Scalar1);
triRight.close();
check_convexity(reporter, triRight, true);
check_direction(reporter, triRight, SkPathFirstDirection::kCCW);
SkPath square;
square.moveTo(0, 0);
square.lineTo(SK_Scalar1, 0);
square.lineTo(SK_Scalar1, SK_Scalar1);
square.lineTo(0, SK_Scalar1);
square.close();
check_convexity(reporter, square, true);
check_direction(reporter, square, SkPathFirstDirection::kCW);
SkPath redundantSquare;
redundantSquare.moveTo(0, 0);
redundantSquare.lineTo(0, 0);
redundantSquare.lineTo(0, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.close();
check_convexity(reporter, redundantSquare, true);
check_direction(reporter, redundantSquare, SkPathFirstDirection::kCW);
SkPath bowTie;
bowTie.moveTo(0, 0);
bowTie.lineTo(0, 0);
bowTie.lineTo(0, 0);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(0, SK_Scalar1);
bowTie.lineTo(0, SK_Scalar1);
bowTie.lineTo(0, SK_Scalar1);
bowTie.close();
check_convexity(reporter, bowTie, false);
check_direction(reporter, bowTie, kDontCheckDir);
SkPath spiral;
spiral.moveTo(0, 0);
spiral.lineTo(100*SK_Scalar1, 0);
spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
spiral.lineTo(0, 100*SK_Scalar1);
spiral.lineTo(0, 50*SK_Scalar1);
spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1);
spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1);
spiral.close();
check_convexity(reporter, spiral, false);
check_direction(reporter, spiral, kDontCheckDir);
SkPath dent;
dent.moveTo(0, 0);
dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
dent.lineTo(0, 100*SK_Scalar1);
dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1);
dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1);
dent.close();
check_convexity(reporter, dent, false);
check_direction(reporter, dent, SkPathFirstDirection::kCW);
// https://bug.skia.org/2235
SkPath strokedSin;
for (int i = 0; i < 2000; i++) {
SkScalar x = SkIntToScalar(i) / 2;
SkScalar y = 500 - (x + SkScalarSin(x / 100) * 40) / 3;
if (0 == i) {
strokedSin.moveTo(x, y);
} else {
strokedSin.lineTo(x, y);
}
}
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
stroke.setStrokeStyle(2 * SK_Scalar1);
stroke.applyToPath(&strokedSin, strokedSin);
check_convexity(reporter, strokedSin, false);
check_direction(reporter, strokedSin, kDontCheckDir);
// http://crbug.com/412640
SkPath degenerateConcave;
degenerateConcave.moveTo(148.67912f, 191.875f);
degenerateConcave.lineTo(470.37695f, 7.5f);
degenerateConcave.lineTo(148.67912f, 191.875f);
degenerateConcave.lineTo(41.446522f, 376.25f);
degenerateConcave.lineTo(-55.971577f, 460.0f);
degenerateConcave.lineTo(41.446522f, 376.25f);
check_convexity(reporter, degenerateConcave, false);
check_direction(reporter, degenerateConcave, SkPathFirstDirection::kUnknown);
// http://crbug.com/433683
SkPath badFirstVector;
badFirstVector.moveTo(501.087708f, 319.610352f);
badFirstVector.lineTo(501.087708f, 319.610352f);
badFirstVector.cubicTo(501.087677f, 319.610321f, 449.271606f, 258.078674f, 395.084564f, 198.711182f);
badFirstVector.cubicTo(358.967072f, 159.140717f, 321.910553f, 120.650436f, 298.442322f, 101.955399f);
badFirstVector.lineTo(301.557678f, 98.044601f);
badFirstVector.cubicTo(325.283844f, 116.945084f, 362.615204f, 155.720825f, 398.777557f, 195.340454f);
badFirstVector.cubicTo(453.031860f, 254.781662f, 504.912262f, 316.389618f, 504.912292f, 316.389648f);
badFirstVector.lineTo(504.912292f, 316.389648f);
badFirstVector.lineTo(501.087708f, 319.610352f);
badFirstVector.close();
check_convexity(reporter, badFirstVector, false);
// http://crbug.com/993330
SkPath falseBackEdge;
falseBackEdge.moveTo(-217.83430557928145f, -382.14948768484857f);
falseBackEdge.lineTo(-227.73867866614847f, -399.52485512718323f);
falseBackEdge.cubicTo(-158.3541047666846f, -439.0757140459542f,
-79.8654464485281f, -459.875f,
-1.1368683772161603e-13f, -459.875f);
falseBackEdge.lineTo(-8.08037266162413e-14f, -439.875f);
falseBackEdge.lineTo(-8.526512829121202e-14f, -439.87499999999994f);
falseBackEdge.cubicTo(-76.39209188702645f, -439.87499999999994f,
-151.46727226799754f, -419.98027663161537f,
-217.83430557928145f, -382.14948768484857f);
falseBackEdge.close();
check_convexity(reporter, falseBackEdge, false);
}
static void test_convexity_doubleback(skiatest::Reporter* reporter) {
SkPath doubleback;
doubleback.lineTo(1, 1);
check_convexity(reporter, doubleback, true);
doubleback.lineTo(2, 2);
check_convexity(reporter, doubleback, true);
doubleback.reset();
doubleback.lineTo(1, 0);
check_convexity(reporter, doubleback, true);
doubleback.lineTo(2, 0);
check_convexity(reporter, doubleback, true);
doubleback.lineTo(1, 0);
check_convexity(reporter, doubleback, true);
doubleback.reset();
doubleback.quadTo(1, 1, 2, 2);
check_convexity(reporter, doubleback, true);
doubleback.reset();
doubleback.quadTo(1, 0, 2, 0);
check_convexity(reporter, doubleback, true);
doubleback.quadTo(1, 0, 0, 0);
check_convexity(reporter, doubleback, true);
}
static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p,
const SkRect& bounds) {
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, p.getBounds() == bounds);
SkPath p2(p);
REPORTER_ASSERT(reporter, p2.isConvex());
REPORTER_ASSERT(reporter, p2.getBounds() == bounds);
SkPath other;
other.swap(p2);
REPORTER_ASSERT(reporter, other.isConvex());
REPORTER_ASSERT(reporter, other.getBounds() == bounds);
}
static void setFromString(SkPath* path, const char str[]) {
bool first = true;
while (str) {
SkScalar x, y;
str = SkParse::FindScalar(str, &x);
if (nullptr == str) {
break;
}
str = SkParse::FindScalar(str, &y);
SkASSERT(str);
if (first) {
path->moveTo(x, y);
first = false;
} else {
path->lineTo(x, y);
}
}
}
static void test_convexity(skiatest::Reporter* reporter) {
SkPath path;
check_convexity(reporter, path, true);
path.addCircle(0, 0, SkIntToScalar(10));
check_convexity(reporter, path, true);
path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle
check_convexity(reporter, path, false);
path.reset();
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPathDirection::kCCW);
check_convexity(reporter, path, true);
REPORTER_ASSERT(reporter, SkPathPriv::ComputeFirstDirection(path) == SkPathFirstDirection::kCCW);
path.reset();
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPathDirection::kCW);
check_convexity(reporter, path, true);
REPORTER_ASSERT(reporter, SkPathPriv::ComputeFirstDirection(path) == SkPathFirstDirection::kCW);
path.reset();
path.quadTo(100, 100, 50, 50); // This from GM:convexpaths
check_convexity(reporter, path, true);
static const struct {
const char* fPathStr;
bool fExpectedIsConvex;
SkPathFirstDirection fExpectedDirection;
} gRec[] = {
{ "", true, SkPathFirstDirection::kUnknown },
{ "0 0", true, SkPathFirstDirection::kUnknown },
{ "0 0 10 10", true, SkPathFirstDirection::kUnknown },
{ "0 0 10 10 20 20 0 0 10 10", false, SkPathFirstDirection::kUnknown },
{ "0 0 10 10 10 20", true, SkPathFirstDirection::kCW },
{ "0 0 10 10 10 0", true, SkPathFirstDirection::kCCW },
{ "0 0 10 10 10 0 0 10", false, kDontCheckDir },
{ "0 0 10 0 0 10 -10 -10", false, SkPathFirstDirection::kCW },
};
for (size_t i = 0; i < std::size(gRec); ++i) {
path.reset();
setFromString(&path, gRec[i].fPathStr);
check_convexity(reporter, path, gRec[i].fExpectedIsConvex);
check_direction(reporter, path, gRec[i].fExpectedDirection);
// check after setting the initial convex and direction
if (kDontCheckDir != gRec[i].fExpectedDirection) {
// We make a copy so that we don't cache the result on the passed in path.
SkPath copy(path); // NOLINT(performance-unnecessary-copy-initialization)
SkPathFirstDirection dir = SkPathPriv::ComputeFirstDirection(copy);
bool foundDir = dir != SkPathFirstDirection::kUnknown;
REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPathFirstDirection::kUnknown)
^ foundDir);
REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir);
check_convexity(reporter, copy, gRec[i].fExpectedIsConvex);
}
REPORTER_ASSERT(reporter, gRec[i].fExpectedIsConvex == path.isConvex());
check_direction(reporter, path, gRec[i].fExpectedDirection);
}
static const SkPoint nonFinitePts[] = {
{ SK_ScalarInfinity, 0 },
{ 0, SK_ScalarInfinity },
{ SK_ScalarInfinity, SK_ScalarInfinity },
{ SK_ScalarNegativeInfinity, 0},
{ 0, SK_ScalarNegativeInfinity },
{ SK_ScalarNegativeInfinity, SK_ScalarNegativeInfinity },
{ SK_ScalarNegativeInfinity, SK_ScalarInfinity },
{ SK_ScalarInfinity, SK_ScalarNegativeInfinity },
{ SK_ScalarNaN, 0 },
{ 0, SK_ScalarNaN },
{ SK_ScalarNaN, SK_ScalarNaN },
};
const size_t nonFinitePtsCount = sizeof(nonFinitePts) / sizeof(nonFinitePts[0]);
static const SkPoint axisAlignedPts[] = {
{ SK_ScalarMax, 0 },
{ 0, SK_ScalarMax },
{ SK_ScalarMin, 0 },
{ 0, SK_ScalarMin },
};
const size_t axisAlignedPtsCount = sizeof(axisAlignedPts) / sizeof(axisAlignedPts[0]);
for (int index = 0; index < (int) (13 * nonFinitePtsCount * axisAlignedPtsCount); ++index) {
int i = (int) (index % nonFinitePtsCount);
int f = (int) (index % axisAlignedPtsCount);
int g = (int) ((f + 1) % axisAlignedPtsCount);
path.reset();
switch (index % 13) {
case 0: path.lineTo(nonFinitePts[i]); break;
case 1: path.quadTo(nonFinitePts[i], nonFinitePts[i]); break;
case 2: path.quadTo(nonFinitePts[i], axisAlignedPts[f]); break;
case 3: path.quadTo(axisAlignedPts[f], nonFinitePts[i]); break;
case 4: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[f]); break;
case 5: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], axisAlignedPts[f]); break;
case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], nonFinitePts[i]); break;
case 7: path.cubicTo(nonFinitePts[i], nonFinitePts[i], axisAlignedPts[f]); break;
case 8: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], nonFinitePts[i]); break;
case 9: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], nonFinitePts[i]); break;
case 10: path.cubicTo(nonFinitePts[i], nonFinitePts[i], nonFinitePts[i]); break;
case 11: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[g]); break;
case 12: path.moveTo(nonFinitePts[i]); break;
}
REPORTER_ASSERT(reporter,
SkPathPriv::GetConvexityOrUnknown(path) == SkPathConvexity::kUnknown);
}
for (int index = 0; index < (int) (11 * axisAlignedPtsCount); ++index) {
int f = (int) (index % axisAlignedPtsCount);
int g = (int) ((f + 1) % axisAlignedPtsCount);
path.reset();
int curveSelect = index % 11;
switch (curveSelect) {
case 0: path.moveTo(axisAlignedPts[f]); break;
case 1: path.lineTo(axisAlignedPts[f]); break;
case 2: path.quadTo(axisAlignedPts[f], axisAlignedPts[f]); break;
case 3: path.quadTo(axisAlignedPts[f], axisAlignedPts[g]); break;
case 4: path.quadTo(axisAlignedPts[g], axisAlignedPts[f]); break;
case 5: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[f]); break;
case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[g]); break;
case 7: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[f]); break;
case 8: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[g]); break;
case 9: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[f]); break;
case 10: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[g]); break;
}
if (curveSelect == 0 || curveSelect == 1 || curveSelect == 2 || curveSelect == 5) {
check_convexity(reporter, path, true);
} else {
// We make a copy so that we don't cache the result on the passed in path.
SkPath copy(path); // NOLINT(performance-unnecessary-copy-initialization)
REPORTER_ASSERT(reporter, !copy.isConvex());
}
}
static const SkPoint diagonalPts[] = {
{ SK_ScalarMax, SK_ScalarMax },
{ SK_ScalarMin, SK_ScalarMin },
};
const size_t diagonalPtsCount = sizeof(diagonalPts) / sizeof(diagonalPts[0]);
for (int index = 0; index < (int) (7 * diagonalPtsCount); ++index) {
int f = (int) (index % diagonalPtsCount);
int g = (int) ((f + 1) % diagonalPtsCount);
path.reset();
int curveSelect = index % 11;
switch (curveSelect) {
case 0: path.moveTo(diagonalPts[f]); break;
case 1: path.lineTo(diagonalPts[f]); break;
case 2: path.quadTo(diagonalPts[f], diagonalPts[f]); break;
case 3: path.quadTo(axisAlignedPts[f], diagonalPts[g]); break;
case 4: path.quadTo(diagonalPts[g], axisAlignedPts[f]); break;
case 5: path.cubicTo(diagonalPts[f], diagonalPts[f], diagonalPts[f]); break;
case 6: path.cubicTo(diagonalPts[f], diagonalPts[f], axisAlignedPts[g]); break;
case 7: path.cubicTo(diagonalPts[f], axisAlignedPts[g], diagonalPts[f]); break;
case 8: path.cubicTo(axisAlignedPts[f], diagonalPts[g], diagonalPts[g]); break;
case 9: path.cubicTo(diagonalPts[g], diagonalPts[f], axisAlignedPts[f]); break;
case 10: path.cubicTo(diagonalPts[g], axisAlignedPts[f], diagonalPts[g]); break;
}
if (curveSelect == 0) {
check_convexity(reporter, path, true);
} else {
// We make a copy so that we don't cache the result on the passed in path.
SkPath copy(path); // NOLINT(performance-unnecessary-copy-initialization)
REPORTER_ASSERT(reporter, !copy.isConvex());
}
}
path.reset();
path.moveTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f
path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eea38)); // -0.284072f, -0.0622351f
path.lineTo(SkBits2Float(0xbe9171a0), SkBits2Float(0xbd7ee5a7)); // -0.28407f, -0.0622307f
path.lineTo(SkBits2Float(0xbe917147), SkBits2Float(0xbd7ed886)); // -0.284067f, -0.0622182f
path.lineTo(SkBits2Float(0xbe917378), SkBits2Float(0xbd7ee1a9)); // -0.284084f, -0.0622269f
path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f
path.close();
check_convexity(reporter, path, false);
}
static void test_isLine(skiatest::Reporter* reporter) {
SkPath path;
SkPoint pts[2];
const SkScalar value = SkIntToScalar(5);
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
// set some non-zero values
pts[0].set(value, value);
pts[1].set(value, value);
REPORTER_ASSERT(reporter, !path.isLine(pts));
// check that pts was untouched
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
const SkScalar moveX = SkIntToScalar(1);
const SkScalar moveY = SkIntToScalar(2);
REPORTER_ASSERT(reporter, value != moveX && value != moveY);
path.moveTo(moveX, moveY);
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
REPORTER_ASSERT(reporter, !path.isLine(pts));
// check that pts was untouched
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
const SkScalar lineX = SkIntToScalar(2);
const SkScalar lineY = SkIntToScalar(2);
REPORTER_ASSERT(reporter, value != lineX && value != lineY);
path.lineTo(lineX, lineY);
REPORTER_ASSERT(reporter, path.isLine(nullptr));
REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY));
REPORTER_ASSERT(reporter, path.isLine(pts));
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
path.lineTo(0, 0); // too many points/verbs
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
REPORTER_ASSERT(reporter, !path.isLine(pts));
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
path.reset();
path.quadTo(1, 1, 2, 2);
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
}
static void test_conservativelyContains(skiatest::Reporter* reporter) {
SkPath path;
// kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect.
static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));
// A circle that bounds kBaseRect (with a significant amount of slop)
SkScalar circleR = std::max(kBaseRect.width(), kBaseRect.height());
circleR *= 1.75f / 2;
static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()};
// round-rect radii
static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)};
static const struct SUPPRESS_VISIBILITY_WARNING {
SkRect fQueryRect;
bool fInRect;
bool fInCircle;
bool fInRR;
bool fInCubicRR;
} kQueries[] = {
{kBaseRect, true, true, false, false},
// rect well inside of kBaseRect
{SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(),
kBaseRect.fTop + 0.25f*kBaseRect.height(),
kBaseRect.fRight - 0.25f*kBaseRect.width(),
kBaseRect.fBottom - 0.25f*kBaseRect.height()),
true, true, true, true},
// rects with edges off by one from kBaseRect's edges
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width(), kBaseRect.height() + 1),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width() + 1, kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width() + 1, kBaseRect.height() + 1),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
kBaseRect.width(), kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
kBaseRect.width(), kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
kBaseRect.width() + 2, kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
kBaseRect.width() + 2, kBaseRect.height()),
false, true, false, false},
// zero-w/h rects at each corner of kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true},
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true},
// far away rect
{SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom,
SkIntToScalar(10), SkIntToScalar(10)),
false, false, false, false},
// very large rect containing kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(),
kBaseRect.fTop - 5 * kBaseRect.height(),
11 * kBaseRect.width(), 11 * kBaseRect.height()),
false, false, false, false},
// skinny rect that spans same y-range as kBaseRect
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
SkIntToScalar(1), kBaseRect.height()),
true, true, true, true},
// short rect that spans same x-range as kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)),
true, true, true, true},
// skinny rect that spans slightly larger y-range than kBaseRect
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
SkIntToScalar(1), kBaseRect.height() + 1),
false, true, false, false},
// short rect that spans slightly larger x-range than kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(),
kBaseRect.width() + 1, SkScalar(1)),
false, true, false, false},
};
for (int inv = 0; inv < 4; ++inv) {
for (size_t q = 0; q < std::size(kQueries); ++q) {
SkRect qRect = kQueries[q].fQueryRect;
if (inv & 0x1) {
using std::swap;
swap(qRect.fLeft, qRect.fRight);
}
if (inv & 0x2) {
using std::swap;
swap(qRect.fTop, qRect.fBottom);
}
for (int d = 0; d < 2; ++d) {
SkPathDirection dir = d ? SkPathDirection::kCCW : SkPathDirection::kCW;
path.reset();
path.addRect(kBaseRect, dir);
REPORTER_ASSERT(reporter, kQueries[q].fInRect ==
path.conservativelyContainsRect(qRect));
path.reset();
path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir);
REPORTER_ASSERT(reporter, kQueries[q].fInCircle ==
path.conservativelyContainsRect(qRect));
path.reset();
path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir);
REPORTER_ASSERT(reporter, kQueries[q].fInRR ==
path.conservativelyContainsRect(qRect));
path.reset();
path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop);
path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop,
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2,
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]);
path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom);
path.lineTo(kBaseRect.fRight, kBaseRect.fBottom);
path.lineTo(kBaseRect.fRight, kBaseRect.fTop);
path.close();
REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR ==
path.conservativelyContainsRect(qRect));
}
// Slightly non-convex shape, shouldn't contain any rects.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(50), 0.05f);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(SkIntToScalar(100), SkIntToScalar(100));
path.lineTo(0, SkIntToScalar(100));
path.close();
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect));
}
}
// make sure a minimal convex shape works, a right tri with edges along pos x and y axes.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(0, SkIntToScalar(100));
// inside, on along top edge
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
// above
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
SkRect::MakeXYWH(SkIntToScalar(50),
SkIntToScalar(-10),
SkIntToScalar(10),
SkIntToScalar(10))));
// to the left
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10),
SkIntToScalar(5),
SkIntToScalar(5),
SkIntToScalar(5))));
// outside the diagonal edge
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10),
SkIntToScalar(200),
SkIntToScalar(20),
SkIntToScalar(5))));
// Test that multiple move commands do not cause asserts.
path.moveTo(SkIntToScalar(100), SkIntToScalar(100));
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
// Same as above path and first test but with an extra moveTo.
path.reset();
path.moveTo(100, 100);
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(0, SkIntToScalar(100));
// Convexity logic treats a path as filled and closed, so that multiple (non-trailing) moveTos
// have no effect on convexity
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(
SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
// Same as above path and first test but with the extra moveTo making a degenerate sub-path
// following the non-empty sub-path. Verifies that this does not trigger assertions.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(0, SkIntToScalar(100));
path.moveTo(100, 100);
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
// Test that multiple move commands do not cause asserts and that the function
// is not confused by the multiple moves.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(0, SkIntToScalar(100));
path.moveTo(0, SkIntToScalar(200));
path.lineTo(SkIntToScalar(100), SkIntToScalar(200));
path.lineTo(0, SkIntToScalar(300));
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
path.reset();
path.lineTo(100, 100);
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1)));
// An empty path should not contain any rectangle. It's questionable whether an empty path
// contains an empty rectangle. However, since it is a conservative test it is ok to
// return false.
path.reset();
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(1,1)));
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(0,0)));
}
static void test_isRect_open_close(skiatest::Reporter* reporter) {
SkPath path;
bool isClosed;
path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1);
path.close();
REPORTER_ASSERT(reporter, path.isRect(nullptr, &isClosed, nullptr));
REPORTER_ASSERT(reporter, isClosed);
}
// Simple isRect test is inline TestPath, below.
