skia2/include/core/SkMatrix44.h
brianosman de68d6c461 Fix storage of gamut transform matrices in SkColorSpace
We were effectively storing the transpose, which made all of our
operations on individual colors, and our concatenation of matrices
awkward and backwards.

I'm planning to push this further into Ganesh, where I had incorrectly
adjusted to the previous layout, treating colors as row vectors in the
shaders.

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2324843003

Review-Url: https://codereview.chromium.org/2324843003
2016-09-09 10:36:17 -07:00

498 lines
16 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkMatrix44_DEFINED
#define SkMatrix44_DEFINED
#include "SkMatrix.h"
#include "SkScalar.h"
#ifdef SK_MSCALAR_IS_DOUBLE
#ifdef SK_MSCALAR_IS_FLOAT
#error "can't define MSCALAR both as DOUBLE and FLOAT"
#endif
typedef double SkMScalar;
static inline double SkFloatToMScalar(float x) {
return static_cast<double>(x);
}
static inline float SkMScalarToFloat(double x) {
return static_cast<float>(x);
}
static inline double SkDoubleToMScalar(double x) {
return x;
}
static inline double SkMScalarToDouble(double x) {
return x;
}
static inline double SkMScalarAbs(double x) {
return fabs(x);
}
static const SkMScalar SK_MScalarPI = 3.141592653589793;
#define SkMScalarFloor(x) sk_double_floor(x)
#define SkMScalarCeil(x) sk_double_ceil(x)
#define SkMScalarRound(x) sk_double_round(x)
#define SkMScalarFloorToInt(x) sk_double_floor2int(x)
#define SkMScalarCeilToInt(x) sk_double_ceil2int(x)
#define SkMScalarRoundToInt(x) sk_double_round2int(x)
#elif defined SK_MSCALAR_IS_FLOAT
#ifdef SK_MSCALAR_IS_DOUBLE
#error "can't define MSCALAR both as DOUBLE and FLOAT"
#endif
typedef float SkMScalar;
static inline float SkFloatToMScalar(float x) {
return x;
}
static inline float SkMScalarToFloat(float x) {
return x;
}
static inline float SkDoubleToMScalar(double x) {
return static_cast<float>(x);
}
static inline double SkMScalarToDouble(float x) {
return static_cast<double>(x);
}
static inline float SkMScalarAbs(float x) {
return sk_float_abs(x);
}
static const SkMScalar SK_MScalarPI = 3.14159265f;
#define SkMScalarFloor(x) sk_float_floor(x)
#define SkMScalarCeil(x) sk_float_ceil(x)
#define SkMScalarRound(x) sk_float_round(x)
#define SkMScalarFloorToInt(x) sk_float_floor2int(x)
#define SkMScalarCeilToInt(x) sk_float_ceil2int(x)
#define SkMScalarRoundToInt(x) sk_float_round2int(x)
#endif
#define SkIntToMScalar(n) static_cast<SkMScalar>(n)
#define SkMScalarToScalar(x) SkMScalarToFloat(x)
#define SkScalarToMScalar(x) SkFloatToMScalar(x)
static const SkMScalar SK_MScalar1 = 1;
///////////////////////////////////////////////////////////////////////////////
struct SkVector4 {
SkScalar fData[4];
SkVector4() {
this->set(0, 0, 0, 1);
}
SkVector4(const SkVector4& src) {
memcpy(fData, src.fData, sizeof(fData));
}
SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
fData[0] = x;
fData[1] = y;
fData[2] = z;
fData[3] = w;
}
SkVector4& operator=(const SkVector4& src) {
memcpy(fData, src.fData, sizeof(fData));
return *this;
}
bool operator==(const SkVector4& v) {
return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
fData[2] == v.fData[2] && fData[3] == v.fData[3];
}
bool operator!=(const SkVector4& v) {
return !(*this == v);
}
bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
return fData[0] == x && fData[1] == y &&
fData[2] == z && fData[3] == w;
}
void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
fData[0] = x;
fData[1] = y;
fData[2] = z;
fData[3] = w;
}
};
class SK_API SkMatrix44 {
public:
enum Uninitialized_Constructor {
kUninitialized_Constructor
};
enum Identity_Constructor {
kIdentity_Constructor
};
SkMatrix44(Uninitialized_Constructor) {}
constexpr SkMatrix44(Identity_Constructor)
: fMat{{ 1, 0, 0, 0, },
{ 0, 1, 0, 0, },
{ 0, 0, 1, 0, },
{ 0, 0, 0, 1, }}
, fTypeMask(kIdentity_Mask)
{}
SK_ATTR_DEPRECATED("use the constructors that take an enum")
SkMatrix44() { this->setIdentity(); }
SkMatrix44(const SkMatrix44& src) {
memcpy(fMat, src.fMat, sizeof(fMat));
fTypeMask = src.fTypeMask;
}
SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
this->setConcat(a, b);
}
SkMatrix44& operator=(const SkMatrix44& src) {
