skia2/gm/wacky_yuv_formats.cpp
Brian Osman b107a11f88 Add several more values to SkYUVColorSpace
Includes full-range Rec709 and BT2020, as well as more precise
matrices for 10 and 12 bit BT2020.

Bug: chromium:1108626
Change-Id: I28cbce982a00c082c8b510dbb7b144bdc1ce02e0
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/305596
Reviewed-by: Dale Curtis <dalecurtis@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
2020-07-24 18:49:10 +00:00

1803 lines
74 KiB
C++

/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkFilterQuality.h"
#include "include/core/SkFont.h"
#include "include/core/SkFontStyle.h"
#include "include/core/SkFontTypes.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageGenerator.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkTypeface.h"
#include "include/core/SkTypes.h"
#include "include/core/SkYUVAIndex.h"
#include "include/core/SkYUVASizeInfo.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrConfig.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/GrTypesPriv.h"
#include "include/private/SkTArray.h"
#include "include/private/SkTDArray.h"
#include "include/private/SkTemplates.h"
#include "include/utils/SkTextUtils.h"
#include "src/core/SkYUVMath.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "tools/ToolUtils.h"
#include "tools/gpu/YUVUtils.h"
#include <math.h>
#include <string.h>
#include <initializer_list>
#include <memory>
#include <utility>
using sk_gpu_test::YUVABackendReleaseContext;
class GrRenderTargetContext;
static const int kTileWidthHeight = 128;
static const int kLabelWidth = 64;
static const int kLabelHeight = 32;
static const int kDomainPadding = 8;
static const int kPad = 1;
enum YUVFormat {
// 4:2:0 formats, 24 bpp
kP016_YUVFormat, // 16-bit Y plane + 2x2 down sampled interleaved U/V plane (2 textures)
// 4:2:0 formats, "15 bpp" (but really 24 bpp)
kP010_YUVFormat, // same as kP016 except "10 bpp". Note that it is the same memory layout
// except that the bottom 6 bits are zeroed out (2 textures)
// TODO: we're cheating a bit w/ P010 and just treating it as unorm 16. This means its
// fully saturated values are 65504 rather than 65535 (that is just .9995 out of 1.0 though).
// This is laid out the same as kP016 and kP010 but uses F16 unstead of U16. In this case
// the 10 bits/channel vs 16 bits/channel distinction isn't relevant.
kP016F_YUVFormat,
// 4:4:4 formats, 64 bpp
kY416_YUVFormat, // 16-bit AVYU values all interleaved (1 texture)
// 4:4:4 formats, 32 bpp
kAYUV_YUVFormat, // 8-bit YUVA values all interleaved (1 texture)
kY410_YUVFormat, // AVYU w/ 10bpp for YUV and 2 for A all interleaved (1 texture)
// 4:2:0 formats, 12 bpp
kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes (2 textures)
kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved texture (2 textures)
kI420_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled U and V planes (3 textures)
kYV12_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled V and U planes (3 textures)
kLast_YUVFormat = kYV12_YUVFormat
};
class YUVAPlanarConfig {
public:
struct YUVALocation {
int fPlaneIdx = -1;
int fChannelIdx = -1;
};
enum class YUVAChannel { kY, kU, kV, kA };
explicit YUVAPlanarConfig(const std::initializer_list<YUVALocation>& yuvaLocations);
constexpr int numPlanes() const { return fNumPlanes; }
int planeIndex(YUVAChannel c) const { return fLocations[static_cast<int>(c)].fPlaneIdx; }
int channelIndex(YUVAChannel c) const { return fLocations[static_cast<int>(c)].fChannelIdx; }
constexpr bool hasAlpha() const { return fLocations[3].fPlaneIdx >= 0; }
/**
* Given a mask of SkColorChannelFlags choose a channel by index. Legal 'channelMask' values
* are:
* kAlpha, kGray, kRed, kRG, kRGB, kRGBA.