// test_isRect provides more extensive testing.
static void test_isRect(skiatest::Reporter* reporter) {
test_isRect_open_close(reporter);
// passing tests (all moveTo / lineTo...
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}};
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}};
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}};
// failing tests
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps
SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap
SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short
// no close, but we should detect them as fillably the same as a rect
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}};
SkPoint c3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 0}}; // hit the start
// like c2, but we double-back on ourselves
SkPoint d1[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 2}};
// like c2, but we overshoot the start point
SkPoint d2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}};
SkPoint d3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}, {0, 0}};
struct IsRectTest {
SkPoint *fPoints;
int fPointCount;
bool fClose;
bool fIsRect;
} tests[] = {
{ r1, std::size(r1), true, true },
{ r2, std::size(r2), true, true },
{ r3, std::size(r3), true, true },
{ r4, std::size(r4), true, true },
{ r5, std::size(r5), true, true },
{ r6, std::size(r6), true, true },
{ r7, std::size(r7), true, true },
{ r8, std::size(r8), true, true },
{ r9, std::size(r9), true, true },
{ ra, std::size(ra), true, true },
{ rb, std::size(rb), true, true },
{ rc, std::size(rc), true, true },
{ rd, std::size(rd), true, true },
{ re, std::size(re), true, true },
{ rf, std::size(rf), true, true },
{ f1, std::size(f1), true, false },
{ f2, std::size(f2), true, false },
{ f3, std::size(f3), true, false },
{ f4, std::size(f4), true, false },
{ f5, std::size(f5), true, false },
{ f6, std::size(f6), true, false },
{ f7, std::size(f7), true, false },
{ f8, std::size(f8), true, false },
{ f9, std::size(f9), true, false },
{ fa, std::size(fa), true, false },
{ fb, std::size(fb), true, false },
{ c1, std::size(c1), false, true },
{ c2, std::size(c2), false, true },
{ c3, std::size(c3), false, true },
{ d1, std::size(d1), false, false },
{ d2, std::size(d2), false, true },
{ d3, std::size(d3), false, false },
};
const size_t testCount = std::size(tests);
int index;
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
SkPath path;
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
for (index = 1; index < tests[testIndex].fPointCount; ++index) {
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
}
if (tests[testIndex].fClose) {
path.close();
}
REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(nullptr));
if (tests[testIndex].fIsRect) {
SkRect computed, expected;
bool isClosed;
SkPathDirection direction;
int pointCount = tests[testIndex].fPointCount - (d2 == tests[testIndex].fPoints);
expected.setBounds(tests[testIndex].fPoints, pointCount);
SkPathFirstDirection cheapDirection = SkPathPriv::ComputeFirstDirection(path);
REPORTER_ASSERT(reporter, cheapDirection != SkPathFirstDirection::kUnknown);
REPORTER_ASSERT(reporter, path.isRect(&computed, &isClosed, &direction));
REPORTER_ASSERT(reporter, expected == computed);
REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose);
REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(direction) == cheapDirection);
} else {
SkRect computed;
computed.setLTRB(123, 456, 789, 1011);
for (auto c : {true, false})
for (auto d : {SkPathDirection::kCW, SkPathDirection::kCCW}) {
bool isClosed = c;
SkPathDirection direction = d;
REPORTER_ASSERT(reporter, !path.isRect(&computed, &isClosed, &direction));
REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456);
REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011);
REPORTER_ASSERT(reporter, isClosed == c);
REPORTER_ASSERT(reporter, direction == d);
}
}
}
// fail, close then line
SkPath path1;
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
path1.lineTo(1, 0);
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
// fail, move in the middle
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
if (index == 2) {
path1.moveTo(1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
// fail, move on the edge
path1.reset();
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
// fail, quad
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
if (index == 2) {
path1.quadTo(1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
// fail, cubic
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
if (index == 2) {
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
}
static void check_simple_rect(skiatest::Reporter* reporter, const SkPath& path, bool isClosed,
const SkRect& rect, SkPathDirection dir, unsigned start) {
SkRect r = SkRect::MakeEmpty();
SkPathDirection d = SkPathDirection::kCCW;
unsigned s = ~0U;
REPORTER_ASSERT(reporter, SkPathPriv::IsSimpleRect(path, false, &r, &d, &s) == isClosed);
REPORTER_ASSERT(reporter, SkPathPriv::IsSimpleRect(path, true, &r, &d, &s));
REPORTER_ASSERT(reporter, r == rect);
REPORTER_ASSERT(reporter, d == dir);
REPORTER_ASSERT(reporter, s == start);
}
static void test_is_closed_rect(skiatest::Reporter* reporter) {
using std::swap;
SkRect r = SkRect::MakeEmpty();
SkPathDirection d = SkPathDirection::kCCW;
unsigned s = ~0U;
const SkRect testRect = SkRect::MakeXYWH(10, 10, 50, 70);
const SkRect emptyRect = SkRect::MakeEmpty();
for (int start = 0; start < 4; ++start) {
for (auto dir : {SkPathDirection::kCCW, SkPathDirection::kCW}) {
SkPath path;
path.addRect(testRect, dir, start);
check_simple_rect(reporter, path, true, testRect, dir, start);
path.close();
check_simple_rect(reporter, path, true, testRect, dir, start);
SkPath path2 = path;
path2.lineTo(10, 10);
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, false, &r, &d, &s));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, true, &r, &d, &s));
path2 = path;
path2.moveTo(10, 10);
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, false, &r, &d, &s));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, true, &r, &d, &s));
path2 = path;
path2.addRect(testRect, dir, start);
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, false, &r, &d, &s));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, true, &r, &d, &s));
// Make the path by hand, manually closing it.
path2.reset();
SkPoint firstPt = {0.f, 0.f};
for (auto [v, verbPts, w] : SkPathPriv::Iterate(path)) {
switch(v) {
case SkPathVerb::kMove:
firstPt = verbPts[0];
path2.moveTo(verbPts[0]);
break;
case SkPathVerb::kLine:
path2.lineTo(verbPts[1]);
break;
default:
break;
}
}
// We haven't closed it yet...
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, false, &r, &d, &s));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, true, &r, &d, &s));
// ... now we do and test again.
path2.lineTo(firstPt);
check_simple_rect(reporter, path2, false, testRect, dir, start);
// A redundant close shouldn't cause a failure.
path2.close();
check_simple_rect(reporter, path2, true, testRect, dir, start);
// Degenerate point and line rects are not allowed
path2.reset();
path2.addRect(emptyRect, dir, start);
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, false, &r, &d, &s));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, true, &r, &d, &s));
SkRect degenRect = testRect;
degenRect.fLeft = degenRect.fRight;
path2.reset();
path2.addRect(degenRect, dir, start);
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, false, &r, &d, &s));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, true, &r, &d, &s));
degenRect = testRect;
degenRect.fTop = degenRect.fBottom;
path2.reset();
path2.addRect(degenRect, dir, start);
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, false, &r, &d, &s));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path2, true, &r, &d, &s));
// An inverted rect makes a rect path, but changes the winding dir and start point.
SkPathDirection swapDir = (dir == SkPathDirection::kCW)
? SkPathDirection::kCCW
: SkPathDirection::kCW;
static constexpr unsigned kXSwapStarts[] = { 1, 0, 3, 2 };
static constexpr unsigned kYSwapStarts[] = { 3, 2, 1, 0 };
SkRect swapRect = testRect;
swap(swapRect.fLeft, swapRect.fRight);
path2.reset();
path2.addRect(swapRect, dir, start);
check_simple_rect(reporter, path2, true, testRect, swapDir, kXSwapStarts[start]);
swapRect = testRect;
swap(swapRect.fTop, swapRect.fBottom);
path2.reset();
path2.addRect(swapRect, dir, start);
check_simple_rect(reporter, path2, true, testRect, swapDir, kYSwapStarts[start]);
}
}
// down, up, left, close
SkPath path;
path.moveTo(1, 1);
path.lineTo(1, 2);
path.lineTo(1, 1);
path.lineTo(0, 1);
SkRect rect;
SkPathDirection dir;
unsigned start;
path.close();
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, false, &rect, &dir, &start));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, true, &rect, &dir, &start));
// right, left, up, close
path.reset();
path.moveTo(1, 1);
path.lineTo(2, 1);
path.lineTo(1, 1);
path.lineTo(1, 0);
path.close();
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, false, &rect, &dir, &start));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, true, &rect, &dir, &start));
// parallelogram with horizontal edges
path.reset();
path.moveTo(1, 0);
path.lineTo(3, 0);
path.lineTo(2, 1);
path.lineTo(0, 1);
path.close();
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, false, &rect, &dir, &start));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, true, &rect, &dir, &start));
// parallelogram with vertical edges
path.reset();
path.moveTo(0, 1);
path.lineTo(0, 3);
path.lineTo(1, 2);
path.lineTo(1, 0);
path.close();
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, false, &rect, &dir, &start));
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleRect(path, true, &rect, &dir, &start));
}
static void test_isNestedFillRects(skiatest::Reporter* reporter) {
// passing tests (all moveTo / lineTo...
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW
// failing tests
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
// success, no close is OK
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto
struct IsNestedRectTest {
SkPoint *fPoints;
int fPointCount;
SkPathFirstDirection fDirection;
bool fClose;
bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2);
} tests[] = {
{ r1, std::size(r1), SkPathFirstDirection::kCW , true, true },
{ r2, std::size(r2), SkPathFirstDirection::kCW , true, true },
{ r3, std::size(r3), SkPathFirstDirection::kCW , true, true },
{ r4, std::size(r4), SkPathFirstDirection::kCW , true, true },
{ r5, std::size(r5), SkPathFirstDirection::kCCW, true, true },
{ r6, std::size(r6), SkPathFirstDirection::kCCW, true, true },
{ r7, std::size(r7), SkPathFirstDirection::kCCW, true, true },
{ r8, std::size(r8), SkPathFirstDirection::kCCW, true, true },
{ r9, std::size(r9), SkPathFirstDirection::kCCW, true, true },
{ ra, std::size(ra), SkPathFirstDirection::kCCW, true, true },
{ rb, std::size(rb), SkPathFirstDirection::kCW, true, true },
{ rc, std::size(rc), SkPathFirstDirection::kCW, true, true },
{ rd, std::size(rd), SkPathFirstDirection::kCCW, true, true },
{ re, std::size(re), SkPathFirstDirection::kCW, true, true },
{ f1, std::size(f1), SkPathFirstDirection::kUnknown, true, false },
{ f2, std::size(f2), SkPathFirstDirection::kUnknown, true, false },
{ f3, std::size(f3), SkPathFirstDirection::kUnknown, true, false },
{ f4, std::size(f4), SkPathFirstDirection::kUnknown, true, false },
{ f5, std::size(f5), SkPathFirstDirection::kUnknown, true, false },
{ f6, std::size(f6), SkPathFirstDirection::kUnknown, true, false },
{ f7, std::size(f7), SkPathFirstDirection::kUnknown, true, false },
{ f8, std::size(f8), SkPathFirstDirection::kUnknown, true, false },
{ c1, std::size(c1), SkPathFirstDirection::kCW, false, true },
{ c2, std::size(c2), SkPathFirstDirection::kCW, false, true },
};
const size_t testCount = std::size(tests);
int index;
for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) {
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
SkPath path;
if (rectFirst) {
path.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
}
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
for (index = 1; index < tests[testIndex].fPointCount; ++index) {
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
}
if (tests[testIndex].fClose) {
path.close();
}
if (!rectFirst) {
path.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
}
REPORTER_ASSERT(reporter,
tests[testIndex].fIsNestedRect == SkPathPriv::IsNestedFillRects(path, nullptr));
if (tests[testIndex].fIsNestedRect) {
SkRect expected[2], computed[2];
SkPathFirstDirection expectedDirs[2];
SkPathDirection computedDirs[2];
SkRect testBounds;
testBounds.setBounds(tests[testIndex].fPoints, tests[testIndex].fPointCount);
expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2);
expected[1] = testBounds;
if (rectFirst) {
expectedDirs[0] = SkPathFirstDirection::kCW;
} else {
expectedDirs[0] = SkPathFirstDirection::kCCW;
}
expectedDirs[1] = tests[testIndex].fDirection;
REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, computed, computedDirs));
REPORTER_ASSERT(reporter, expected[0] == computed[0]);
REPORTER_ASSERT(reporter, expected[1] == computed[1]);
REPORTER_ASSERT(reporter, expectedDirs[0] == SkPathPriv::AsFirstDirection(computedDirs[0]));
REPORTER_ASSERT(reporter, expectedDirs[1] == SkPathPriv::AsFirstDirection(computedDirs[1]));
}
}
// fail, close then line
SkPath path1;
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
path1.lineTo(1, 0);
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
}
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
// fail, move in the middle
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
if (index == 2) {
path1.moveTo(1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
}
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
// fail, move on the edge
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
}
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
}
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
// fail, quad
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
if (index == 2) {
path1.quadTo(1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
}
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
// fail, cubic
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SkToInt(std::size(r1)); ++index) {
if (index == 2) {
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
}
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
// fail, not nested
path1.reset();
path1.addRect(1, 1, 3, 3, SkPathDirection::kCW);
path1.addRect(2, 2, 4, 4, SkPathDirection::kCW);
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
}
// pass, constructed explicitly from manually closed rects specified as moves/lines.
SkPath path;
path.moveTo(0, 0);
path.lineTo(10, 0);
path.lineTo(10, 10);
path.lineTo(0, 10);
path.lineTo(0, 0);
path.moveTo(1, 1);
path.lineTo(9, 1);
path.lineTo(9, 9);
path.lineTo(1, 9);
path.lineTo(1, 1);
REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, nullptr));
// pass, stroke rect
SkPath src, dst;
src.addRect(1, 1, 7, 7, SkPathDirection::kCW);
SkPaint strokePaint;
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setStrokeWidth(2);
strokePaint.getFillPath(src, &dst);
REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(dst, nullptr));
}
static void write_and_read_back(skiatest::Reporter* reporter,
const SkPath& p) {
SkBinaryWriteBuffer writer;
writer.writePath(p);
size_t size = writer.bytesWritten();
SkAutoMalloc storage(size);
writer.writeToMemory(storage.get());
SkReadBuffer reader(storage.get(), size);
SkPath readBack;
REPORTER_ASSERT(reporter, readBack != p);
reader.readPath(&readBack);
REPORTER_ASSERT(reporter, readBack == p);
REPORTER_ASSERT(reporter, SkPathPriv::GetConvexityOrUnknown(readBack) ==
SkPathPriv::GetConvexityOrUnknown(p));
SkRect oval0, oval1;
SkPathDirection dir0, dir1;
unsigned start0, start1;
REPORTER_ASSERT(reporter, readBack.isOval(nullptr) == p.isOval(nullptr));
if (SkPathPriv::IsOval(p, &oval0, &dir0, &start0) &&
SkPathPriv::IsOval(readBack, &oval1, &dir1, &start1)) {
REPORTER_ASSERT(reporter, oval0 == oval1);
REPORTER_ASSERT(reporter, dir0 == dir1);
REPORTER_ASSERT(reporter, start0 == start1);
}
REPORTER_ASSERT(reporter, readBack.isRRect(nullptr) == p.isRRect(nullptr));
SkRRect rrect0, rrect1;
if (SkPathPriv::IsRRect(p, &rrect0, &dir0, &start0) &&
SkPathPriv::IsRRect(readBack, &rrect1, &dir1, &start1)) {
REPORTER_ASSERT(reporter, rrect0 == rrect1);
REPORTER_ASSERT(reporter, dir0 == dir1);
REPORTER_ASSERT(reporter, start0 == start1);
}
const SkRect& origBounds = p.getBounds();
const SkRect& readBackBounds = readBack.getBounds();
REPORTER_ASSERT(reporter, origBounds == readBackBounds);
}
static void test_flattening(skiatest::Reporter* reporter) {
SkPath p;
static const SkPoint pts[] = {
{ 0, 0 },
{ SkIntToScalar(10), SkIntToScalar(10) },
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
};
p.moveTo(pts[0]);
p.lineTo(pts[1]);
p.quadTo(pts[2], pts[3]);
p.cubicTo(pts[4], pts[5], pts[6]);
write_and_read_back(reporter, p);
// create a buffer that should be much larger than the path so we don't
// kill our stack if writer goes too far.