if (&src != this) {
memcpy(fMat, src.fMat, sizeof(fMat));
fTypeMask = src.fTypeMask;
}
return *this;
}
bool operator==(const SkMatrix44& other) const;
bool operator!=(const SkMatrix44& other) const {
return !(other == *this);
}
/* When converting from SkMatrix44 to SkMatrix, the third row and
* column is dropped. When converting from SkMatrix to SkMatrix44
* the third row and column remain as identity:
* [ a b c ] [ a b 0 c ]
* [ d e f ] -> [ d e 0 f ]
* [ g h i ] [ 0 0 1 0 ]
* [ g h 0 i ]
*/
SkMatrix44(const SkMatrix&);
SkMatrix44& operator=(const SkMatrix& src);
operator SkMatrix() const;
/**
* Return a reference to a const identity matrix
*/
static const SkMatrix44& I();
enum TypeMask {
kIdentity_Mask = 0,
kTranslate_Mask = 0x01, //!< set if the matrix has translation
kScale_Mask = 0x02, //!< set if the matrix has any scale != 1
kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
};
/**
* Returns a bitfield describing the transformations the matrix may
* perform. The bitfield is computed conservatively, so it may include
* false positives. For example, when kPerspective_Mask is true, all
* other bits may be set to true even in the case of a pure perspective
* transform.
*/
inline TypeMask getType() const {
if (fTypeMask & kUnknown_Mask) {
fTypeMask = this->computeTypeMask();
}
SkASSERT(!(fTypeMask & kUnknown_Mask));
return (TypeMask)fTypeMask;
}
/**
* Return true if the matrix is identity.
*/
inline bool isIdentity() const {
return kIdentity_Mask == this->getType();
}
/**
* Return true if the matrix contains translate or is identity.
*/
inline bool isTranslate() const {
return !(this->getType() & ~kTranslate_Mask);
}
/**
* Return true if the matrix only contains scale or translate or is identity.
*/
inline bool isScaleTranslate() const {
return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
}
/**
* Returns true if the matrix only contains scale or is identity.
*/
inline bool isScale() const {
return !(this->getType() & ~kScale_Mask);
}
inline bool hasPerspective() const {
return SkToBool(this->getType() & kPerspective_Mask);
}
void setIdentity();
inline void reset() { this->setIdentity();}
/**
* get a value from the matrix. The row,col parameters work as follows:
* (0, 0) scale-x
* (0, 3) translate-x
* (3, 0) perspective-x
*/
inline SkMScalar get(int row, int col) const {
SkASSERT((unsigned)row <= 3);
SkASSERT((unsigned)col <= 3);
return fMat[col][row];
}
/**
* set a value in the matrix. The row,col parameters work as follows:
* (0, 0) scale-x
* (0, 3) translate-x
* (3, 0) perspective-x
*/
inline void set(int row, int col, SkMScalar value) {
SkASSERT((unsigned)row <= 3);
SkASSERT((unsigned)col <= 3);
fMat[col][row] = value;
this->dirtyTypeMask();
}
inline double getDouble(int row, int col) const {
return SkMScalarToDouble(this->get(row, col));
}
inline void setDouble(int row, int col, double value) {
this->set(row, col, SkDoubleToMScalar(value));
}
inline float getFloat(int row, int col) const {
return SkMScalarToFloat(this->get(row, col));
}
inline void setFloat(int row, int col, float value) {
this->set(row, col, SkFloatToMScalar(value));
}
/** These methods allow one to efficiently read matrix entries into an
* array. The given array must have room for exactly 16 entries. Whenever
* possible, they will try to use memcpy rather than an entry-by-entry
* copy.
*
* Col major indicates that consecutive elements of columns will be stored
* contiguously in memory. Row major indicates that consecutive elements
* of rows will be stored contiguously in memory.
*/
void asColMajorf(float[]) const;
void asColMajord(double[]) const;
void asRowMajorf(float[]) const;
void asRowMajord(double[]) const;
/** These methods allow one to efficiently set all matrix entries from an
* array. The given array must have room for exactly 16 entries. Whenever
* possible, they will try to use memcpy rather than an entry-by-entry
* copy.
*
* Col major indicates that input memory will be treated as if consecutive
* elements of columns are stored contiguously in memory. Row major
* indicates that input memory will be treated as if consecutive elements
* of rows are stored contiguously in memory.