* The channel index must be less than the number of bits set in the mask. The index order is
* the order listed above (e.g. if 'channelMask' is kRGB and 'channelIdx' is 1 then
* SkColorChannel::kG is returned as 'channel'). The function fails if 'channelMask' is not one
* of the listed allowed values or 'channelIdx' is invalid for the mask.
*/
static bool ChannelIndexToChannel(uint32_t channelMask,
int channelIdx,
SkColorChannel* channel);
/**
* Goes from channel indices to actual channels given texture formats. Also supports adding
* on an external alpha plane if this format doesn't already have alpha. The extra alpha texture
* must be the last texture and the channel index is assumed to be 0.
*/
bool getYUVAIndices(const GrBackendTexture textures[],
int numTextures,
bool externalAlphaPlane,
SkYUVAIndex indices[4]) const;
/** Same as above but with pixmaps instead of textures. */
bool getYUVAIndices(const SkBitmap planes[],
int numBitmaps,
bool externalAlphaPlane,
SkYUVAIndex indices[4]) const;
private:
bool getYUVAIndices(const uint32_t channelMasks[],
int numPlanes,
bool externalAlphaPlane,
SkYUVAIndex indices[4]) const;
YUVALocation fLocations[4] = {};
int fNumPlanes = 0;
};
YUVAPlanarConfig::YUVAPlanarConfig(const std::initializer_list<YUVALocation>& yuvaLocations) {
SkASSERT(yuvaLocations.size() == 3 || yuvaLocations.size() == 4);
uint32_t planeMask[5] = {};
int l = 0;
for (const auto& location : yuvaLocations) {
SkASSERT(location.fChannelIdx >= 0 && location.fChannelIdx <= 3);
SkASSERT(location.fPlaneIdx >= 0 && location.fPlaneIdx <= 3);
fLocations[l++] = location;
fNumPlanes = std::max(fNumPlanes, location.fPlaneIdx + 1);
int mask = 1 << location.fChannelIdx;
SkASSERT(!(planeMask[location.fPlaneIdx] & mask));
planeMask[location.fPlaneIdx] |= mask;
}
// Check that no plane is skipped and channel usage in each plane is tightly packed.
for (int i = 0; i < fNumPlanes; ++i) {
switch (planeMask[i]) {
case 0b0001: break;
case 0b0011: break;
case 0b0111: break;
case 0b1111: break;
default: SK_ABORT("Illegal channel configuration. "
"Maximum of 4 channels per plane. "
"No skipped channels in any plane.");
}
}
}
bool YUVAPlanarConfig::ChannelIndexToChannel(uint32_t channelFlags,
int channelIdx,
SkColorChannel* channel) {
switch (channelFlags) {
case kGray_SkColorChannelFlag: // For gray returning any of R, G, or B for index 0 is ok.