char buffer[1024];
size_t size1 = p.writeToMemory(nullptr);
size_t size2 = p.writeToMemory(buffer);
REPORTER_ASSERT(reporter, size1 == size2);
SkPath p2;
size_t size3 = p2.readFromMemory(buffer, 1024);
REPORTER_ASSERT(reporter, size1 == size3);
REPORTER_ASSERT(reporter, p == p2);
size3 = p2.readFromMemory(buffer, 0);
REPORTER_ASSERT(reporter, !size3);
SkPath tooShort;
size3 = tooShort.readFromMemory(buffer, size1 - 1);
REPORTER_ASSERT(reporter, tooShort.isEmpty());
char buffer2[1024];
size3 = p2.writeToMemory(buffer2);
REPORTER_ASSERT(reporter, size1 == size3);
REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
// test persistence of the oval flag & convexity
{
SkPath oval;
SkRect rect = SkRect::MakeWH(10, 10);
oval.addOval(rect);
write_and_read_back(reporter, oval);
}
}
static void test_transform(skiatest::Reporter* reporter) {
SkPath p;
#define CONIC_PERSPECTIVE_BUG_FIXED 0
static const SkPoint pts[] = {
{ 0, 0 }, // move
{ SkIntToScalar(10), SkIntToScalar(10) }, // line
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, // quad
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }, // cubic
#if CONIC_PERSPECTIVE_BUG_FIXED
{ 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) }, // conic
#endif
};
const int kPtCount = std::size(pts);
p.moveTo(pts[0]);
p.lineTo(pts[1]);
p.quadTo(pts[2], pts[3]);
p.cubicTo(pts[4], pts[5], pts[6]);
#if CONIC_PERSPECTIVE_BUG_FIXED
p.conicTo(pts[4], pts[5], 0.5f);
#endif
p.close();
{
SkMatrix matrix;
matrix.reset();
SkPath p1;
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, p == p1);
}
{
SkMatrix matrix;
matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3);
SkPath p1; // Leave p1 non-unique (i.e., the empty path)
p.transform(matrix, &p1);
SkPoint pts1[kPtCount];
int count = p1.getPoints(pts1, kPtCount);
REPORTER_ASSERT(reporter, kPtCount == count);
for (int i = 0; i < count; ++i) {
SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3);
REPORTER_ASSERT(reporter, newPt == pts1[i]);
}
}
{
SkMatrix matrix;
matrix.reset();
matrix.setPerspX(4);
SkPath p1;
p1.moveTo(SkPoint::Make(0, 0));
p.transform(matrix, &p1, SkApplyPerspectiveClip::kNo);
REPORTER_ASSERT(reporter, matrix.invert(&matrix));
p1.transform(matrix, nullptr, SkApplyPerspectiveClip::kNo);
SkRect pBounds = p.getBounds();
SkRect p1Bounds = p1.getBounds();
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom));
}
p.reset();
p.addCircle(0, 0, 1, SkPathDirection::kCW);
{
SkMatrix matrix;
matrix.reset();
SkPath p1;
p1.moveTo(SkPoint::Make(0, 0));
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, SkPathPriv::ComputeFirstDirection(p1) == SkPathFirstDirection::kCW);
}
{
SkMatrix matrix;
matrix.reset();
matrix.setScaleX(-1);
SkPath p1;
p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path)
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, SkPathPriv::ComputeFirstDirection(p1) == SkPathFirstDirection::kCCW);
}
{
SkMatrix matrix;
matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1);
SkPath p1;
p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path)
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, SkPathPriv::ComputeFirstDirection(p1) == SkPathFirstDirection::kUnknown);
}
{
SkPath p1;
p1.addRect({ 10, 20, 30, 40 });
SkPath p2;
p2.addRect({ 10, 20, 30, 40 });
uint32_t id1 = p1.getGenerationID();
uint32_t id2 = p2.getGenerationID();
REPORTER_ASSERT(reporter, id1 != id2);
SkMatrix matrix;
matrix.setScale(2, 2);
p1.transform(matrix, &p2);
REPORTER_ASSERT(reporter, id1 == p1.getGenerationID());
REPORTER_ASSERT(reporter, id2 != p2.getGenerationID());
p1.transform(matrix);
REPORTER_ASSERT(reporter, id1 != p1.getGenerationID());
}
}
static void test_zero_length_paths(skiatest::Reporter* reporter) {
SkPath p;
uint8_t verbs[32];
struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData {
const char* testPath;
const size_t numResultPts;
const SkRect resultBound;
const SkPath::Verb* resultVerbs;
const size_t numResultVerbs;
};
static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb };
static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb };
static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb };
static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs8[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb
};
static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb };
static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb };
static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs12[] = {
SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb
};
static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb };
static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb };
static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs16[] = {
SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb
};
static const struct zeroPathTestData gZeroLengthTests[] = {
{ "M 1 1", 1, {1, 1, 1, 1}, resultVerbs1, std::size(resultVerbs1) },
{ "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, std::size(resultVerbs2) },
{ "M 1 1 z", 1, {1, 1, 1, 1}, resultVerbs3, std::size(resultVerbs3) },
{ "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, std::size(resultVerbs4) },
{ "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, std::size(resultVerbs5) },
{ "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, std::size(resultVerbs6) },
{ "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, std::size(resultVerbs7) },
{ "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, std::size(resultVerbs8) },
{ "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, std::size(resultVerbs9) },
{ "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, std::size(resultVerbs10) },
{ "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, std::size(resultVerbs11) },
{ "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, std::size(resultVerbs12) },
{ "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, std::size(resultVerbs13) },
{ "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14,
std::size(resultVerbs14)
},
{ "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, std::size(resultVerbs15) },
{ "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16,
std::size(resultVerbs16)
}
};
for (size_t i = 0; i < std::size(gZeroLengthTests); ++i) {
p.reset();
bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p);
REPORTER_ASSERT(reporter, valid);
REPORTER_ASSERT(reporter, !p.isEmpty());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, std::size(verbs)));
for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) {
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]);
}
}
}
struct SegmentInfo {
SkPath fPath;
int fPointCount;
};
#define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)
static void test_segment_masks(skiatest::Reporter* reporter) {
SkPath p, p2;
p.moveTo(0, 0);
p.quadTo(100, 100, 200, 200);
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
p.cubicTo(100, 100, 200, 200, 300, 300);
REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
p.reset();
p.moveTo(0, 0);
p.cubicTo(100, 100, 200, 200, 300, 300);
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
}
static void test_iter(skiatest::Reporter* reporter) {
SkPath p;
SkPoint pts[4];
// Test an iterator with no path
SkPath::Iter noPathIter;
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that setting an empty path works
noPathIter.setPath(p, false);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that close path makes no difference for an empty path
noPathIter.setPath(p, true);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test an iterator with an initial empty path
SkPath::Iter iter(p, false);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Test that close path makes no difference
iter.setPath(p, true);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
struct iterTestData {
const char* testPath;
const bool forceClose;
const size_t* numResultPtsPerVerb;
const SkPoint* resultPts;
const SkPath::Verb* resultVerbs;
const size_t numResultVerbs;
};
static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb };
static const SkPath::Verb resultVerbs2[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const SkPath::Verb resultVerbs3[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const size_t resultPtsSizes1[] = { 0 };
static const size_t resultPtsSizes2[] = { 1, 2, 1, 1, 0 };
static const size_t resultPtsSizes3[] = { 1, 2, 1, 1, 1, 0 };
static const SkPoint* resultPts1 = nullptr;
static const SkPoint resultPts2[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
};
static const SkPoint resultPts3[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
};
static const struct iterTestData gIterTests[] = {
{ "M 1 0", false, resultPtsSizes1, resultPts1, resultVerbs1, std::size(resultVerbs1) },
{ "z", false, resultPtsSizes1, resultPts1, resultVerbs1, std::size(resultVerbs1) },
{ "z", true, resultPtsSizes1, resultPts1, resultVerbs1, std::size(resultVerbs1) },
{ "M 1 0 L 1 0 M 0 0 z", false, resultPtsSizes2, resultPts2, resultVerbs2, std::size(resultVerbs2) },
{ "M 1 0 L 1 0 M 0 0 z", true, resultPtsSizes3, resultPts3, resultVerbs3, std::size(resultVerbs3) }
};
for (size_t i = 0; i < std::size(gIterTests); ++i) {
p.reset();
bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p);
REPORTER_ASSERT(reporter, valid);
iter.setPath(p, gIterTests[i].forceClose);
int j = 0, l = 0;
do {
REPORTER_ASSERT(reporter, iter.next(pts) == gIterTests[i].resultVerbs[j]);
for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) {
REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]);
}
} while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb);
REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs);
}
p.reset();
iter.setPath(p, false);
REPORTER_ASSERT(reporter, !iter.isClosedContour());
p.lineTo(1, 1);
p.close();
iter.setPath(p, false);
REPORTER_ASSERT(reporter, iter.isClosedContour());
p.reset();
iter.setPath(p, true);
REPORTER_ASSERT(reporter, !iter.isClosedContour());
p.lineTo(1, 1);
iter.setPath(p, true);
REPORTER_ASSERT(reporter, iter.isClosedContour());
p.moveTo(0, 0);
p.lineTo(2, 2);
iter.setPath(p, false);
REPORTER_ASSERT(reporter, !iter.isClosedContour());
// this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not
// check to see if the result is correct.
for (int setNaN = 0; setNaN < 4; ++setNaN) {
p.reset();
p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0);
p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1);
iter.setPath(p, true);
iter.next(pts);
iter.next(pts);
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts));
}
p.reset();
p.quadTo(0, 0, 0, 0);
iter.setPath(p, false);
iter.next(pts);
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts));
p.reset();
p.conicTo(0, 0, 0, 0, 0.5f);
iter.setPath(p, false);
iter.next(pts);
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts));
p.reset();
p.cubicTo(0, 0, 0, 0, 0, 0);
iter.setPath(p, false);
iter.next(pts);
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts));
p.moveTo(1, 1); // add a trailing moveto
iter.setPath(p, false);
iter.next(pts);
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts));
// The GM degeneratesegments.cpp test is more extensive
// Test out mixed degenerate and non-degenerate geometry with Conics
const SkVector radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 100, 100 } };
SkRect r = SkRect::MakeWH(100, 100);
SkRRect rr;
rr.setRectRadii(r, radii);
p.reset();
p.addRRect(rr);
iter.setPath(p, false);
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == iter.next(pts));
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts));
return;
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts));
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts));
REPORTER_ASSERT(reporter, SK_ScalarRoot2Over2 == iter.conicWeight());
}
static void test_range_iter(skiatest::Reporter* reporter) {
SkPath path;
// Test an iterator with an initial empty path
SkPathPriv::Iterate iterate(path);
REPORTER_ASSERT(reporter, iterate.begin() == iterate.end());
// Test that a move-only path returns the move.
path.moveTo(SK_Scalar1, 0);
iterate = SkPathPriv::Iterate(path);
SkPathPriv::RangeIter iter = iterate.begin();
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
}
REPORTER_ASSERT(reporter, iter == iterate.end());
// No matter how many moves we add, we should get them all back
path.moveTo(SK_Scalar1*2, SK_Scalar1);
path.moveTo(SK_Scalar1*3, SK_Scalar1*2);
iterate = SkPathPriv::Iterate(path);
iter = iterate.begin();
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
}
REPORTER_ASSERT(reporter, iter == iterate.end());
// Initial close is never ever stored
path.reset();
path.close();
iterate = SkPathPriv::Iterate(path);
REPORTER_ASSERT(reporter, iterate.begin() == iterate.end());
// Move/close sequences
path.reset();
path.close(); // Not stored, no purpose
path.moveTo(SK_Scalar1, 0);
path.close();
path.close(); // Not stored, no purpose
path.moveTo(SK_Scalar1*2, SK_Scalar1);
path.close();
path.moveTo(SK_Scalar1*3, SK_Scalar1*2);
path.moveTo(SK_Scalar1*4, SK_Scalar1*3);
path.close();
iterate = SkPathPriv::Iterate(path);
iter = iterate.begin();
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kClose);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kClose);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
}
{
auto [verb, pts, w] = *iter++;
REPORTER_ASSERT(reporter, verb == SkPathVerb::kClose);
}
REPORTER_ASSERT(reporter, iter == iterate.end());
// Generate random paths and verify
SkPoint randomPts[25];
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j);
}
}
// Max of 10 segments, max 3 points per segment
SkRandom rand(9876543);
SkPoint expectedPts[31]; // May have leading moveTo
SkPathVerb expectedVerbs[22]; // May have leading moveTo
SkPathVerb nextVerb;
for (int i = 0; i < 500; ++i) {
path.reset();
bool lastWasClose = true;
bool haveMoveTo = false;
SkPoint lastMoveToPt = { 0, 0 };
int numPoints = 0;
int numVerbs = (rand.nextU() >> 16) % 10;
int numIterVerbs = 0;
for (int j = 0; j < numVerbs; ++j) {
do {
nextVerb = static_cast<SkPathVerb>((rand.nextU() >> 16) % SkPath::kDone_Verb);
} while (lastWasClose && nextVerb == SkPathVerb::kClose);
switch (nextVerb) {
case SkPathVerb::kMove:
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
path.moveTo(expectedPts[numPoints]);
lastMoveToPt = expectedPts[numPoints];
numPoints += 1;
lastWasClose = false;
haveMoveTo = true;
break;
case SkPathVerb::kLine:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPathVerb::kMove;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
path.lineTo(expectedPts[numPoints]);
numPoints += 1;
lastWasClose = false;
break;
case SkPathVerb::kQuad:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPathVerb::kMove;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
path.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]);
numPoints += 2;
lastWasClose = false;
break;
case SkPathVerb::kConic:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPathVerb::kMove;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
path.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
rand.nextUScalar1() * 4);
numPoints += 2;
lastWasClose = false;
break;
case SkPathVerb::kCubic:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPathVerb::kMove;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25];
path.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
expectedPts[numPoints + 2]);
numPoints += 3;
lastWasClose = false;
break;
case SkPathVerb::kClose:
path.close();
haveMoveTo = false;
lastWasClose = true;
break;
default:
SkDEBUGFAIL("unexpected verb");
}
expectedVerbs[numIterVerbs++] = nextVerb;
}
numVerbs = numIterVerbs;
numIterVerbs = 0;
int numIterPts = 0;
SkPoint lastMoveTo;
SkPoint lastPt;
lastMoveTo.set(0, 0);
lastPt.set(0, 0);
for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) {
REPORTER_ASSERT(reporter, verb == expectedVerbs[numIterVerbs]);
numIterVerbs++;
switch (verb) {
case SkPathVerb::kMove:
REPORTER_ASSERT(reporter, numIterPts < numPoints);
REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]);
lastPt = lastMoveTo = pts[0];
numIterPts += 1;
break;
case SkPathVerb::kLine:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 1);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
lastPt = pts[1];
numIterPts += 1;
break;
case SkPathVerb::kQuad:
case SkPathVerb::kConic:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 2);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
lastPt = pts[2];
numIterPts += 2;
break;
case SkPathVerb::kCubic:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 3);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]);
lastPt = pts[3];
numIterPts += 3;
break;
case SkPathVerb::kClose:
lastPt = lastMoveTo;
break;
default:
SkDEBUGFAIL("unexpected verb");
}
}
REPORTER_ASSERT(reporter, numIterPts == numPoints);
REPORTER_ASSERT(reporter, numIterVerbs == numVerbs);
}
}
static void check_for_circle(skiatest::Reporter* reporter,
const SkPath& path,
bool expectedCircle,
SkPathFirstDirection expectedDir) {
SkRect rect = SkRect::MakeEmpty();
REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle);
SkPathDirection isOvalDir;
unsigned isOvalStart;
if (SkPathPriv::IsOval(path, &rect, &isOvalDir, &isOvalStart)) {
REPORTER_ASSERT(reporter, rect.height() == rect.width());
REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(isOvalDir) == expectedDir);
SkPath tmpPath;
tmpPath.addOval(rect, isOvalDir, isOvalStart);
REPORTER_ASSERT(reporter, path == tmpPath);
}
REPORTER_ASSERT(reporter, SkPathPriv::ComputeFirstDirection(path) == expectedDir);
}
static void test_circle_skew(skiatest::Reporter* reporter,
const SkPath& path,
SkPathFirstDirection dir) {
SkPath tmp;
SkMatrix m;
m.setSkew(SkIntToScalar(3), SkIntToScalar(5));
path.transform(m, &tmp);
// this matrix reverses the direction.
if (SkPathFirstDirection::kCCW == dir) {
dir = SkPathFirstDirection::kCW;
} else {
REPORTER_ASSERT(reporter, SkPathFirstDirection::kCW == dir);
dir = SkPathFirstDirection::kCCW;
}
check_for_circle(reporter, tmp, false, dir);
}
static void test_circle_translate(skiatest::Reporter* reporter,
const SkPath& path,
SkPathFirstDirection dir) {
SkPath tmp;
// translate at small offset
SkMatrix m;
m.setTranslate(SkIntToScalar(15), SkIntToScalar(15));
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
tmp.reset();
m.reset();
// translate at a relatively big offset
m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000));
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_rotate(skiatest::Reporter* reporter,
const SkPath& path,
SkPathFirstDirection dir) {
for (int angle = 0; angle < 360; ++angle) {
SkPath tmp;
SkMatrix m;
m.setRotate(SkIntToScalar(angle));
path.transform(m, &tmp);
// TODO: a rotated circle whose rotated angle is not a multiple of 90
// degrees is not an oval anymore, this can be improved. we made this
// for the simplicity of our implementation.
if (angle % 90 == 0) {
check_for_circle(reporter, tmp, true, dir);
} else {
check_for_circle(reporter, tmp, false, dir);
}
}
}
static void test_circle_mirror_x(skiatest::Reporter* reporter,
const SkPath& path,
SkPathFirstDirection dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleX(-SK_Scalar1);
path.transform(m, &tmp);
if (SkPathFirstDirection::kCW == dir) {
dir = SkPathFirstDirection::kCCW;
} else {
REPORTER_ASSERT(reporter, SkPathFirstDirection::kCCW == dir);
dir = SkPathFirstDirection::kCW;
}
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_mirror_y(skiatest::Reporter* reporter,
const SkPath& path,
SkPathFirstDirection dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleY(-SK_Scalar1);
path.transform(m, &tmp);
if (SkPathFirstDirection::kCW == dir) {
dir = SkPathFirstDirection::kCCW;
} else {
REPORTER_ASSERT(reporter, SkPathFirstDirection::kCCW == dir);
dir = SkPathFirstDirection::kCW;
}
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_mirror_xy(skiatest::Reporter* reporter,
const SkPath& path,
SkPathFirstDirection dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleX(-SK_Scalar1);
m.setScaleY(-SK_Scalar1);
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_with_direction(skiatest::Reporter* reporter,
SkPathDirection inDir) {
const SkPathFirstDirection dir = SkPathPriv::AsFirstDirection(inDir);
SkPath path;
// circle at origin
path.addCircle(0, 0, SkIntToScalar(20), inDir);
check_for_circle(reporter, path, true, dir);
test_circle_rotate(reporter, path, dir);
test_circle_translate(reporter, path, dir);
test_circle_skew(reporter, path, dir);
test_circle_mirror_x(reporter, path, dir);
test_circle_mirror_y(reporter, path, dir);
test_circle_mirror_xy(reporter, path, dir);
// circle at an offset at (10, 10)
path.reset();
path.addCircle(SkIntToScalar(10), SkIntToScalar(10),
SkIntToScalar(20), inDir);
check_for_circle(reporter, path, true, dir);
test_circle_rotate(reporter, path, dir);
test_circle_translate(reporter, path, dir);
test_circle_skew(reporter, path, dir);
test_circle_mirror_x(reporter, path, dir);
test_circle_mirror_y(reporter, path, dir);
test_circle_mirror_xy(reporter, path, dir);
// Try different starting points for the contour.
for (unsigned start = 0; start < 4; ++start) {
path.reset();
path.addOval(SkRect::MakeXYWH(20, 10, 5, 5), inDir, start);
test_circle_rotate(reporter, path, dir);
test_circle_translate(reporter, path, dir);
test_circle_skew(reporter, path, dir);
test_circle_mirror_x(reporter, path, dir);
test_circle_mirror_y(reporter, path, dir);
test_circle_mirror_xy(reporter, path, dir);
}
}
static void test_circle_with_add_paths(skiatest::Reporter* reporter) {
SkPath path;
SkPath circle;
SkPath rect;
SkPath empty;
const SkPathDirection kCircleDir = SkPathDirection::kCW;
const SkPathDirection kCircleDirOpposite = SkPathDirection::kCCW;
circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir);
rect.addRect(SkIntToScalar(5), SkIntToScalar(5),
SkIntToScalar(20), SkIntToScalar(20), SkPathDirection::kCW);
SkMatrix translate;
translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12));
// Although all the path concatenation related operations leave
// the path a circle, most mark it as a non-circle for simplicity
// empty + circle (translate)
path = empty;
path.addPath(circle, translate);
check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDir));
// circle + empty (translate)
path = circle;
path.addPath(empty, translate);
check_for_circle(reporter, path, true, SkPathPriv::AsFirstDirection(kCircleDir));
// test reverseAddPath
path = circle;
path.reverseAddPath(rect);
check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDirOpposite));
}
static void test_circle(skiatest::Reporter* reporter) {
test_circle_with_direction(reporter, SkPathDirection::kCW);
test_circle_with_direction(reporter, SkPathDirection::kCCW);
// multiple addCircle()
SkPath path;
path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW);
path.addCircle(0, 0, SkIntToScalar(20), SkPathDirection::kCW);
check_for_circle(reporter, path, false, SkPathFirstDirection::kCW);
// some extra lineTo() would make isOval() fail
path.reset();
path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW);
path.lineTo(0, 0);
check_for_circle(reporter, path, false, SkPathFirstDirection::kCW);
// not back to the original point
path.reset();
path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW);
path.setLastPt(SkIntToScalar(5), SkIntToScalar(5));
check_for_circle(reporter, path, false, SkPathFirstDirection::kCW);
test_circle_with_add_paths(reporter);
// test negative radius
path.reset();
path.addCircle(0, 0, -1, SkPathDirection::kCW);
REPORTER_ASSERT(reporter, path.isEmpty());
}
static void test_oval(skiatest::Reporter* reporter) {
SkRect rect;
SkMatrix m;
SkPath path;
unsigned start = 0;
SkPathDirection dir = SkPathDirection::kCCW;
rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50));
path.addOval(rect);
// Defaults to dir = CW and start = 1
REPORTER_ASSERT(reporter, path.isOval(nullptr));
m.setRotate(SkIntToScalar(90));
SkPath tmp;
path.transform(m, &tmp);
// an oval rotated 90 degrees is still an oval. The start index changes from 1 to 2. Direction
// is unchanged.