*/
void setColMajorf(const float[]);
void setColMajord(const double[]);
void setRowMajorf(const float[]);
void setRowMajord(const double[]);
#ifdef SK_MSCALAR_IS_FLOAT
void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
#else
void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
#endif
/* This sets the top-left of the matrix and clears the translation and
* perspective components (with [3][3] set to 1). mXY is interpreted
* as the matrix entry at col = X, row = Y. */
void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
SkMScalar m10, SkMScalar m11, SkMScalar m12,
SkMScalar m20, SkMScalar m21, SkMScalar m22);
void set3x3RowMajorf(const float[]);
void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
inline void setScale(SkMScalar scale) {
this->setScale(scale, scale, scale);
}
inline void preScale(SkMScalar scale) {
this->preScale(scale, scale, scale);
}
inline void postScale(SkMScalar scale) {
this->postScale(scale, scale, scale);
}
void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
SkMScalar degrees) {
this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
}
/** Rotate about the vector [x,y,z]. If that vector is not unit-length,
it will be automatically resized.
*/
void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
SkMScalar radians);
/** Rotate about the vector [x,y,z]. Does not check the length of the
vector, assuming it is unit-length.
*/
void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
SkMScalar radians);
void setConcat(const SkMatrix44& a, const SkMatrix44& b);
inline void preConcat(const SkMatrix44& m) {
this->setConcat(*this, m);
}
inline void postConcat(const SkMatrix44& m) {
this->setConcat(m, *this);
}
friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
return SkMatrix44(a, b);
}
/** If this is invertible, return that in inverse and return true. If it is
not invertible, return false and leave the inverse parameter in an
unspecified state.
*/
bool invert(SkMatrix44* inverse) const;
/** Transpose this matrix in place. */
void transpose();
/** Apply the matrix to the src vector, returning the new vector in dst.
It is legal for src and dst to point to the same memory.
*/
void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
inline void mapScalars(SkScalar vec[4]) const {
this->mapScalars(vec, vec);
}
SK_ATTR_DEPRECATED("use mapScalars")
void map(const SkScalar src[4], SkScalar dst[4]) const {
this->mapScalars(src, dst);
}
SK_ATTR_DEPRECATED("use mapScalars")
void map(SkScalar vec[4]) const {
this->mapScalars(vec, vec);
}
#ifdef SK_MSCALAR_IS_DOUBLE
void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
#elif defined SK_MSCALAR_IS_FLOAT
inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
this->mapScalars(src, dst);
}
#endif
inline void mapMScalars(SkMScalar vec[4]) const {
this->mapMScalars(vec, vec);
}
friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
SkVector4 dst;
m.mapScalars(src.fData, dst.fData);
return dst;
}
/**
* map an array of [x, y, 0, 1] through the matrix, returning an array
* of [x', y', z', w'].
*
* @param src2 array of [x, y] pairs, with implied z=0 and w=1
* @param count number of [x, y] pairs in src2
* @param dst4 array of [x', y', z', w'] quads as the output.
*/
void map2(const float src2[], int count, float dst4[]) const;
void map2(const double src2[], int count, double dst4[]) const;
/** Returns true if transformating an axis-aligned square in 2d by this matrix
will produce another 2d axis-aligned square; typically means the matrix
is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
degrees into a perpendicular plane collapses a square to a line, but
is still considered to be axis-aligned.
By default, tolerates very slight error due to float imprecisions;
a 90-degree rotation can still end up with 10^-17 of
"non-axis-aligned" result.
*/
bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
void dump() const;
double determinant() const;
private:
/* This is indexed by [col][row]. */
SkMScalar fMat[4][4];
mutable unsigned fTypeMask;
enum {
kUnknown_Mask = 0x80,
kAllPublic_Masks = 0xF
};
void as3x4RowMajorf(float[]) const;
void set3x4RowMajorf(const float[]);
SkMScalar transX() const { return fMat[3][0]; }
SkMScalar transY() const { return fMat[3][1]; }
SkMScalar transZ() const { return fMat[3][2]; }
SkMScalar scaleX() const { return fMat[0][0]; }
SkMScalar scaleY() const { return fMat[1][1]; }
SkMScalar scaleZ() const { return fMat[2][2]; }
SkMScalar perspX() const { return fMat[0][3]; }
SkMScalar perspY() const { return fMat[1][3]; }
SkMScalar perspZ() const { return fMat[2][3]; }
int computeTypeMask() const;
inline void dirtyTypeMask() {
fTypeMask = kUnknown_Mask;
}
inline void setTypeMask(int mask) {
SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
fTypeMask = mask;
}
/**
* Does not take the time to 'compute' the typemask. Only returns true if
* we already know that this matrix is identity.
*/
inline bool isTriviallyIdentity() const {
return 0 == fTypeMask;
}
friend class SkColorSpace;
};
#endif