REPORTER_ASSERT(reporter, SkPathPriv::IsOval(tmp, nullptr, &dir, &start));
REPORTER_ASSERT(reporter, 2 == start);
REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir);
m.reset();
m.setRotate(SkIntToScalar(30));
tmp.reset();
path.transform(m, &tmp);
// an oval rotated 30 degrees is not an oval anymore.
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
// since empty path being transformed.
path.reset();
tmp.reset();
m.reset();
path.transform(m, &tmp);
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
// empty path is not an oval
tmp.reset();
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
// only has moveTo()s
tmp.reset();
tmp.moveTo(0, 0);
tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10));
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
// mimic WebKit's calling convention,
// call moveTo() first and then call addOval()
path.reset();
path.moveTo(0, 0);
path.addOval(rect);
REPORTER_ASSERT(reporter, path.isOval(nullptr));
// copy path
path.reset();
tmp.reset();
tmp.addOval(rect);
path = tmp;
REPORTER_ASSERT(reporter, SkPathPriv::IsOval(path, nullptr, &dir, &start));
REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir);
REPORTER_ASSERT(reporter, 1 == start);
}
static void test_empty(skiatest::Reporter* reporter, const SkPath& p) {
SkPath empty;
REPORTER_ASSERT(reporter, p.isEmpty());
REPORTER_ASSERT(reporter, 0 == p.countPoints());
REPORTER_ASSERT(reporter, 0 == p.countVerbs());
REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, p.getFillType() == SkPathFillType::kWinding);
REPORTER_ASSERT(reporter, !p.isInverseFillType());
REPORTER_ASSERT(reporter, p == empty);
REPORTER_ASSERT(reporter, !(p != empty));
}
static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path,
SkPathDirection dir) {
REPORTER_ASSERT(reporter, path->isConvex());
REPORTER_ASSERT(reporter,
SkPathPriv::ComputeFirstDirection(*path) == SkPathPriv::AsFirstDirection(dir));
SkPathPriv::ForceComputeConvexity(*path);
REPORTER_ASSERT(reporter, path->isConvex());
path->reset();
}
static void test_rrect_convexity_is_unknown(skiatest::Reporter* reporter, SkPath* path,
SkPathDirection dir) {
REPORTER_ASSERT(reporter, path->isConvex());
REPORTER_ASSERT(reporter,
SkPathPriv::ComputeFirstDirection(*path) == SkPathPriv::AsFirstDirection(dir));
SkPathPriv::ForceComputeConvexity(*path);
REPORTER_ASSERT(reporter, !path->isConvex());
path->reset();
}
static void test_rrect(skiatest::Reporter* reporter) {
SkPath p;
SkRRect rr;
SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
SkRect r = {10, 20, 30, 40};
rr.setRectRadii(r, radii);
p.addRRect(rr);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
p.addRRect(rr, SkPathDirection::kCCW);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW);
p.addRoundRect(r, &radii[0].fX);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
p.addRoundRect(r, &radii[0].fX, SkPathDirection::kCCW);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW);
p.addRoundRect(r, radii[1].fX, radii[1].fY);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPathDirection::kCCW);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW);
for (size_t i = 0; i < std::size(radii); ++i) {
SkVector save = radii[i];
radii[i].set(0, 0);
rr.setRectRadii(r, radii);
p.addRRect(rr);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
radii[i] = save;
}
p.addRoundRect(r, 0, 0);
SkRect returnedRect;
REPORTER_ASSERT(reporter, p.isRect(&returnedRect));
REPORTER_ASSERT(reporter, returnedRect == r);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
rr.setRectRadii(r, zeroRadii);
p.addRRect(rr);
bool closed;
SkPathDirection dir;
REPORTER_ASSERT(reporter, p.isRect(nullptr, &closed, &dir));
REPORTER_ASSERT(reporter, closed);
REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir);
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
p.addRRect(rr, SkPathDirection::kCW);
p.addRRect(rr, SkPathDirection::kCW);
REPORTER_ASSERT(reporter, !p.isConvex());
p.reset();
p.addRRect(rr, SkPathDirection::kCCW);
p.addRRect(rr, SkPathDirection::kCCW);
REPORTER_ASSERT(reporter, !p.isConvex());
p.reset();
SkRect emptyR = {10, 20, 10, 30};
rr.setRectRadii(emptyR, radii);
p.addRRect(rr);
// The round rect is "empty" in that it has no fill area. However,
// the path isn't "empty" in that it should have verbs and points.
REPORTER_ASSERT(reporter, !p.isEmpty());
p.reset();
SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax};
rr.setRectRadii(largeR, radii);
p.addRRect(rr);
test_rrect_convexity_is_unknown(reporter, &p, SkPathDirection::kCW);
// we check for non-finites
SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity};
rr.setRectRadii(infR, radii);
REPORTER_ASSERT(reporter, rr.isEmpty());
}
static void test_arc(skiatest::Reporter* reporter) {
SkPath p;
SkRect emptyOval = {10, 20, 30, 20};
REPORTER_ASSERT(reporter, emptyOval.isEmpty());
p.addArc(emptyOval, 1, 2);
REPORTER_ASSERT(reporter, p.isEmpty());
p.reset();
SkRect oval = {10, 20, 30, 40};
p.addArc(oval, 1, 0);
REPORTER_ASSERT(reporter, p.isEmpty());
p.reset();
SkPath cwOval;
cwOval.addOval(oval);
p.addArc(oval, 0, 360);
REPORTER_ASSERT(reporter, p == cwOval);
p.reset();
SkPath ccwOval;
ccwOval.addOval(oval, SkPathDirection::kCCW);
p.addArc(oval, 0, -360);
REPORTER_ASSERT(reporter, p == ccwOval);
p.reset();
p.addArc(oval, 1, 180);
// diagonal colinear points make arc convex
// TODO: one way to keep it concave would be to introduce interpolated on curve points
// between control points and computing the on curve point at scan conversion time
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, SkPathPriv::ComputeFirstDirection(p) == SkPathFirstDirection::kCW);
SkPathPriv::ForceComputeConvexity(p);
REPORTER_ASSERT(reporter, p.isConvex());
}
static inline SkScalar oval_start_index_to_angle(unsigned start) {
switch (start) {
case 0:
return 270.f;
case 1:
return 0.f;
case 2:
return 90.f;
case 3:
return 180.f;
default:
return -1.f;
}
}
static inline SkScalar canonical_start_angle(float angle) {
while (angle < 0.f) {
angle += 360.f;
}
while (angle >= 360.f) {
angle -= 360.f;
}
return angle;
}
static void check_oval_arc(skiatest::Reporter* reporter, SkScalar start, SkScalar sweep,
const SkPath& path) {
SkRect r = SkRect::MakeEmpty();
SkPathDirection d = SkPathDirection::kCCW;
unsigned s = ~0U;
bool isOval = SkPathPriv::IsOval(path, &r, &d, &s);
REPORTER_ASSERT(reporter, isOval);
SkPath recreatedPath;
recreatedPath.addOval(r, d, s);
REPORTER_ASSERT(reporter, path == recreatedPath);
REPORTER_ASSERT(reporter, oval_start_index_to_angle(s) == canonical_start_angle(start));
REPORTER_ASSERT(reporter, (SkPathDirection::kCW == d) == (sweep > 0.f));
}
static void test_arc_ovals(skiatest::Reporter* reporter) {
SkRect oval = SkRect::MakeWH(10, 20);
for (SkScalar sweep : {-720.f, -540.f, -360.f, 360.f, 432.f, 720.f}) {
for (SkScalar start = -360.f; start <= 360.f; start += 1.f) {
SkPath path;
path.addArc(oval, start, sweep);
// SkPath's interfaces for inserting and extracting ovals only allow contours
// to start at multiples of 90 degrees.
if (std::fmod(start, 90.f) == 0) {
check_oval_arc(reporter, start, sweep, path);
} else {
REPORTER_ASSERT(reporter, !path.isOval(nullptr));
}
}
// Test start angles that are nearly at valid oval start angles.
for (float start : {-180.f, -90.f, 90.f, 180.f}) {
for (float delta : {-SK_ScalarNearlyZero, SK_ScalarNearlyZero}) {
SkPath path;
path.addArc(oval, start + delta, sweep);
check_oval_arc(reporter, start, sweep, path);
}
}
}
}
static void check_move(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter,
SkScalar x0, SkScalar y0) {
auto [v, pts, w] = *(*iter)++;
REPORTER_ASSERT(reporter, v == SkPathVerb::kMove);
REPORTER_ASSERT(reporter, pts[0].fX == x0);
REPORTER_ASSERT(reporter, pts[0].fY == y0);
}
static void check_line(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter,
SkScalar x1, SkScalar y1) {
auto [v, pts, w] = *(*iter)++;
REPORTER_ASSERT(reporter, v == SkPathVerb::kLine);
REPORTER_ASSERT(reporter, pts[1].fX == x1);
REPORTER_ASSERT(reporter, pts[1].fY == y1);
}
static void check_quad(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter,
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
auto [v, pts, w] = *(*iter)++;
REPORTER_ASSERT(reporter, v == SkPathVerb::kQuad);
REPORTER_ASSERT(reporter, pts[1].fX == x1);
REPORTER_ASSERT(reporter, pts[1].fY == y1);
REPORTER_ASSERT(reporter, pts[2].fX == x2);
REPORTER_ASSERT(reporter, pts[2].fY == y2);
}
static void check_close(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter) {
auto [v, pts, w] = *(*iter)++;
REPORTER_ASSERT(reporter, v == SkPathVerb::kClose);
}
static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPathPriv::RangeIter* iter) {
REPORTER_ASSERT(reporter, *iter == SkPathPriv::Iterate(*p).end());
}
static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkPathPriv::RangeIter* iter) {
check_done(reporter, p, iter);
p->reset();
}
static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x0, SkScalar y0) {
SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin();
check_move(reporter, &iter, x0, y0);
check_done_and_reset(reporter, p, &iter);
}
static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1) {
SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin();
check_move(reporter, &iter, 0, 0);
check_line(reporter, &iter, x1, y1);
check_done_and_reset(reporter, p, &iter);
}
static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1) {
SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin();
check_move(reporter, &iter, 0, 0);
check_line(reporter, &iter, x1, y1);
check_done(reporter, p, &iter);
}
static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin();
check_move(reporter, &iter, 0, 0);
check_line(reporter, &iter, x1, y1);
check_line(reporter, &iter, x2, y2);
check_done_and_reset(reporter, p, &iter);
}
static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin();
check_move(reporter, &iter, 0, 0);
check_quad(reporter, &iter, x1, y1, x2, y2);
check_done_and_reset(reporter, p, &iter);
}
static bool nearly_equal(const SkRect& a, const SkRect& b) {
return SkScalarNearlyEqual(a.fLeft, b.fLeft) &&
SkScalarNearlyEqual(a.fTop, b.fTop) &&
SkScalarNearlyEqual(a.fRight, b.fRight) &&
SkScalarNearlyEqual(a.fBottom, b.fBottom);
}
static void test_rMoveTo(skiatest::Reporter* reporter) {
SkPath p;
p.moveTo(10, 11);
p.lineTo(20, 21);
p.close();
p.rMoveTo(30, 31);
SkPathPriv::RangeIter iter = SkPathPriv::Iterate(p).begin();
check_move(reporter, &iter, 10, 11);
check_line(reporter, &iter, 20, 21);
check_close(reporter, &iter);
check_move(reporter, &iter, 10 + 30, 11 + 31);
check_done_and_reset(reporter, &p, &iter);
p.moveTo(10, 11);
p.lineTo(20, 21);
p.rMoveTo(30, 31);
iter = SkPathPriv::Iterate(p).begin();
check_move(reporter, &iter, 10, 11);
check_line(reporter, &iter, 20, 21);
check_move(reporter, &iter, 20 + 30, 21 + 31);
check_done_and_reset(reporter, &p, &iter);
p.rMoveTo(30, 31);
iter = SkPathPriv::Iterate(p).begin();
check_move(reporter, &iter, 30, 31);
check_done_and_reset(reporter, &p, &iter);
}
static void test_arcTo(skiatest::Reporter* reporter) {
SkPath p;
p.arcTo(0, 0, 1, 2, 1);
check_path_is_line_and_reset(reporter, &p, 0, 0);
p.arcTo(1, 2, 1, 2, 1);
check_path_is_line_and_reset(reporter, &p, 1, 2);
p.arcTo(1, 2, 3, 4, 0);
check_path_is_line_and_reset(reporter, &p, 1, 2);
p.arcTo(1, 2, 0, 0, 1);
check_path_is_line_and_reset(reporter, &p, 1, 2);
p.arcTo(1, 0, 1, 1, 1);
SkPoint pt;
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1);
p.reset();
p.arcTo(1, 0, 1, -1, 1);
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1);
p.reset();
SkRect oval = {1, 2, 3, 4};
p.arcTo(oval, 0, 0, true);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 0, 0, false);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 360, 0, true);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 360, 0, false);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) {
p.arcTo(oval, 0, sweep, false);
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
sweep += delta;
delta /= 2;
}
for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) {
p.arcTo(oval, 0, sweep, false);
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
sweep -= delta;
delta /= 2;
}
SkRect noOvalWidth = {1, 2, 0, 3};
p.reset();
p.arcTo(noOvalWidth, 0, 360, false);
REPORTER_ASSERT(reporter, p.isEmpty());
SkRect noOvalHeight = {1, 2, 3, 1};
p.reset();
p.arcTo(noOvalHeight, 0, 360, false);
REPORTER_ASSERT(reporter, p.isEmpty());
#ifndef SK_LEGACY_PATH_ARCTO_ENDPOINT
// Inspired by http://code.google.com/p/chromium/issues/detail?id=1001768
{
p.reset();
p.moveTo(216, 216);
p.arcTo(216, 108, 0, SkPath::ArcSize::kLarge_ArcSize, SkPathDirection::kCW, 216, 0);
p.arcTo(270, 135, 0, SkPath::ArcSize::kLarge_ArcSize, SkPathDirection::kCCW, 216, 216);
// The 'arcTo' call should end up exactly at the starting location.
int n = p.countPoints();
REPORTER_ASSERT(reporter, p.getPoint(0) == p.getPoint(n - 1));
}
#endif
// This test, if improperly handled, can create an infinite loop in angles_to_unit_vectors
p.reset();
p.arcTo(SkRect::MakeXYWH(0, 0, 10, 10), -2.61488527e+33f, 359.992157f, false);
}
static void test_addPath(skiatest::Reporter* reporter) {
SkPath p, q;
p.lineTo(1, 2);
q.moveTo(4, 4);
q.lineTo(7, 8);
q.conicTo(8, 7, 6, 5, 0.5f);
q.quadTo(6, 7, 8, 6);
q.cubicTo(5, 6, 7, 8, 7, 5);
q.close();
p.addPath(q, -4, -4);
SkRect expected = {0, 0, 4, 4};
REPORTER_ASSERT(reporter, p.getBounds() == expected);
p.reset();
p.reverseAddPath(q);
SkRect reverseExpected = {4, 4, 8, 8};
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
}
static void test_addPathMode(skiatest::Reporter* reporter, bool explicitMoveTo, bool extend) {
SkPath p, q;
if (explicitMoveTo) {
p.moveTo(1, 1);
}
p.lineTo(1, 2);
if (explicitMoveTo) {
q.moveTo(2, 1);
}
q.lineTo(2, 2);
p.addPath(q, extend ? SkPath::kExtend_AddPathMode : SkPath::kAppend_AddPathMode);
uint8_t verbs[4];
int verbcount = p.getVerbs(verbs, 4);
REPORTER_ASSERT(reporter, verbcount == 4);
REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb);
REPORTER_ASSERT(reporter, verbs[2] == (extend ? SkPath::kLine_Verb : SkPath::kMove_Verb));
REPORTER_ASSERT(reporter, verbs[3] == SkPath::kLine_Verb);
}
static void test_extendClosedPath(skiatest::Reporter* reporter) {
SkPath p, q;
p.moveTo(1, 1);
p.lineTo(1, 2);
p.lineTo(2, 2);
p.close();
q.moveTo(2, 1);
q.lineTo(2, 3);
p.addPath(q, SkPath::kExtend_AddPathMode);
uint8_t verbs[7];
int verbcount = p.getVerbs(verbs, 7);
REPORTER_ASSERT(reporter, verbcount == 7);
REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb);
REPORTER_ASSERT(reporter, verbs[2] == SkPath::kLine_Verb);
REPORTER_ASSERT(reporter, verbs[3] == SkPath::kClose_Verb);
REPORTER_ASSERT(reporter, verbs[4] == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, verbs[5] == SkPath::kLine_Verb);
REPORTER_ASSERT(reporter, verbs[6] == SkPath::kLine_Verb);
SkPoint pt;
REPORTER_ASSERT(reporter, p.getLastPt(&pt));
REPORTER_ASSERT(reporter, pt == SkPoint::Make(2, 3));
REPORTER_ASSERT(reporter, p.getPoint(3) == SkPoint::Make(1, 1));
}
static void test_addEmptyPath(skiatest::Reporter* reporter, SkPath::AddPathMode mode) {
SkPath p, q, r;
// case 1: dst is empty
p.moveTo(2, 1);
p.lineTo(2, 3);
q.addPath(p, mode);
REPORTER_ASSERT(reporter, q == p);
// case 2: src is empty
p.addPath(r, mode);
REPORTER_ASSERT(reporter, q == p);
// case 3: src and dst are empty
q.reset();
q.addPath(r, mode);
REPORTER_ASSERT(reporter, q.isEmpty());
}
static void test_conicTo_special_case(skiatest::Reporter* reporter) {
SkPath p;
p.conicTo(1, 2, 3, 4, -1);
check_path_is_line_and_reset(reporter, &p, 3, 4);
p.conicTo(1, 2, 3, 4, SK_ScalarInfinity);
check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4);
p.conicTo(1, 2, 3, 4, 1);
check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4);
}
static void test_get_point(skiatest::Reporter* reporter) {
SkPath p;
SkPoint pt = p.getPoint(0);
REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0));
REPORTER_ASSERT(reporter, !p.getLastPt(nullptr));
REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0));
p.setLastPt(10, 10);
pt = p.getPoint(0);
REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10));
REPORTER_ASSERT(reporter, p.getLastPt(nullptr));
p.rMoveTo(10, 10);
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20));
}
static void test_contains(skiatest::Reporter* reporter) {
SkPath p;
p.moveTo(SkBits2Float(0xe085e7b1), SkBits2Float(0x5f512c00)); // -7.7191e+19f, 1.50724e+19f
p.conicTo(SkBits2Float(0xdfdaa221), SkBits2Float(0x5eaac338), SkBits2Float(0x60342f13), SkBits2Float(0xdf0cbb58), SkBits2Float(0x3f3504f3)); // -3.15084e+19f, 6.15237e+18f, 5.19345e+19f, -1.01408e+19f, 0.707107f
p.conicTo(SkBits2Float(0x60ead799), SkBits2Float(0xdfb76c24), SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8), SkBits2Float(0x3f3504f4)); // 1.35377e+20f, -2.6434e+19f, 8.96947e+19f, -1.75139e+19f, 0.707107f
p.lineTo(SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8)); // 8.96947e+19f, -1.75139e+19f
p.conicTo(SkBits2Float(0x6018b296), SkBits2Float(0xdeee870d), SkBits2Float(0xe008cd8e), SkBits2Float(0x5ed5b2db), SkBits2Float(0x3f3504f3)); // 4.40121e+19f, -8.59386e+18f, -3.94308e+19f, 7.69931e+18f, 0.707107f
p.conicTo(SkBits2Float(0xe0d526d9), SkBits2Float(0x5fa67b31), SkBits2Float(0xe085e7b2), SkBits2Float(0x5f512c01), SkBits2Float(0x3f3504f3)); // -1.22874e+20f, 2.39925e+19f, -7.7191e+19f, 1.50724e+19f, 0.707107f
// this may return true or false, depending on the platform's numerics, but it should not crash
(void) p.contains(-77.2027664f, 15.3066053f);
p.reset();
p.setFillType(SkPathFillType::kInverseWinding);
REPORTER_ASSERT(reporter, p.contains(0, 0));
p.setFillType(SkPathFillType::kWinding);
REPORTER_ASSERT(reporter, !p.contains(0, 0));
p.moveTo(4, 4);
p.lineTo(6, 8);
p.lineTo(8, 4);
// test on edge
REPORTER_ASSERT(reporter, p.contains(6, 4));
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, p.contains(7, 6));
// test quick reject
REPORTER_ASSERT(reporter, !p.contains(4, 0));
REPORTER_ASSERT(reporter, !p.contains(0, 4));
REPORTER_ASSERT(reporter, !p.contains(4, 10));
REPORTER_ASSERT(reporter, !p.contains(10, 4));
// test various crossings in x
REPORTER_ASSERT(reporter, !p.contains(5, 7));
REPORTER_ASSERT(reporter, p.contains(6, 7));
REPORTER_ASSERT(reporter, !p.contains(7, 7));
p.reset();
p.moveTo(4, 4);
p.lineTo(8, 6);
p.lineTo(4, 8);
// test on edge
REPORTER_ASSERT(reporter, p.contains(4, 6));
REPORTER_ASSERT(reporter, p.contains(6, 5));
REPORTER_ASSERT(reporter, p.contains(6, 7));
// test various crossings in y
REPORTER_ASSERT(reporter, !p.contains(7, 5));
REPORTER_ASSERT(reporter, p.contains(7, 6));
REPORTER_ASSERT(reporter, !p.contains(7, 7));
p.reset();
p.moveTo(4, 4);
p.lineTo(8, 4);
p.lineTo(8, 8);
p.lineTo(4, 8);
// test on vertices
REPORTER_ASSERT(reporter, p.contains(4, 4));
REPORTER_ASSERT(reporter, p.contains(8, 4));
REPORTER_ASSERT(reporter, p.contains(8, 8));
REPORTER_ASSERT(reporter, p.contains(4, 8));
p.reset();
p.moveTo(4, 4);
p.lineTo(6, 8);
p.lineTo(2, 8);
// test on edge
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, p.contains(4, 8));
REPORTER_ASSERT(reporter, p.contains(3, 6));
p.reset();
p.moveTo(4, 4);
p.lineTo(0, 6);
p.lineTo(4, 8);
// test on edge
REPORTER_ASSERT(reporter, p.contains(2, 5));
REPORTER_ASSERT(reporter, p.contains(2, 7));
REPORTER_ASSERT(reporter, p.contains(4, 6));
// test canceling coincident edge (a smaller triangle is coincident with a larger one)
p.reset();
p.moveTo(4, 0);
p.lineTo(6, 4);
p.lineTo(2, 4);
p.moveTo(4, 0);
p.lineTo(0, 8);
p.lineTo(8, 8);
REPORTER_ASSERT(reporter, !p.contains(1, 2));
REPORTER_ASSERT(reporter, !p.contains(3, 2));
REPORTER_ASSERT(reporter, !p.contains(4, 0));
REPORTER_ASSERT(reporter, p.contains(4, 4));
// test quads
p.reset();
p.moveTo(4, 4);
p.quadTo(6, 6, 8, 8);
p.quadTo(6, 8, 4, 8);
p.quadTo(4, 6, 4, 4);
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, !p.contains(6, 5));
// test quad edge
REPORTER_ASSERT(reporter, p.contains(5, 5));
REPORTER_ASSERT(reporter, p.contains(5, 8));
REPORTER_ASSERT(reporter, p.contains(4, 5));
// test quad endpoints
REPORTER_ASSERT(reporter, p.contains(4, 4));
REPORTER_ASSERT(reporter, p.contains(8, 8));
REPORTER_ASSERT(reporter, p.contains(4, 8));
p.reset();
const SkPoint qPts[] = {{6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}, {6, 6}};
p.moveTo(qPts[0]);
for (int index = 1; index < (int) std::size(qPts); index += 2) {
p.quadTo(qPts[index], qPts[index + 1]);
}
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, !p.contains(6, 5));
// test quad edge
SkPoint halfway;
for (int index = 0; index < (int) std::size(qPts) - 2; index += 2) {
SkEvalQuadAt(&qPts[index], 0.5f, &halfway, nullptr);
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
}
// test conics
p.reset();
const SkPoint kPts[] = {{4, 4}, {6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}};
p.moveTo(kPts[0]);
for (int index = 1; index < (int) std::size(kPts); index += 2) {
p.conicTo(kPts[index], kPts[index + 1], 0.5f);
}
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, !p.contains(6, 5));
// test conic edge
for (int index = 0; index < (int) std::size(kPts) - 2; index += 2) {
SkConic conic(&kPts[index], 0.5f);
halfway = conic.evalAt(0.5f);
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
}
// test conic end points
REPORTER_ASSERT(reporter, p.contains(4, 4));
REPORTER_ASSERT(reporter, p.contains(8, 8));
REPORTER_ASSERT(reporter, p.contains(4, 8));
// test cubics
SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}};
for (int i = 0; i < 3; ++i) {
p.reset();
p.setFillType(SkPathFillType::kEvenOdd);
p.moveTo(pts[i].fX, pts[i].fY);
p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY);
p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY);
p.close();
REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f));
REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f));
// test cubic edge
SkEvalCubicAt(&pts[i], 0.5f, &halfway, nullptr, nullptr);
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
SkEvalCubicAt(&pts[i + 3], 0.5f, &halfway, nullptr, nullptr);
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
// test cubic end points
REPORTER_ASSERT(reporter, p.contains(pts[i].fX, pts[i].fY));
REPORTER_ASSERT(reporter, p.contains(pts[i + 3].fX, pts[i + 3].fY));
REPORTER_ASSERT(reporter, p.contains(pts[i + 6].fX, pts[i + 6].fY));
}
}
class PathRefTest_Private {
public:
static size_t GetFreeSpace(const SkPathRef& ref) {
return (ref.fPoints.reserved() - ref.fPoints.count()) * sizeof(SkPoint)
+ (ref.fVerbs.reserved() - ref.fVerbs.count()) * sizeof(uint8_t);
}
static void TestPathRef(skiatest::Reporter* reporter) {
static const int kRepeatCnt = 10;
sk_sp<SkPathRef> pathRef(new SkPathRef);
SkPathRef::Editor ed(&pathRef);
{
ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints());
REPORTER_ASSERT(reporter, 0 == pathRef->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints());
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints());
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
SkScalar* weights = nullptr;
ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints());
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countWeights());
REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef->getSegmentMasks());
REPORTER_ASSERT(reporter, weights);
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef->countPoints());
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
}
};
static void test_operatorEqual(skiatest::Reporter* reporter) {
SkPath a;
SkPath b;
REPORTER_ASSERT(reporter, a == a);
REPORTER_ASSERT(reporter, a == b);
a.setFillType(SkPathFillType::kInverseWinding);
REPORTER_ASSERT(reporter, a != b);
a.reset();
REPORTER_ASSERT(reporter, a == b);
a.lineTo(1, 1);
REPORTER_ASSERT(reporter, a != b);
a.reset();
REPORTER_ASSERT(reporter, a == b);
a.lineTo(1, 1);
b.lineTo(1, 2);
REPORTER_ASSERT(reporter, a != b);
a.reset();
a.lineTo(1, 2);
REPORTER_ASSERT(reporter, a == b);
}
static void compare_dump(skiatest::Reporter* reporter, const SkPath& path, bool dumpAsHex,
const char* str) {
SkDynamicMemoryWStream wStream;
path.dump(&wStream, dumpAsHex);
sk_sp<SkData> data = wStream.detachAsData();
REPORTER_ASSERT(reporter, data->size() == strlen(str));
if (strlen(str) > 0) {
REPORTER_ASSERT(reporter, !memcmp(data->data(), str, strlen(str)));
} else {
REPORTER_ASSERT(reporter, data->data() == nullptr || !memcmp(data->data(), str, strlen(str)));
}
}
static void test_dump(skiatest::Reporter* reporter) {
SkPath p;
compare_dump(reporter, p, false, "path.setFillType(SkPathFillType::kWinding);\n");
p.moveTo(1, 2);
p.lineTo(3, 4);
compare_dump(reporter, p, false, "path.setFillType(SkPathFillType::kWinding);\n"
"path.moveTo(1, 2);\n"
"path.lineTo(3, 4);\n");
p.reset();
p.setFillType(SkPathFillType::kEvenOdd);
p.moveTo(1, 2);
p.quadTo(3, 4, 5, 6);
compare_dump(reporter, p, false, "path.setFillType(SkPathFillType::kEvenOdd);\n"
"path.moveTo(1, 2);\n"
"path.quadTo(3, 4, 5, 6);\n");
p.reset();
p.setFillType(SkPathFillType::kInverseWinding);
p.moveTo(1, 2);
p.conicTo(3, 4, 5, 6, 0.5f);
compare_dump(reporter, p, false, "path.setFillType(SkPathFillType::kInverseWinding);\n"
"path.moveTo(1, 2);\n"
"path.conicTo(3, 4, 5, 6, 0.5f);\n");
p.reset();
p.setFillType(SkPathFillType::kInverseEvenOdd);
p.moveTo(1, 2);
p.cubicTo(3, 4, 5, 6, 7, 8);
compare_dump(reporter, p, false, "path.setFillType(SkPathFillType::kInverseEvenOdd);\n"
"path.moveTo(1, 2);\n"
"path.cubicTo(3, 4, 5, 6, 7, 8);\n");
p.reset();
p.setFillType(SkPathFillType::kWinding);
p.moveTo(1, 2);
p.lineTo(3, 4);
compare_dump(reporter, p, true,
"path.setFillType(SkPathFillType::kWinding);\n"
"path.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); // 1, 2\n"
"path.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); // 3, 4\n");
p.reset();
p.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000));
p.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000));
compare_dump(reporter, p, false, "path.setFillType(SkPathFillType::kWinding);\n"
"path.moveTo(1, 2);\n"
"path.lineTo(3, 4);\n");
}
namespace {
class ChangeListener : public SkIDChangeListener {
public:
ChangeListener(bool *changed) : fChanged(changed) { *fChanged = false; }
~ChangeListener() override {}
void changed() override { *fChanged = true; }
private:
bool* fChanged;
};
} // namespace
class PathTest_Private {
public:
static size_t GetFreeSpace(const SkPath& path) {
return PathRefTest_Private::GetFreeSpace(*path.fPathRef);
}
static void TestPathTo(skiatest::Reporter* reporter) {
SkPath p, q;
p.lineTo(4, 4);
p.reversePathTo(q);
check_path_is_line(reporter, &p, 4, 4);
q.moveTo(-4, -4);
p.reversePathTo(q);
check_path_is_line(reporter, &p, 4, 4);
q.lineTo(7, 8);
q.conicTo(8, 7, 6, 5, 0.5f);
q.quadTo(6, 7, 8, 6);
q.cubicTo(5, 6, 7, 8, 7, 5);
q.close();
p.reversePathTo(q);
SkRect reverseExpected = {-4, -4, 8, 8};
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
}
static void TestPathrefListeners(skiatest::Reporter* reporter) {
SkPath p;
bool changed = false;
p.moveTo(0, 0);
// Check that listener is notified on moveTo().
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
REPORTER_ASSERT(reporter, !changed);
p.moveTo(10, 0);
REPORTER_ASSERT(reporter, changed);
// Check that listener is notified on lineTo().
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
REPORTER_ASSERT(reporter, !changed);
p.lineTo(20, 0);
REPORTER_ASSERT(reporter, changed);
// Check that listener is notified on reset().
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
REPORTER_ASSERT(reporter, !changed);
p.reset();
REPORTER_ASSERT(reporter, changed);
p.moveTo(0, 0);
// Check that listener is notified on rewind().
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
REPORTER_ASSERT(reporter, !changed);
p.rewind();
REPORTER_ASSERT(reporter, changed);
// Check that listener is notified on transform().
{
SkPath q;
q.moveTo(10, 10);
SkPathPriv::AddGenIDChangeListener(q, sk_make_sp<ChangeListener>(&changed));
REPORTER_ASSERT(reporter, !changed);
SkMatrix matrix;
matrix.setScale(2, 2);
p.transform(matrix, &q);
REPORTER_ASSERT(reporter, changed);
}
// Check that listener is notified when pathref is deleted.
{
SkPath q;
q.moveTo(10, 10);
SkPathPriv::AddGenIDChangeListener(q, sk_make_sp<ChangeListener>(&changed));
REPORTER_ASSERT(reporter, !changed);
}
// q went out of scope.
REPORTER_ASSERT(reporter, changed);
}
};
static void test_crbug_629455(skiatest::Reporter* reporter) {
SkPath path;
path.moveTo(0, 0);
path.cubicTo(SkBits2Float(0xcdcdcd00), SkBits2Float(0xcdcdcdcd),
SkBits2Float(0xcdcdcdcd), SkBits2Float(0xcdcdcdcd),
SkBits2Float(0x423fcdcd), SkBits2Float(0x40ed9341));
// AKA: cubicTo(-4.31596e+08f, -4.31602e+08f, -4.31602e+08f, -4.31602e+08f, 47.951f, 7.42423f);
path.lineTo(0, 0);
test_draw_AA_path(100, 100, path);
}
static void test_fuzz_crbug_662952(skiatest::Reporter* reporter) {
SkPath path;
path.moveTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f
path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411c0000)); // 8.65f, 9.75f
path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411e6666)); // 8.65f, 9.9f
path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411e6666)); // 8.6f, 9.9f
path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f
path.close();
auto surface = SkSurface::MakeRasterN32Premul(100, 100);
SkPaint paint;
paint.setAntiAlias(true);
surface->getCanvas()->clipPath(path, true);
surface->getCanvas()->drawRect(SkRect::MakeWH(100, 100), paint);
}
static void test_path_crbugskia6003() {
auto surface(SkSurface::MakeRasterN32Premul(500, 500));
SkCanvas* canvas = surface->getCanvas();
SkPaint paint;
paint.setAntiAlias(true);
SkPath path;
path.moveTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f
path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a2999a)); // 165.9f, 81.3f
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a2999a)); // 165.7f, 81.3f
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a16666)); // 165.7f, 80.7f
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666)); // 165.7f, 79.7f
// 165.7f, 79.7f, 165.8f, 79.7f, 165.8f, 79.7f
path.cubicTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc),
SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666));
// 165.8f, 79.7f, 165.8f, 79.7f, 165.9f, 79.7f
path.cubicTo(SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc),
SkBits2Float(0x429f6666), SkBits2Float(0x4325e666), SkBits2Float(0x429f6666));
path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f
path.close();
canvas->clipPath(path, true);
canvas->drawRect(SkRect::MakeWH(500, 500), paint);
}
static void test_fuzz_crbug_662730(skiatest::Reporter* reporter) {
SkPath path;
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
path.lineTo(SkBits2Float(0xd5394437), SkBits2Float(0x37373737)); // -1.2731e+13f, 1.09205e-05f
path.lineTo(SkBits2Float(0x37373737), SkBits2Float(0x37373737)); // 1.09205e-05f, 1.09205e-05f
path.lineTo(SkBits2Float(0x37373745), SkBits2Float(0x0001b800)); // 1.09205e-05f, 1.57842e-40f
path.close();
test_draw_AA_path(100, 100, path);
}
static void test_skbug_6947() {
SkPath path;
SkPoint points[] =
{{125.126022f, -0.499872506f}, {125.288895f, -0.499338806f},
{125.299316f, -0.499290764f}, {126.294594f, 0.505449712f},
{125.999992f, 62.5047531f}, {124.0f, 62.4980202f},
{124.122749f, 0.498142242f}, {125.126022f, -0.499872506f},
{125.119476f, 1.50011659f}, {125.122749f, 0.50012207f},
{126.122749f, 0.502101898f}, {126.0f, 62.5019798f},
{125.0f, 62.5f}, {124.000008f, 62.4952469f},
{124.294609f, 0.495946467f}, {125.294601f, 0.50069809f},
{125.289886f, 1.50068688f}, {125.282349f, 1.50065041f},
{125.119476f, 1.50011659f}};
constexpr SkPath::Verb kMove = SkPath::kMove_Verb;
constexpr SkPath::Verb kLine = SkPath::kLine_Verb;
constexpr SkPath::Verb kClose = SkPath::kClose_Verb;
SkPath::Verb verbs[] = {kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose,
kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose};
int pointIndex = 0;
for(auto verb : verbs) {
switch (verb) {
case kMove:
path.moveTo(points[pointIndex++]);
break;
case kLine:
path.lineTo(points[pointIndex++]);
break;
case kClose:
default:
path.close();
break;
}
}
test_draw_AA_path(250, 125, path);
}
static void test_skbug_7015() {
SkPath path;
path.setFillType(SkPathFillType::kWinding);
path.moveTo(SkBits2Float(0x4388c000), SkBits2Float(0x43947c08)); // 273.5f, 296.969f
path.lineTo(SkBits2Float(0x4386c000), SkBits2Float(0x43947c08)); // 269.5f, 296.969f
// 269.297f, 292.172f, 273.695f, 292.172f, 273.5f, 296.969f
path.cubicTo(SkBits2Float(0x4386a604), SkBits2Float(0x43921604),
SkBits2Float(0x4388d8f6), SkBits2Float(0x43921604),
SkBits2Float(0x4388c000), SkBits2Float(0x43947c08));
path.close();
test_draw_AA_path(500, 500, path);
}
static void test_skbug_7051() {
SkPath path;
path.moveTo(10, 10);
path.cubicTo(10, 20, 10, 30, 30, 30);
path.lineTo(50, 20);
path.lineTo(50, 10);
path.close();
test_draw_AA_path(100, 100, path);
}
static void test_skbug_7435() {
SkPaint paint;
SkPath path;
path.setFillType(SkPathFillType::kWinding);
path.moveTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f
path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f
path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f
path.lineTo(SkBits2Float(0x7ef348e9), SkBits2Float(0xfef403c6)); // 1.6169e+38f, -1.62176e+38f
path.lineTo(SkBits2Float(0x7ef74c4e), SkBits2Float(0xfef803cb)); // 1.64358e+38f, -1.64834e+38f
path.conicTo(SkBits2Float(0x7ef74f23), SkBits2Float(0xfef8069e), SkBits2Float(0x7ef751f6), SkBits2Float(0xfef803c9), SkBits2Float(0x3f3504f3)); // 1.64365e+38f, -1.64841e+38f, 1.64372e+38f, -1.64834e+38f, 0.707107f
path.conicTo(SkBits2Float(0x7ef754c8), SkBits2Float(0xfef800f5), SkBits2Float(0x7ef751f5), SkBits2Float(0xfef7fe22), SkBits2Float(0x3f353472)); // 1.6438e+38f, -1.64827e+38f, 1.64372e+38f, -1.64819e+38f, 0.707832f
path.lineTo(SkBits2Float(0x7edb57a9), SkBits2Float(0xfedbfe06)); // 1.45778e+38f, -1.4621e+38f
path.lineTo(SkBits2Float(0x7e875976), SkBits2Float(0xfe87fdb3)); // 8.99551e+37f, -9.03815e+37f
path.lineTo(SkBits2Float(0x7ded5c2b), SkBits2Float(0xfdeff59e)); // 3.94382e+37f, -3.98701e+37f
path.lineTo(SkBits2Float(0x7d7a78a7), SkBits2Float(0xfd7fda0f)); // 2.08083e+37f, -2.12553e+37f
path.lineTo(SkBits2Float(0x7d7a6403), SkBits2Float(0xfd7fe461)); // 2.08016e+37f, -2.12587e+37f
path.conicTo(SkBits2Float(0x7d7a4764), SkBits2Float(0xfd7ff2b0), SkBits2Float(0x7d7a55b4), SkBits2Float(0xfd8007a8), SkBits2Float(0x3f3504f3)); // 2.07924e+37f, -2.12633e+37f, 2.0797e+37f, -2.12726e+37f, 0.707107f
path.conicTo(SkBits2Float(0x7d7a5803), SkBits2Float(0xfd8009f7), SkBits2Float(0x7d7a5ba9), SkBits2Float(0xfd800bcc), SkBits2Float(0x3f7cba66)); // 2.07977e+37f, -2.12741e+37f, 2.07989e+37f, -2.12753e+37f, 0.987219f
path.lineTo(SkBits2Float(0x7d8d2067), SkBits2Float(0xfd900bdb)); // 2.34487e+37f, -2.39338e+37f
path.lineTo(SkBits2Float(0x7ddd137a), SkBits2Float(0xfde00c2d)); // 3.67326e+37f, -3.72263e+37f
path.lineTo(SkBits2Float(0x7ddd2a1b), SkBits2Float(0xfddff58e)); // 3.67473e+37f, -3.72116e+37f
path.lineTo(SkBits2Float(0x7c694ae5), SkBits2Float(0xfc7fa67c)); // 4.8453e+36f, -5.30965e+36f
path.lineTo(SkBits2Float(0xfc164a8b), SkBits2Float(0x7c005af5)); // -3.12143e+36f, 2.66584e+36f
path.lineTo(SkBits2Float(0xfc8ae983), SkBits2Float(0x7c802da7)); // -5.77019e+36f, 5.32432e+36f
path.lineTo(SkBits2Float(0xfc8b16d9), SkBits2Float(0x7c80007b)); // -5.77754e+36f, 5.31699e+36f
path.lineTo(SkBits2Float(0xfc8b029c), SkBits2Float(0x7c7f8788)); // -5.77426e+36f, 5.30714e+36f
path.lineTo(SkBits2Float(0xfc8b0290), SkBits2Float(0x7c7f8790)); // -5.77425e+36f, 5.30714e+36f
path.lineTo(SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.77753e+36f, 5.31699e+36f
path.lineTo(SkBits2Float(0xfc8b4409), SkBits2Float(0x7c7fa672)); // -5.78487e+36f, 5.30965e+36f
path.lineTo(SkBits2Float(0x7d7aa2ba), SkBits2Float(0xfd800bd1)); // 2.0822e+37f, -2.12753e+37f
path.lineTo(SkBits2Float(0x7e8757ee), SkBits2Float(0xfe88035b)); // 8.99512e+37f, -9.03962e+37f
path.lineTo(SkBits2Float(0x7ef7552d), SkBits2Float(0xfef803ca)); // 1.64381e+38f, -1.64834e+38f
path.lineTo(SkBits2Float(0x7f0fa653), SkBits2Float(0xff1001f9)); // 1.90943e+38f, -1.91419e+38f
path.lineTo(SkBits2Float(0x7f0fa926), SkBits2Float(0xff0fff24)); // 1.90958e+38f, -1.91404e+38f
path.lineTo(SkBits2Float(0x7f0da75c), SkBits2Float(0xff0dff22)); // 1.8829e+38f, -1.88746e+38f
path.lineTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f
path.close();
path.moveTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f
path.lineTo(SkBits2Float(0x7f0da48a), SkBits2Float(0xff0e01f8)); // 1.88275e+38f, -1.88761e+38f
path.lineTo(SkBits2Float(0x7f0fa654), SkBits2Float(0xff1001fa)); // 1.90943e+38f, -1.91419e+38f
path.lineTo(SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90951e+38f, -1.91412e+38f
path.lineTo(SkBits2Float(0x7f0fa927), SkBits2Float(0xff0fff25)); // 1.90958e+38f, -1.91404e+38f
path.lineTo(SkBits2Float(0x7ef75ad5), SkBits2Float(0xfef7fe22)); // 1.64395e+38f, -1.64819e+38f
path.lineTo(SkBits2Float(0x7e875d96), SkBits2Float(0xfe87fdb3)); // 8.99659e+37f, -9.03815e+37f
path.lineTo(SkBits2Float(0x7d7acff6), SkBits2Float(0xfd7fea5b)); // 2.08367e+37f, -2.12606e+37f
path.lineTo(SkBits2Float(0xfc8b0588), SkBits2Float(0x7c8049b7)); // -5.77473e+36f, 5.32887e+36f
path.lineTo(SkBits2Float(0xfc8b2b16), SkBits2Float(0x7c803d32)); // -5.78083e+36f, 5.32684e+36f
path.conicTo(SkBits2Float(0xfc8b395c), SkBits2Float(0x7c803870), SkBits2Float(0xfc8b4405), SkBits2Float(0x7c802dd1), SkBits2Float(0x3f79349d)); // -5.78314e+36f, 5.32607e+36f, -5.78487e+36f, 5.32435e+36f, 0.973459f
path.conicTo(SkBits2Float(0xfc8b715b), SkBits2Float(0x7c8000a5), SkBits2Float(0xfc8b442f), SkBits2Float(0x7c7fa69e), SkBits2Float(0x3f3504f3)); // -5.79223e+36f, 5.31702e+36f, -5.7849e+36f, 5.30966e+36f, 0.707107f
path.lineTo(SkBits2Float(0xfc16ffaa), SkBits2Float(0x7bff4c12)); // -3.13612e+36f, 2.65116e+36f
path.lineTo(SkBits2Float(0x7c6895e0), SkBits2Float(0xfc802dc0)); // 4.83061e+36f, -5.32434e+36f
path.lineTo(SkBits2Float(0x7ddd137b), SkBits2Float(0xfde00c2e)); // 3.67326e+37f, -3.72263e+37f
path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f
path.lineTo(SkBits2Float(0x7ddd2a1c), SkBits2Float(0xfddff58f)); // 3.67473e+37f, -3.72116e+37f
path.lineTo(SkBits2Float(0x7d8d3711), SkBits2Float(0xfd8ff543)); // 2.34634e+37f, -2.39191e+37f
path.lineTo(SkBits2Float(0x7d7a88fe), SkBits2Float(0xfd7fea69)); // 2.08136e+37f, -2.12606e+37f
path.lineTo(SkBits2Float(0x7d7a7254), SkBits2Float(0xfd800080)); // 2.08063e+37f, -2.1268e+37f
path.lineTo(SkBits2Float(0x7d7a80a4), SkBits2Float(0xfd800ed0)); // 2.08109e+37f, -2.12773e+37f
path.lineTo(SkBits2Float(0x7d7a80a8), SkBits2Float(0xfd800ecf)); // 2.08109e+37f, -2.12773e+37f
path.lineTo(SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08063e+37f, -2.1268e+37f
path.lineTo(SkBits2Float(0x7d7a5bb9), SkBits2Float(0xfd800bd0)); // 2.0799e+37f, -2.12753e+37f
path.lineTo(SkBits2Float(0x7ded458b), SkBits2Float(0xfdf00c3e)); // 3.94235e+37f, -3.98848e+37f
path.lineTo(SkBits2Float(0x7e8753ce), SkBits2Float(0xfe88035b)); // 8.99405e+37f, -9.03962e+37f
path.lineTo(SkBits2Float(0x7edb5201), SkBits2Float(0xfedc03ae)); // 1.45763e+38f, -1.46225e+38f
path.lineTo(SkBits2Float(0x7ef74c4d), SkBits2Float(0xfef803ca)); // 1.64358e+38f, -1.64834e+38f
path.lineTo(SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64365e+38f, -1.64827e+38f
path.lineTo(SkBits2Float(0x7ef751f4), SkBits2Float(0xfef7fe21)); // 1.64372e+38f, -1.64819e+38f
path.lineTo(SkBits2Float(0x7ef34e91), SkBits2Float(0xfef3fe1e)); // 1.61705e+38f, -1.62161e+38f
path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f
path.lineTo(SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.48397e+38f, -1.48876e+38f
path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f
path.lineTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f
path.close();
path.moveTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f
path.lineTo(SkBits2Float(0xfd6597e5), SkBits2Float(0x7d60177f)); // -1.90739e+37f, 1.86168e+37f
path.lineTo(SkBits2Float(0xfde2cea1), SkBits2Float(0x7de00c2e)); // -3.76848e+37f, 3.72263e+37f
path.lineTo(SkBits2Float(0xfe316511), SkBits2Float(0x7e300657)); // -5.89495e+37f, 5.84943e+37f
path.lineTo(SkBits2Float(0xfe415da1), SkBits2Float(0x7e400666)); // -6.42568e+37f, 6.38112e+37f
path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4000be)); // -6.42641e+37f, 6.38039e+37f
path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f
path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f
path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e3ff8be)); // -6.42591e+37f, 6.37935e+37f
path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e3ff8be)); // -6.42544e+37f, 6.37935e+37f
path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f
path.lineTo(SkBits2Float(0xfe416171), SkBits2Float(0x7e3ffb16)); // -6.42617e+37f, 6.37966e+37f
path.lineTo(SkBits2Float(0xfe016131), SkBits2Float(0x7dfff5ae)); // -4.29938e+37f, 4.25286e+37f
path.lineTo(SkBits2Float(0xfe0155e2), SkBits2Float(0x7e000628)); // -4.29791e+37f, 4.25433e+37f
path.lineTo(SkBits2Float(0xfe0958ea), SkBits2Float(0x7e080630)); // -4.56415e+37f, 4.52018e+37f
path.lineTo(SkBits2Float(0xfe115c92), SkBits2Float(0x7e100638)); // -4.83047e+37f, 4.78603e+37f
path.conicTo(SkBits2Float(0xfe11623c), SkBits2Float(0x7e100bdf), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e100636), SkBits2Float(0x3f3504f3)); // -4.8312e+37f, 4.78676e+37f, -4.83194e+37f, 4.78603e+37f, 0.707107f
path.conicTo(SkBits2Float(0xfe116d87), SkBits2Float(0x7e10008e), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e0ffae8), SkBits2Float(0x3f35240a)); // -4.83267e+37f, 4.78529e+37f, -4.83194e+37f, 4.78456e+37f, 0.707581f
path.lineTo(SkBits2Float(0xfe016b92), SkBits2Float(0x7dfff5af)); // -4.30072e+37f, 4.25286e+37f
path.lineTo(SkBits2Float(0xfdc2d963), SkBits2Float(0x7dbff56e)); // -3.23749e+37f, 3.18946e+37f
path.lineTo(SkBits2Float(0xfd65ae25), SkBits2Float(0x7d5fea3d)); // -1.90811e+37f, 1.86021e+37f
path.lineTo(SkBits2Float(0xfab448de), SkBits2Float(0xf7b50a19)); // -4.68046e+35f, -7.34383e+33f
path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200
path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x7800007f)); // -4.60703e+35f, 1.03848e+34f
path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x7800007f)); // -4.67194e+35f, 1.03848e+34f
path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200
path.lineTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f
path.close();
path.moveTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f
path.lineTo(SkBits2Float(0xfaa7cc52), SkBits2Float(0xf800007f)); // -4.35629e+35f, -1.03848e+34f
path.lineTo(SkBits2Float(0xfd6580e5), SkBits2Float(0x7d60177f)); // -1.90664e+37f, 1.86168e+37f
path.lineTo(SkBits2Float(0xfdc2c2c1), SkBits2Float(0x7dc00c0f)); // -3.23602e+37f, 3.19093e+37f
path.lineTo(SkBits2Float(0xfe016040), SkBits2Float(0x7e000626)); // -4.29925e+37f, 4.25433e+37f
path.lineTo(SkBits2Float(0xfe115c90), SkBits2Float(0x7e100636)); // -4.83047e+37f, 4.78603e+37f
path.lineTo(SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.8312e+37f, 4.78529e+37f
path.lineTo(SkBits2Float(0xfe1167e0), SkBits2Float(0x7e0ffae6)); // -4.83194e+37f, 4.78456e+37f
path.lineTo(SkBits2Float(0xfe096438), SkBits2Float(0x7e07fade)); // -4.56562e+37f, 4.51871e+37f
path.lineTo(SkBits2Float(0xfe016130), SkBits2Float(0x7dfff5ac)); // -4.29938e+37f, 4.25286e+37f
path.lineTo(SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29864e+37f, 4.25359e+37f
path.lineTo(SkBits2Float(0xfe0155e1), SkBits2Float(0x7e000627)); // -4.29791e+37f, 4.25433e+37f
path.lineTo(SkBits2Float(0xfe415879), SkBits2Float(0x7e4008bf)); // -6.42501e+37f, 6.38143e+37f
path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e4008bf)); // -6.42591e+37f, 6.38143e+37f
path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f
path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f
path.conicTo(SkBits2Float(0xfe416699), SkBits2Float(0x7e4008bf), SkBits2Float(0xfe4168f1), SkBits2Float(0x7e400668), SkBits2Float(0x3f6c8ed9)); // -6.42684e+37f, 6.38143e+37f, -6.42715e+37f, 6.38113e+37f, 0.924055f
path.conicTo(SkBits2Float(0xfe416e9a), SkBits2Float(0x7e4000c2), SkBits2Float(0xfe4168f3), SkBits2Float(0x7e3ffb17), SkBits2Float(0x3f3504f3)); // -6.42788e+37f, 6.38039e+37f, -6.42715e+37f, 6.37966e+37f, 0.707107f
path.lineTo(SkBits2Float(0xfe317061), SkBits2Float(0x7e2ffb07)); // -5.89642e+37f, 5.84796e+37f
path.lineTo(SkBits2Float(0xfde2e542), SkBits2Float(0x7ddff58e)); // -3.76995e+37f, 3.72116e+37f
path.lineTo(SkBits2Float(0xfd65c525), SkBits2Float(0x7d5fea3d)); // -1.90886e+37f, 1.86021e+37f
path.lineTo(SkBits2Float(0xfab6c8db), SkBits2Float(0xf7b50b4f)); // -4.74536e+35f, -7.34402e+33f
path.lineTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f
path.close();
path.moveTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200
path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200
path.quadTo(SkBits2Float(0xfd0593a5), SkBits2Float(0x7d00007f), SkBits2Float(0xfd659785), SkBits2Float(0x7d6000de)); // -1.10971e+37f, 1.0634e+37f, -1.90737e+37f, 1.86095e+37f
path.quadTo(SkBits2Float(0xfda2cdf2), SkBits2Float(0x7da0009f), SkBits2Float(0xfdc2ce12), SkBits2Float(0x7dc000be)); // -2.70505e+37f, 2.6585e+37f, -3.23675e+37f, 3.1902e+37f
path.quadTo(SkBits2Float(0xfde2ce31), SkBits2Float(0x7de000de), SkBits2Float(0xfe0165e9), SkBits2Float(0x7e00007f)); // -3.76845e+37f, 3.72189e+37f, -4.29999e+37f, 4.25359e+37f
path.quadTo(SkBits2Float(0xfe1164b9), SkBits2Float(0x7e10008f), SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.83153e+37f, 4.78529e+37f, -4.8312e+37f, 4.78529e+37f
path.quadTo(SkBits2Float(0xfe116039), SkBits2Float(0x7e10008f), SkBits2Float(0xfe095e91), SkBits2Float(0x7e080087)); // -4.83094e+37f, 4.78529e+37f, -4.56488e+37f, 4.51944e+37f
path.quadTo(SkBits2Float(0xfe015d09), SkBits2Float(0x7e00007f), SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29884e+37f, 4.25359e+37f, -4.29864e+37f, 4.25359e+37f
path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f
path.quadTo(SkBits2Float(0xfe415da9), SkBits2Float(0x7e4000be), SkBits2Float(0xfe415f69), SkBits2Float(0x7e4000be)); // -6.42568e+37f, 6.38039e+37f, -6.42591e+37f, 6.38039e+37f
path.quadTo(SkBits2Float(0xfe416149), SkBits2Float(0x7e4000be), SkBits2Float(0xfe416349), SkBits2Float(0x7e4000be)); // -6.42615e+37f, 6.38039e+37f, -6.42641e+37f, 6.38039e+37f
path.quadTo(SkBits2Float(0xfe416849), SkBits2Float(0x7e4000be), SkBits2Float(0xfe316ab9), SkBits2Float(0x7e3000af)); // -6.42706e+37f, 6.38039e+37f, -5.89569e+37f, 5.84869e+37f
path.quadTo(SkBits2Float(0xfe216d29), SkBits2Float(0x7e20009f), SkBits2Float(0xfde2d9f2), SkBits2Float(0x7de000de)); // -5.36431e+37f, 5.31699e+37f, -3.76921e+37f, 3.72189e+37f
path.quadTo(SkBits2Float(0xfda2d9b2), SkBits2Float(0x7da0009f), SkBits2Float(0xfd65ae85), SkBits2Float(0x7d6000de)); // -2.70582e+37f, 2.6585e+37f, -1.90812e+37f, 1.86095e+37f
path.quadTo(SkBits2Float(0xfd05a9a6), SkBits2Float(0x7d00007f), SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -1.11043e+37f, 1.0634e+37f, -4.67194e+35f, 200
path.close();
path.moveTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f
path.quadTo(SkBits2Float(0x7f0ba519), SkBits2Float(0xff0c008b), SkBits2Float(0x7f0da5f3), SkBits2Float(0xff0e008d)); // 1.8562e+38f, -1.86095e+38f, 1.88283e+38f, -1.88753e+38f
path.quadTo(SkBits2Float(0x7f0fa6d5), SkBits2Float(0xff10008f), SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90946e+38f, -1.91412e+38f, 1.90951e+38f, -1.91412e+38f
path.quadTo(SkBits2Float(0x7f0faa7d), SkBits2Float(0xff10008f), SkBits2Float(0x7ef75801), SkBits2Float(0xfef800f6)); // 1.90965e+38f, -1.91412e+38f, 1.64388e+38f, -1.64827e+38f
path.quadTo(SkBits2Float(0x7ecf5b09), SkBits2Float(0xfed000ce), SkBits2Float(0x7e875ac2), SkBits2Float(0xfe880087)); // 1.37811e+38f, -1.38242e+38f, 8.99585e+37f, -9.03889e+37f
path.quadTo(SkBits2Float(0x7e0eb505), SkBits2Float(0xfe10008f), SkBits2Float(0x7d7ab958), SkBits2Float(0xfd80007f)); // 4.74226e+37f, -4.78529e+37f, 2.08293e+37f, -2.1268e+37f
path.quadTo(SkBits2Float(0xfc8ac1cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.76374e+36f, 5.31699e+36f, -5.77753e+36f, 5.31699e+36f
path.quadTo(SkBits2Float(0xfc8b36cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc16a51a), SkBits2Float(0x7c00007f)); // -5.78273e+36f, 5.31699e+36f, -3.12877e+36f, 2.6585e+36f
path.quadTo(SkBits2Float(0xfab6e4de), SkBits2Float(0x43480000), SkBits2Float(0x7c68f062), SkBits2Float(0xfc80007f)); // -4.7482e+35f, 200, 4.83795e+36f, -5.31699e+36f
path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f
path.quadTo(SkBits2Float(0x7d9d254b), SkBits2Float(0xfda0009f), SkBits2Float(0x7d8d2bbc), SkBits2Float(0xfd90008f)); // 2.61103e+37f, -2.6585e+37f, 2.3456e+37f, -2.39265e+37f
path.quadTo(SkBits2Float(0x7d7a64d8), SkBits2Float(0xfd80007f), SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08019e+37f, -2.1268e+37f, 2.08063e+37f, -2.1268e+37f
path.quadTo(SkBits2Float(0x7d7a9058), SkBits2Float(0xfd80007f), SkBits2Float(0x7ded50db), SkBits2Float(0xfdf000ee)); // 2.0816e+37f, -2.1268e+37f, 3.94309e+37f, -3.98774e+37f
path.quadTo(SkBits2Float(0x7e2eace5), SkBits2Float(0xfe3000af), SkBits2Float(0x7e8756a2), SkBits2Float(0xfe880087)); // 5.80458e+37f, -5.84869e+37f, 8.99478e+37f, -9.03889e+37f
path.quadTo(SkBits2Float(0x7ebf56d9), SkBits2Float(0xfec000be), SkBits2Float(0x7edb54d5), SkBits2Float(0xfedc00da)); // 1.27167e+38f, -1.27608e+38f, 1.45771e+38f, -1.46217e+38f
path.quadTo(SkBits2Float(0x7ef752e1), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64375e+38f, -1.64827e+38f, 1.64365e+38f, -1.64827e+38f
path.quadTo(SkBits2Float(0x7ef74d71), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef34bbd), SkBits2Float(0xfef400f2)); // 1.64361e+38f, -1.64827e+38f, 1.61698e+38f, -1.62168e+38f
path.quadTo(SkBits2Float(0x7eef4a19), SkBits2Float(0xfef000ee), SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.59035e+38f, -1.5951e+38f, 1.48397e+38f, -1.48876e+38f
path.lineTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f
path.close();
SkSurface::MakeRasterN32Premul(250, 250, nullptr)->getCanvas()->drawPath(path, paint);
}
static void test_interp(skiatest::Reporter* reporter) {
SkPath p1, p2, out;
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2));
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out));
REPORTER_ASSERT(reporter, p1 == out);
REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out));
REPORTER_ASSERT(reporter, p1 == out);
p1.moveTo(0, 2);
p1.lineTo(0, 4);
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2));
REPORTER_ASSERT(reporter, !p1.interpolate(p2, 1, &out));
p2.moveTo(6, 0);
p2.lineTo(8, 0);
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2));
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out));
REPORTER_ASSERT(reporter, p2 == out);
REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out));
REPORTER_ASSERT(reporter, p1 == out);
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out));
REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(3, 1, 4, 2));
p1.reset();
p1.moveTo(4, 4);
p1.conicTo(5, 4, 5, 5, 1 / SkScalarSqrt(2));
p2.reset();
p2.moveTo(4, 2);
p2.conicTo(7, 2, 7, 5, 1 / SkScalarSqrt(2));
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2));
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out));
REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(4, 3, 6, 5));
p2.reset();
p2.moveTo(4, 2);
p2.conicTo(6, 3, 6, 5, 1);
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2));
p2.reset();
p2.moveTo(4, 4);
p2.conicTo(5, 4, 5, 5, 0.5f);
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2));
}
DEF_TEST(PathInterp, reporter) {
test_interp(reporter);
}
#include "include/core/SkSurface.h"
DEF_TEST(PathBigCubic, reporter) {
SkPath path;
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f
path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), SkBits2Float(0x00000100), SkBits2Float(0x00000000), SkBits2Float(0x00000100), SkBits2Float(0x00000000)); // 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0
path.moveTo(0, 512);
// this call should not assert
SkSurface::MakeRasterN32Premul(255, 255, nullptr)->getCanvas()->drawPath(path, SkPaint());
}
DEF_TEST(PathContains, reporter) {
test_contains(reporter);
}
DEF_TEST(Paths, reporter) {
test_fuzz_crbug_647922();
test_fuzz_crbug_643933();
test_sect_with_horizontal_needs_pinning();
test_iterative_intersect_line();
test_crbug_629455(reporter);
test_fuzz_crbug_627414(reporter);
test_path_crbug364224();
test_fuzz_crbug_662952(reporter);
test_fuzz_crbug_662730(reporter);
test_fuzz_crbug_662780();
test_mask_overflow();
test_path_crbugskia6003();
test_fuzz_crbug_668907();
test_skbug_6947();
test_skbug_7015();
test_skbug_7051();
test_skbug_7435();
SkSize::Make(3, 4);
SkPath p, empty;
SkRect bounds, bounds2;
test_empty(reporter, p);
REPORTER_ASSERT(reporter, p.getBounds().isEmpty());
// this triggers a code path in SkPath::operator= which is otherwise unexercised
SkPath& self = p;
p = self;
// this triggers a code path in SkPath::swap which is otherwise unexercised
p.swap(self);
bounds.setLTRB(0, 0, SK_Scalar1, SK_Scalar1);
p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1);
check_convex_bounds(reporter, p, bounds);
// we have quads or cubics
REPORTER_ASSERT(reporter,
p.getSegmentMasks() & (kCurveSegmentMask | SkPath::kConic_SegmentMask));
REPORTER_ASSERT(reporter, !p.isEmpty());
p.reset();
test_empty(reporter, p);
p.addOval(bounds);
check_convex_bounds(reporter, p, bounds);
REPORTER_ASSERT(reporter, !p.isEmpty());
p.rewind();
test_empty(reporter, p);
p.addRect(bounds);
check_convex_bounds(reporter, p, bounds);
// we have only lines
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
REPORTER_ASSERT(reporter, p != empty);
REPORTER_ASSERT(reporter, !(p == empty));
// do getPoints and getVerbs return the right result
REPORTER_ASSERT(reporter, p.getPoints(nullptr, 0) == 4);
REPORTER_ASSERT(reporter, p.getVerbs(nullptr, 0) == 5);
SkPoint pts[4];
int count = p.getPoints(pts, 4);
REPORTER_ASSERT(reporter, count == 4);
uint8_t verbs[6];
verbs[5] = 0xff;
p.getVerbs(verbs, 5);
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]);
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]);
REPORTER_ASSERT(reporter, 0xff == verbs[5]);
bounds2.setBounds(pts, 4);
REPORTER_ASSERT(reporter, bounds == bounds2);
bounds.offset(SK_Scalar1*3, SK_Scalar1*4);
p.offset(SK_Scalar1*3, SK_Scalar1*4);
REPORTER_ASSERT(reporter, bounds == p.getBounds());
REPORTER_ASSERT(reporter, p.isRect(nullptr));
bounds2.setEmpty();
REPORTER_ASSERT(reporter, p.isRect(&bounds2));
REPORTER_ASSERT(reporter, bounds == bounds2);
// now force p to not be a rect
bounds.setWH(SK_Scalar1/2, SK_Scalar1/2);
p.addRect(bounds);
REPORTER_ASSERT(reporter, !p.isRect(nullptr));
// Test an edge case w.r.t. the bound returned by isRect (i.e., the
// path has a trailing moveTo. Please see crbug.com\445368)
{
SkRect r;
p.reset();
p.addRect(bounds);
REPORTER_ASSERT(reporter, p.isRect(&r));
REPORTER_ASSERT(reporter, r == bounds);
// add a moveTo outside of our bounds
p.moveTo(bounds.fLeft + 10, bounds.fBottom + 10);
REPORTER_ASSERT(reporter, p.isRect(&r));
REPORTER_ASSERT(reporter, r == bounds);
}
test_operatorEqual(reporter);
test_isLine(reporter);
test_isRect(reporter);
test_is_closed_rect(reporter);
test_isNestedFillRects(reporter);
test_zero_length_paths(reporter);
test_direction(reporter);
test_convexity(reporter);
test_convexity2(reporter);
test_convexity_doubleback(reporter);
test_conservativelyContains(reporter);
test_close(reporter);
test_segment_masks(reporter);
test_flattening(reporter);
test_transform(reporter);
test_bounds(reporter);
test_iter(reporter);
test_range_iter(reporter);
test_circle(reporter);
test_oval(reporter);
test_strokerec(reporter);
test_addPoly(reporter);
test_isfinite(reporter);
test_isfinite_after_transform(reporter);
test_islastcontourclosed(reporter);
test_arb_round_rect_is_convex(reporter);
test_arb_zero_rad_round_rect_is_rect(reporter);
test_addrect(reporter);
test_addrect_isfinite(reporter);
test_tricky_cubic();
test_clipped_cubic();
test_crbug_170666();
test_crbug_493450(reporter);
test_crbug_495894(reporter);
test_crbug_613918();
test_bad_cubic_crbug229478();
test_bad_cubic_crbug234190();
test_gen_id(reporter);
test_path_close_issue1474(reporter);
test_path_to_region(reporter);
test_rrect(reporter);
test_rMoveTo(reporter);
test_arc(reporter);
test_arc_ovals(reporter);
test_arcTo(reporter);
test_addPath(reporter);
test_addPathMode(reporter, false, false);
test_addPathMode(reporter, true, false);
test_addPathMode(reporter, false, true);
test_addPathMode(reporter, true, true);
test_extendClosedPath(reporter);
test_addEmptyPath(reporter, SkPath::kExtend_AddPathMode);
test_addEmptyPath(reporter, SkPath::kAppend_AddPathMode);
test_conicTo_special_case(reporter);
test_get_point(reporter);
test_contains(reporter);
PathTest_Private::TestPathTo(reporter);
PathRefTest_Private::TestPathRef(reporter);
PathTest_Private::TestPathrefListeners(reporter);
test_dump(reporter);
test_path_crbug389050(reporter);
test_path_crbugskia2820(reporter);
test_path_crbugskia5995();
test_skbug_3469(reporter);
test_skbug_3239(reporter);
test_bounds_crbug_513799(reporter);
test_fuzz_crbug_638223();
}
DEF_TEST(conservatively_contains_rect, reporter) {
SkPath path;
path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f
// 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0
path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052),
SkBits2Float(0x00000100), SkBits2Float(0x00000000),
SkBits2Float(0x00000100), SkBits2Float(0x00000000));
path.moveTo(0, 0);
// this should not assert
path.conservativelyContainsRect({ -211747, 12.1115f, -197893, 25.0321f });
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static void rand_path(SkPath* path, SkRandom& rand, SkPath::Verb verb, int n) {
for (int i = 0; i < n; ++i) {
switch (verb) {
case SkPath::kLine_Verb:
path->lineTo(rand.nextF()*100, rand.nextF()*100);
break;
case SkPath::kQuad_Verb:
path->quadTo(rand.nextF()*100, rand.nextF()*100,
rand.nextF()*100, rand.nextF()*100);
break;
case SkPath::kConic_Verb:
path->conicTo(rand.nextF()*100, rand.nextF()*100,
rand.nextF()*100, rand.nextF()*100, rand.nextF()*10);
break;
case SkPath::kCubic_Verb:
path->cubicTo(rand.nextF()*100, rand.nextF()*100,
rand.nextF()*100, rand.nextF()*100,
rand.nextF()*100, rand.nextF()*100);
break;
default:
SkASSERT(false);
}
}
}
#include "include/pathops/SkPathOps.h"
DEF_TEST(path_tight_bounds, reporter) {
SkRandom rand;
const SkPath::Verb verbs[] = {
SkPath::kLine_Verb, SkPath::kQuad_Verb, SkPath::kConic_Verb, SkPath::kCubic_Verb,
};
for (int i = 0; i < 1000; ++i) {
for (int n = 1; n <= 10; n += 9) {
for (SkPath::Verb verb : verbs) {
SkPath path;
rand_path(&path, rand, verb, n);
SkRect bounds = path.getBounds();
SkRect tight = path.computeTightBounds();
REPORTER_ASSERT(reporter, bounds.contains(tight));
SkRect tight2;
TightBounds(path, &tight2);
REPORTER_ASSERT(reporter, nearly_equal(tight, tight2));
}
}
}
}
DEF_TEST(skbug_6450, r) {
SkRect ri = { 0.18554693f, 195.26283f, 0.185784385f, 752.644409f };
SkVector rdi[4] = {
{ 1.81159976e-09f, 7.58768801e-05f },
{ 0.000118725002f, 0.000118725002f },
{ 0.000118725002f, 0.000118725002f },
{ 0.000118725002f, 0.486297607f }
};
SkRRect irr;
irr.setRectRadii(ri, rdi);
SkRect ro = { 9.18354821e-39f, 2.1710848e+9f, 2.16945843e+9f, 3.47808128e+9f };
SkVector rdo[4] = {
{ 0, 0 },
{ 0.0103298295f, 0.185887396f },
{ 2.52999727e-29f, 169.001938f },
{ 195.262741f, 195.161255f }
};
SkRRect orr;
orr.setRectRadii(ro, rdo);
SkMakeNullCanvas()->drawDRRect(orr, irr, SkPaint());
}
DEF_TEST(PathRefSerialization, reporter) {
SkPath path;
const size_t numMoves = 5;
const size_t numConics = 7;
const size_t numPoints = numMoves + 2 * numConics;
const size_t numVerbs = numMoves + numConics;
for (size_t i = 0; i < numMoves; ++i) path.moveTo(1, 2);
for (size_t i = 0; i < numConics; ++i) path.conicTo(1, 2, 3, 4, 5);
REPORTER_ASSERT(reporter, path.countPoints() == numPoints);
REPORTER_ASSERT(reporter, path.countVerbs() == numVerbs);
// Verify that path serializes/deserializes properly.
sk_sp<SkData> data = path.serialize();
size_t bytesWritten = data->size();
{
SkPath readBack;
REPORTER_ASSERT(reporter, readBack != path);
size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten);
REPORTER_ASSERT(reporter, bytesRead == bytesWritten);
REPORTER_ASSERT(reporter, readBack == path);
}
// One less byte (rounded down to alignment) than was written will also
// fail to be deserialized.
{
SkPath readBack;
size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten - 4);
REPORTER_ASSERT(reporter, !bytesRead);
}
}
DEF_TEST(NonFinitePathIteration, reporter) {
SkPath path;
path.moveTo(SK_ScalarInfinity, SK_ScalarInfinity);
SkPathPriv::Iterate iterate(path);
REPORTER_ASSERT(reporter, iterate.begin() == iterate.end());
}
DEF_TEST(AndroidArc, reporter) {
const char* tests[] = {
"M50,0A50,50,0,0 1 100,50 L100,85 A15,15,0,0 1 85,100 L50,100 A50,50,0,0 1 50,0z",
("M50,0L92,0 A8,8,0,0 1 100,8 L100,92 A8,8,0,0 1 92,100 L8,100"
" A8,8,0,0 1 0,92 L 0,8 A8,8,0,0 1 8,0z"),
"M50 0A50 50,0,1,1,50 100A50 50,0,1,1,50 0"
};
for (auto test : tests) {
SkPath aPath;
SkAssertResult(SkParsePath::FromSVGString(test, &aPath));
SkASSERT(aPath.isConvex());
for (SkScalar scale = 1; scale < 1000; scale *= 1.1f) {
SkPath scalePath = aPath;
SkMatrix matrix;
matrix.setScale(scale, scale);
scalePath.transform(matrix);
SkASSERT(scalePath.isConvex());
}
for (SkScalar scale = 1; scale < .001; scale /= 1.1f) {
SkPath scalePath = aPath;
SkMatrix matrix;
matrix.setScale(scale, scale);
scalePath.transform(matrix);
SkASSERT(scalePath.isConvex());
}
}
}
/*
* Try a range of crazy values, just to ensure that we don't assert/crash.
*/
DEF_TEST(HugeGeometry, reporter) {
auto surf = SkSurface::MakeRasterN32Premul(100, 100);
auto canvas = surf->getCanvas();
const bool aas[] = { false, true };
const SkPaint::Style styles[] = {
SkPaint::kFill_Style, SkPaint::kStroke_Style, SkPaint::kStrokeAndFill_Style
};
const SkScalar values[] = {
0, 1, 1000, 1000 * 1000, 1000.f * 1000 * 10000, SK_ScalarMax / 2, SK_ScalarMax,
SK_ScalarInfinity
};
SkPaint paint;
for (auto x : values) {
SkRect r = { -x, -x, x, x };
for (auto width : values) {
paint.setStrokeWidth(width);
for (auto aa : aas) {
paint.setAntiAlias(aa);
for (auto style : styles) {
paint.setStyle(style);
canvas->drawRect(r, paint);
canvas->drawOval(r, paint);
}
}
}
}
}
// Treat nonfinite paths as "empty" or "full", depending on inverse-filltype
DEF_TEST(ClipPath_nonfinite, reporter) {
auto surf = SkSurface::MakeRasterN32Premul(10, 10);
SkCanvas* canvas = surf->getCanvas();
REPORTER_ASSERT(reporter, !canvas->isClipEmpty());
for (bool aa : {false, true}) {
for (auto ft : {SkPathFillType::kWinding, SkPathFillType::kInverseWinding}) {
for (SkScalar bad : {SK_ScalarInfinity, SK_ScalarNaN}) {
for (int bits = 1; bits <= 15; ++bits) {
SkPoint p0 = { 0, 0 };
SkPoint p1 = { 0, 0 };
if (bits & 1) p0.fX = -bad;
if (bits & 2) p0.fY = -bad;
if (bits & 4) p1.fX = bad;
if (bits & 8) p1.fY = bad;
SkPath path;
path.moveTo(p0);
path.lineTo(p1);
path.setFillType(ft);
canvas->save();
canvas->clipPath(path, aa);
REPORTER_ASSERT(reporter, canvas->isClipEmpty() == !path.isInverseFillType());
canvas->restore();
}
}
}
}
REPORTER_ASSERT(reporter, !canvas->isClipEmpty());
}
// skbug.com/7792
DEF_TEST(Path_isRect, reporter) {
auto makePath = [](const SkPoint* points, size_t count, bool close) -> SkPath {
SkPath path;
for (size_t index = 0; index < count; ++index) {
index < 2 ? path.moveTo(points[index]) : path.lineTo(points[index]);
}
if (close) {
path.close();
}
return path;
};
auto makePath2 = [](const SkPoint* points, const SkPath::Verb* verbs, size_t count) -> SkPath {
SkPath path;
for (size_t index = 0; index < count; ++index) {
switch (verbs[index]) {
case SkPath::kMove_Verb:
path.moveTo(*points++);
break;
case SkPath::kLine_Verb:
path.lineTo(*points++);
break;
case SkPath::kClose_Verb:
path.close();
break;
default:
SkASSERT(0);
}
}
return path;
};
// isolated from skbug.com/7792 (bug description)
SkRect rect;
SkPoint points[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} };
SkPath path = makePath(points, std::size(points), false);
REPORTER_ASSERT(reporter, path.isRect(&rect));
SkRect compare;
compare.setBounds(&points[1], std::size(points) - 1);
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c3
SkPoint points3[] = { {75, 50}, {100, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 50} };
path = makePath(points3, std::size(points3), true);
REPORTER_ASSERT(reporter, !path.isRect(&rect));
// isolated from skbug.com/7792#c9
SkPoint points9[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} };
path = makePath(points9, std::size(points9), true);
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&points9[1], std::size(points9) - 1);
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c11
SkPath::Verb verbs11[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb };
SkPoint points11[] = { {75, 150}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 150} };
path = makePath2(points11, verbs11, std::size(verbs11));
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&points11[0], std::size(points11));
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c14
SkPath::Verb verbs14[] = { SkPath::kMove_Verb, SkPath::kMove_Verb, SkPath::kMove_Verb,
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb,
SkPath::kLine_Verb, SkPath::kClose_Verb };
SkPoint points14[] = { {250, 75}, {250, 75}, {250, 75}, {100, 75},
{150, 75}, {150, 150}, {75, 150}, {75, 75}, {0, 0} };
path = makePath2(points14, verbs14, std::size(verbs14));
REPORTER_ASSERT(reporter, !path.isRect(&rect));
// isolated from skbug.com/7792#c15
SkPath::Verb verbs15[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kMove_Verb };
SkPoint points15[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {250, 75} };
path = makePath2(points15, verbs15, std::size(verbs15));
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&points15[0], std::size(points15) - 1);
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c17
SkPoint points17[] = { {75, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10} };
path = makePath(points17, std::size(points17), true);
REPORTER_ASSERT(reporter, !path.isRect(&rect));
// isolated from skbug.com/7792#c19
SkPath::Verb verbs19[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb };
SkPoint points19[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150},
{75, 150}, {10, 10}, {30, 10}, {10, 30} };
path = makePath2(points19, verbs19, std::size(verbs19));
REPORTER_ASSERT(reporter, !path.isRect(&rect));
// isolated from skbug.com/7792#c23
SkPath::Verb verbs23[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kClose_Verb };
SkPoint points23[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150},
{75, 150} };
path = makePath2(points23, verbs23, std::size(verbs23));
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&points23[0], std::size(points23));
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c29
SkPath::Verb verbs29[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
SkPath::kClose_Verb };
SkPoint points29[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 250}, {75, 75} };
path = makePath2(points29, verbs29, std::size(verbs29));
REPORTER_ASSERT(reporter, !path.isRect(&rect));
// isolated from skbug.com/7792#c31
SkPath::Verb verbs31[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
SkPath::kClose_Verb };
SkPoint points31[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10}, {75, 75} };
path = makePath2(points31, verbs31, std::size(verbs31));
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&points31[0], 4);
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c36
SkPath::Verb verbs36[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
SkPoint points36[] = { {75, 75}, {150, 75}, {150, 150}, {10, 150}, {75, 75}, {75, 75} };
path = makePath2(points36, verbs36, std::size(verbs36));
REPORTER_ASSERT(reporter, !path.isRect(&rect));
// isolated from skbug.com/7792#c39
SkPath::Verb verbs39[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb };
SkPoint points39[] = { {150, 75}, {150, 150}, {75, 150}, {75, 100} };
path = makePath2(points39, verbs39, std::size(verbs39));
REPORTER_ASSERT(reporter, !path.isRect(&rect));
// isolated from zero_length_paths_aa
SkPath::Verb verbsAA[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kClose_Verb };
SkPoint pointsAA[] = { {32, 9.5f}, {32, 9.5f}, {32, 17}, {17, 17}, {17, 9.5f}, {17, 2},
{32, 2} };
path = makePath2(pointsAA, verbsAA, std::size(verbsAA));
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&pointsAA[0], std::size(pointsAA));
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c41
SkPath::Verb verbs41[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
SkPath::kClose_Verb };
SkPoint points41[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} };
path = makePath2(points41, verbs41, std::size(verbs41));
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&points41[1], 4);
REPORTER_ASSERT(reporter, rect == compare);
// isolated from skbug.com/7792#c53
SkPath::Verb verbs53[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
SkPath::kClose_Verb };
SkPoint points53[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} };
path = makePath2(points53, verbs53, std::size(verbs53));
REPORTER_ASSERT(reporter, path.isRect(&rect));
compare.setBounds(&points53[1], 4);
REPORTER_ASSERT(reporter, rect == compare);
}
// Be sure we can safely add ourselves
DEF_TEST(Path_self_add, reporter) {
// The possible problem is that during path.add() we may have to grow the dst buffers as
// we append the src pts/verbs, but all the while we are iterating over the src. If src == dst
// we could realloc the buffer's (on behalf of dst) leaving the src iterator pointing at
// garbage.
//
// The test runs though verious sized src paths, since its not defined publicly what the
// reserve allocation strategy is for SkPath, therefore we can't know when an append operation
// will trigger a realloc. At the time of this writing, these loops were sufficient to trigger
// an ASAN error w/o the fix to SkPath::addPath().
//
for (int count = 0; count < 10; ++count) {
SkPath path;
for (int add = 0; add < count; ++add) {
// just add some stuff, so we have something to copy/append in addPath()
path.moveTo(1, 2).lineTo(3, 4).cubicTo(1,2,3,4,5,6).conicTo(1,2,3,4,5);
}
path.addPath(path, 1, 2);
path.addPath(path, 3, 4);
}
}
#include "include/core/SkVertices.h"
static void draw_triangle(SkCanvas* canvas, const SkPoint pts[]) {
// draw in different ways, looking for an assert
{
SkPath path;
path.addPoly(pts, 3, false);
canvas->drawPath(path, SkPaint());
}
const SkColor colors[] = { SK_ColorBLACK, SK_ColorBLACK, SK_ColorBLACK };
auto v = SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, 3, pts, nullptr, colors);
canvas->drawVertices(v, SkBlendMode::kSrcOver, SkPaint());
}
DEF_TEST(triangle_onehalf, reporter) {
auto surface(SkSurface::MakeRasterN32Premul(100, 100));
const SkPoint pts[] = {
{ 0.499069244f, 9.63295173f },
{ 0.499402374f, 7.88207579f },
{ 10.2363272f, 0.49999997f }
};
draw_triangle(surface->getCanvas(), pts);
}
DEF_TEST(triangle_big, reporter) {
auto surface(SkSurface::MakeRasterN32Premul(4, 4304));
// The first two points, when sent through our fixed-point SkEdge, can walk negative beyond
// -0.5 due to accumulated += error of the slope. We have since make the bounds calculation
// be conservative, so we invoke clipping if we get in this situation.
// This test was added to demonstrate the need for this conservative bounds calc.
// (found by a fuzzer)
const SkPoint pts[] = {
{ 0.327190518f, -114.945152f },
{ -0.5f, 1.00003874f },
{ 0.666425824f, 4304.26172f },
};
draw_triangle(surface->getCanvas(), pts);
}
static void add_verbs(SkPath* path, int count) {
path->moveTo(0, 0);
for (int i = 0; i < count; ++i) {
switch (i & 3) {
case 0: path->lineTo(10, 20); break;
case 1: path->quadTo(5, 6, 7, 8); break;
case 2: path->conicTo(1, 2, 3, 4, 0.5f); break;
case 3: path->cubicTo(2, 4, 6, 8, 10, 12); break;
}
}
}
// Make sure when we call shrinkToFit() that we always shrink (or stay the same)
// and that if we call twice, we stay the same.
DEF_TEST(Path_shrinkToFit, reporter) {
size_t max_free = 0;
for (int verbs = 0; verbs < 100; ++verbs) {
SkPath unique_path, shared_path;
add_verbs(&unique_path, verbs);
add_verbs(&shared_path, verbs);
const SkPath copy = shared_path;
REPORTER_ASSERT(reporter, shared_path == unique_path);
REPORTER_ASSERT(reporter, shared_path == copy);
uint32_t uID = unique_path.getGenerationID();
uint32_t sID = shared_path.getGenerationID();
uint32_t cID = copy.getGenerationID();
REPORTER_ASSERT(reporter, sID == cID);
#ifdef SK_DEBUG
size_t before = PathTest_Private::GetFreeSpace(unique_path);
#endif
SkPathPriv::ShrinkToFit(&unique_path);
SkPathPriv::ShrinkToFit(&shared_path);
REPORTER_ASSERT(reporter, shared_path == unique_path);
REPORTER_ASSERT(reporter, shared_path == copy);
// since the unique_path is "unique", it's genID need not have changed even though
// unique_path has changed (been shrunk)
REPORTER_ASSERT(reporter, uID == unique_path.getGenerationID());
// since the copy has not been changed, its ID should be the same
REPORTER_ASSERT(reporter, cID == copy.getGenerationID());
// but since shared_path has changed, and was not uniquely owned, it's gen ID needs to have
// changed, breaking the "sharing" -- this is done defensively in case there were any
// outstanding Iterators active on copy, which could have been invalidated during
// shrinkToFit.
REPORTER_ASSERT(reporter, sID != shared_path.getGenerationID());
#ifdef SK_DEBUG
size_t after = PathTest_Private::GetFreeSpace(unique_path);
REPORTER_ASSERT(reporter, before >= after);
max_free = std::max(max_free, before - after);
size_t after2 = PathTest_Private::GetFreeSpace(unique_path);
REPORTER_ASSERT(reporter, after == after2);
#endif
}
if ((false)) {
SkDebugf("max_free %zu\n", max_free);
}
}
DEF_TEST(Path_setLastPt, r) {
// There was a time where SkPath::setLastPoint() didn't invalidate cached path bounds.
SkPath p;
p.moveTo(0,0);
p.moveTo(20,01);
p.moveTo(20,10);
p.moveTo(20,61);
REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 20,61));
p.setLastPt(30,01);
REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 30,10)); // was {0,0, 20,61}
REPORTER_ASSERT(r, p.isValid());
}
DEF_TEST(Path_increserve_handle_neg_crbug_883666, r) {
SkPath path;
path.conicTo({0, 0}, {1, 1}, SK_FloatNegativeInfinity);
// <== use a copy path object to force SkPathRef::copy() and SkPathRef::resetToSize()
SkPath shallowPath = path;
// make sure we don't assert/crash on this.
shallowPath.incReserve(0xffffffff);
}
////////////////////////////////////////////////////////////////////////////////////////////////
/*
* For speed, we tried to preserve useful/expensive attributes about paths,
* - convexity, isrect, isoval, ...
* Axis-aligned shapes (rect, oval, rrect) should survive, including convexity if the matrix
* is axis-aligned (e.g. scale+translate)
*/
struct Xforms {
SkMatrix fIM, fTM, fSM, fRM;
Xforms() {
fIM.reset();
fTM.setTranslate(10, 20);
fSM.setScale(2, 3);
fRM.setRotate(30);
}
};
static bool conditional_convex(const SkPath& path, bool is_convex) {
SkPathConvexity c = SkPathPriv::GetConvexityOrUnknown(path);
return is_convex ? (c == SkPathConvexity::kConvex) : (c != SkPathConvexity::kConvex);
}
// expect axis-aligned shape to survive assignment, identity and scale/translate matrices
template <typename ISA>
void survive(SkPath* path, const Xforms& x, bool isAxisAligned, skiatest::Reporter* reporter,
ISA isa_proc) {
REPORTER_ASSERT(reporter, isa_proc(*path));
// force the issue (computing convexity) the first time.
REPORTER_ASSERT(reporter, path->isConvex());
SkPath path2;
// a path's isa and convexity should survive assignment
path2 = *path;
REPORTER_ASSERT(reporter, isa_proc(path2));
REPORTER_ASSERT(reporter, SkPathPriv::GetConvexityOrUnknown(path2) == SkPathConvexity::kConvex);
// a path's isa and convexity should identity transform
path->transform(x.fIM, &path2);
path->transform(x.fIM);
REPORTER_ASSERT(reporter, isa_proc(path2));
REPORTER_ASSERT(reporter, SkPathPriv::GetConvexityOrUnknown(path2) == SkPathConvexity::kConvex);
REPORTER_ASSERT(reporter, isa_proc(*path));
REPORTER_ASSERT(reporter, SkPathPriv::GetConvexityOrUnknown(*path) == SkPathConvexity::kConvex);
// a path's isa should survive translation, convexity depends on axis alignment
path->transform(x.fTM, &path2);
path->transform(x.fTM);
REPORTER_ASSERT(reporter, isa_proc(path2));
REPORTER_ASSERT(reporter, isa_proc(*path));
REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned));
REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned));
// a path's isa should survive scaling, convexity depends on axis alignment
path->transform(x.fSM, &path2);
path->transform(x.fSM);
REPORTER_ASSERT(reporter, isa_proc(path2));
REPORTER_ASSERT(reporter, isa_proc(*path));
REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned));
REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned));
// For security, post-rotation, we can't assume we're still convex. It might prove to be,
// in fact, still be convex, be we can't have cached that setting, hence the call to
// getConvexityOrUnknown() instead of getConvexity().
path->transform(x.fRM, &path2);
path->transform(x.fRM);
REPORTER_ASSERT(reporter, SkPathPriv::GetConvexityOrUnknown(path2) != SkPathConvexity::kConvex);
REPORTER_ASSERT(reporter, SkPathPriv::GetConvexityOrUnknown(*path) != SkPathConvexity::kConvex);
if (isAxisAligned) {
REPORTER_ASSERT(reporter, !isa_proc(path2));
REPORTER_ASSERT(reporter, !isa_proc(*path));
}
}
DEF_TEST(Path_survive_transform, r) {
const Xforms x;
SkPath path;
path.addRect({10, 10, 40, 50});
survive(&path, x, true, r, [](const SkPath& p) { return p.isRect(nullptr); });
path.reset();
path.addOval({10, 10, 40, 50});
survive(&path, x, true, r, [](const SkPath& p) { return p.isOval(nullptr); });
path.reset();
path.addRRect(SkRRect::MakeRectXY({10, 10, 40, 50}, 5, 5));
survive(&path, x, true, r, [](const SkPath& p) { return p.isRRect(nullptr); });
// make a trapazoid; definitely convex, but not marked as axis-aligned (e.g. oval, rrect)
path.reset();
path.moveTo(0, 0).lineTo(100, 0).lineTo(70, 100).lineTo(30, 100);
REPORTER_ASSERT(r, path.isConvex());
survive(&path, x, false, r, [](const SkPath& p) { return true; });
}
DEF_TEST(path_last_move_to_index, r) {
// Make sure that copyPath is safe after the call to path.offset().
// Previously, we would leave its fLastMoveToIndex alone after the copy, but now we should
// set it to path's value inside SkPath::transform()
const char text[] = "hello";
constexpr size_t len = sizeof(text) - 1;
SkGlyphID glyphs[len];
SkFont font;
font.textToGlyphs(text, len, SkTextEncoding::kUTF8, glyphs, len);
SkPath copyPath;
SkFont().getPaths(glyphs, len, [](const SkPath* src, const SkMatrix& mx, void* ctx) {
if (src) {
((SkPath*)ctx)->addPath(*src, mx);
}
}, &copyPath);
SkScalar radii[] = { 80, 100, 0, 0, 40, 60, 0, 0 };
SkPath path;
path.addRoundRect({10, 10, 110, 110}, radii);
path.offset(0, 5, &(copyPath)); // <== change buffer copyPath.fPathRef->fPoints but not reset copyPath.fLastMoveToIndex lead to out of bound
copyPath.rConicTo(1, 1, 3, 3, 0.707107f);
}
static void test_edger(skiatest::Reporter* r,
const std::initializer_list<SkPath::Verb>& in,
const std::initializer_list<SkPath::Verb>& expected) {
SkPath path;
SkScalar x = 0, y = 0;
for (auto v : in) {
switch (v) {
case SkPath::kMove_Verb: path.moveTo(x++, y++); break;
case SkPath::kLine_Verb: path.lineTo(x++, y++); break;
case SkPath::kClose_Verb: path.close(); break;
default: SkASSERT(false);
}
}
SkPathEdgeIter iter(path);
for (auto v : expected) {
auto e = iter.next();
REPORTER_ASSERT(r, e);
REPORTER_ASSERT(r, SkPathEdgeIter::EdgeToVerb(e.fEdge) == v);
}
REPORTER_ASSERT(r, !iter.next());
}
static void assert_points(skiatest::Reporter* reporter,
const SkPath& path, const std::initializer_list<SkPoint>& list) {
const SkPoint* expected = list.begin();
SkPath::RawIter iter(path);
for (size_t i = 0;;) {
SkPoint pts[4];
switch (iter.next(pts)) {
case SkPath::kDone_Verb:
REPORTER_ASSERT(reporter, i == list.size());
return;
case SkPath::kMove_Verb:
REPORTER_ASSERT(reporter, pts[0] == expected[i]);
i++;
break;
case SkPath::kLine_Verb:
REPORTER_ASSERT(reporter, pts[1] == expected[i]);
i++;
break;
case SkPath::kClose_Verb: break;
default: SkASSERT(false);
}
}
}
static void test_addRect_and_trailing_lineTo(skiatest::Reporter* reporter) {
SkPath path;
const SkRect r = {1, 2, 3, 4};
// build our default p-array clockwise
const SkPoint p[] = {
{r.fLeft, r.fTop}, {r.fRight, r.fTop},
{r.fRight, r.fBottom}, {r.fLeft, r.fBottom},
};
for (auto dir : {SkPathDirection::kCW, SkPathDirection::kCCW}) {
int increment = dir == SkPathDirection::kCW ? 1 : 3;
for (int i = 0; i < 4; ++i) {
path.reset();
path.addRect(r, dir, i);
// check that we return the 4 ponts in the expected order
SkPoint e[4];
for (int j = 0; j < 4; ++j) {
int index = (i + j*increment) % 4;
e[j] = p[index];
}
assert_points(reporter, path, {
e[0], e[1], e[2], e[3]
});
// check that the new line begins where the rect began
path.lineTo(7,8);
assert_points(reporter, path, {
e[0], e[1], e[2], e[3],
e[0], {7,8},
});
}
}
// now add a moveTo before the rect, just to be sure we don't always look at
// the "first" point in the path when we handle the trailing lineTo
path.reset();
path.moveTo(7, 8);
path.addRect(r, SkPathDirection::kCW, 2);
path.lineTo(5, 6);
assert_points(reporter, path, {
{7,8}, // initial moveTo
p[2], p[3], p[0], p[1], // rect
p[2], {5, 6}, // trailing line
});
}
/*
* SkPath allows the caller to "skip" calling moveTo for contours. If lineTo (or a curve) is
* called on an empty path, a 'moveTo(0,0)' will automatically be injected. If the path is
* not empty, but its last contour has been "closed", then it will inject a moveTo corresponding
* to where the last contour itself started (i.e. its moveTo).
*
* This test exercises this in a particular case:
* path.moveTo(...) <-- needed to show the bug
* path.moveTo....close()
* // at this point, the path's verbs are: M M ... C
*
* path.lineTo(...)
* // after lineTo, the path's verbs are: M M ... C M L
*/
static void test_addPath_and_injected_moveTo(skiatest::Reporter* reporter) {
/*
* Given a path, and the expected last-point and last-move-to in it,
* assert that, after a lineTo(), that the injected moveTo corresponds
* to the expected value.
*/
auto test_before_after_lineto = [reporter](SkPath& path,
SkPoint expectedLastPt,
SkPoint expectedMoveTo) {
SkPoint p = path.getPoint(path.countPoints() - 1);
REPORTER_ASSERT(reporter, p == expectedLastPt);
const SkPoint newLineTo = {1234, 5678};
path.lineTo(newLineTo);
p = path.getPoint(path.countPoints() - 2);
REPORTER_ASSERT(reporter, p == expectedMoveTo); // this was injected by lineTo()
p = path.getPoint(path.countPoints() - 1);
REPORTER_ASSERT(reporter, p == newLineTo);
};
SkPath path1;
SkPath path2;
path1.moveTo(230, 230); // Needed to show the bug: a moveTo before the addRect
// add a rect, but the shape doesn't really matter
path1.moveTo(20,30).lineTo(40,30).lineTo(40,50).lineTo(20,50).close();
path2.addPath(path1); // this must correctly update its "last-move-to" so that when
// lineTo is called, it will inject the correct moveTo.
// at this point, path1 and path2 should be the same...
test_before_after_lineto(path1, {20,50}, {20,30});
test_before_after_lineto(path2, {20,50}, {20,30});
}
DEF_TEST(pathedger, r) {
auto M = SkPath::kMove_Verb;
auto L = SkPath::kLine_Verb;
auto C = SkPath::kClose_Verb;
test_edger(r, { M }, {});
test_edger(r, { M, M }, {});
test_edger(r, { M, C }, {});
test_edger(r, { M, M, C }, {});
test_edger(r, { M, L }, { L, L });
test_edger(r, { M, L, C }, { L, L });
test_edger(r, { M, L, L }, { L, L, L });
test_edger(r, { M, L, L, C }, { L, L, L });
test_edger(r, { M, L, L, M, L, L }, { L, L, L, L, L, L });
test_addRect_and_trailing_lineTo(r);
test_addPath_and_injected_moveTo(r);
}
DEF_TEST(path_addpath_crbug_1153516, r) {
// When we add a path to another path, we need to sniff out in case the argument ended
// with a kClose, in which case we need to fiddle with our lastMoveIndex (as ::close() does)
SkPath p1, p2;
p1.addRect({143,226,200,241});
p1.addPath(p1);
p1.lineTo(262,513); // this should not assert
}
DEF_TEST(path_convexity_scale_way_down, r) {
SkPath path = SkPathBuilder().moveTo(0,0).lineTo(1, 0)
.lineTo(1,1).lineTo(0,1)
.detach();
REPORTER_ASSERT(r, path.isConvex());
SkPath path2;
const SkScalar scale = 1e-8f;
path.transform(SkMatrix::Scale(scale, scale), &path2);
SkPathPriv::ForceComputeConvexity(path2);
REPORTER_ASSERT(r, path2.isConvex());
}
// crbug.com/1187385
DEF_TEST(path_moveto_addrect, r) {
// Test both an empty and non-empty rect passed to SkPath::addRect
SkRect rects[] = {{207.0f, 237.0f, 300.0f, 237.0f},
{207.0f, 237.0f, 300.0f, 267.0f}};
for (SkRect rect: rects) {
for (int numExtraMoveTos : {0, 1, 2, 3}) {
SkPath path;
// Convexity and contains functions treat the path as a simple fill, so consecutive
// moveTos are collapsed together.
for (int i = 0; i < numExtraMoveTos; ++i) {
path.moveTo(i, i);
}
path.addRect(rect);
REPORTER_ASSERT(r, (numExtraMoveTos + 1) == SkPathPriv::LeadingMoveToCount(path));
// addRect should mark the path as known convex automatically (i.e. it wasn't set
// to unknown after edits)
SkPathConvexity origConvexity = SkPathPriv::GetConvexityOrUnknown(path);
REPORTER_ASSERT(r, origConvexity == SkPathConvexity::kConvex);
// but it should also agree with the regular convexity computation
SkPathPriv::ForceComputeConvexity(path);
REPORTER_ASSERT(r, path.isConvex());
SkRect query = rect.makeInset(10.f, 0.f);
REPORTER_ASSERT(r, path.conservativelyContainsRect(query));
}
}
}
// crbug.com/1220754
DEF_TEST(path_moveto_twopass_convexity, r) {
// There had been a bug when the last moveTo index > 0, the calculated point count was incorrect
// and the BySign convexity pass would not evaluate the entire path, effectively only using the
// winding rule for determining convexity.
SkPath path;
path.setFillType(SkPathFillType::kWinding);
path.moveTo(3.25f, 115.5f);
path.conicTo(9.98099e+17f, 2.83874e+15f, 1.75098e-30f, 1.75097e-30f, 1.05385e+18f);
path.conicTo(9.96938e+17f, 6.3804e+19f, 9.96934e+17f, 1.75096e-30f, 1.75096e-30f);
path.quadTo(1.28886e+10f, 9.9647e+17f, 9.98101e+17f, 2.61006e+15f);
REPORTER_ASSERT(r, !path.isConvex());
SkPath pathWithExtraMoveTo;
pathWithExtraMoveTo.setFillType(SkPathFillType::kWinding);
pathWithExtraMoveTo.moveTo(5.90043e-39f, 1.34525e-43f);
pathWithExtraMoveTo.addPath(path);
REPORTER_ASSERT(r, !pathWithExtraMoveTo.isConvex());
}