case kRed_SkColorChannelFlag:
if (channelIdx == 0) {
*channel = SkColorChannel::kR;
return true;
}
return false;
case kAlpha_SkColorChannelFlag:
if (channelIdx == 0) {
*channel = SkColorChannel::kA;
return true;
}
return false;
case kRG_SkColorChannelFlags:
if (channelIdx == 0 || channelIdx == 1) {
*channel = static_cast<SkColorChannel>(channelIdx);
return true;
}
return false;
case kRGB_SkColorChannelFlags:
if (channelIdx >= 0 && channelIdx <= 2) {
*channel = static_cast<SkColorChannel>(channelIdx);
return true;
}
return false;
case kRGBA_SkColorChannelFlags:
if (channelIdx >= 0 && channelIdx <= 3) {
*channel = static_cast<SkColorChannel>(channelIdx);
return true;
}
return false;
default:
return false;
}
}
bool YUVAPlanarConfig::getYUVAIndices(const GrBackendTexture textures[],
int numTextures,
bool externalAlphaPlane,
SkYUVAIndex indices[4]) const {
uint32_t channelMasks[4] = {};
for (int i = 0; i < numTextures; ++i) {
channelMasks[i] = textures[i].getBackendFormat().channelMask();
}
return this->getYUVAIndices(channelMasks, numTextures, externalAlphaPlane, indices);
}
bool YUVAPlanarConfig::getYUVAIndices(const SkBitmap bitmaps[],
int numBitmaps,
bool externalAlphaPlane,
SkYUVAIndex indices[4]) const {
uint32_t channelMasks[4] = {};
for (int i = 0; i < numBitmaps; ++i) {
channelMasks[i] = SkColorTypeChannelFlags(bitmaps[i].colorType());
}
return this->getYUVAIndices(channelMasks, numBitmaps, externalAlphaPlane, indices);
}
bool YUVAPlanarConfig::getYUVAIndices(const uint32_t planeChannelMasks[],
int numPlanes,
bool externalAlphaPlane,
SkYUVAIndex indices[4]) const {
if (this->hasAlpha() && externalAlphaPlane) {
return false;
}
if (numPlanes != fNumPlanes + SkToInt(externalAlphaPlane)) {
return false;
}
for (int i = 0; i < 4; ++i) {
int plane = fLocations[i].fPlaneIdx;
if (plane < 0) {
indices[i].fIndex = -1;
indices[i].fChannel = SkColorChannel::kR;
} else {
indices[i].fIndex = plane;
if (!ChannelIndexToChannel(planeChannelMasks[plane], fLocations[i].fChannelIdx,
&indices[i].fChannel)) {
return false;
}
}
}
if (externalAlphaPlane) {
if (!ChannelIndexToChannel(planeChannelMasks[numPlanes - 1], 0, &indices[3].fChannel)) {
return false;
}
indices[3].fIndex = numPlanes - 1;
}
SkDEBUGCODE(int checkNumPlanes;)
SkASSERT(SkYUVAIndex::AreValidIndices(indices, &checkNumPlanes));
SkASSERT(checkNumPlanes == numPlanes);
return true;
}
static const YUVAPlanarConfig& YUVAFormatPlanarConfig(YUVFormat format) {
switch (format) {
case kP016_YUVFormat: // These all share the same plane/channel indices.
case kP010_YUVFormat:
case kP016F_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 0}, {1, 0}, {1, 1}});
return kConfig;
}
case kY416_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 1}, {0, 0}, {0, 2}, {0, 3}});
return kConfig;
}
case kAYUV_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 0}, {0, 1}, {0, 2}, {0, 3}});
return kConfig;
}
case kY410_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 1}, {0, 0}, {0, 2}, {0, 3}});
return kConfig;
}
case kNV12_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 0}, {1, 0}, {1, 1}});
return kConfig;
}
case kNV21_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 0}, {1, 1}, {1, 0}});
return kConfig;
}
case kI420_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 0}, {1, 0}, {2, 0}});
return kConfig;
}
case kYV12_YUVFormat: {
static const YUVAPlanarConfig kConfig({{0, 0}, {2, 0}, {1, 0}});
return kConfig;
}
}
SkUNREACHABLE;
}
static bool is_colorType_texturable(const GrCaps* caps, GrColorType ct) {
GrBackendFormat format = caps->getDefaultBackendFormat(ct, GrRenderable::kNo);
if (!format.isValid()) {
return false;
}
return caps->isFormatTexturable(format);
}
static bool is_format_natively_supported(GrRecordingContext* context, YUVFormat yuvFormat) {
const GrCaps* caps = context->priv().caps();
switch (yuvFormat) {
case kP016_YUVFormat: // fall through
case kP010_YUVFormat: return is_colorType_texturable(caps, GrColorType::kAlpha_16) &&
is_colorType_texturable(caps, GrColorType::kRG_1616);
case kP016F_YUVFormat: return is_colorType_texturable(caps, GrColorType::kAlpha_F16) &&
is_colorType_texturable(caps, GrColorType::kRG_F16);
case kY416_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_16161616);
case kAYUV_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_8888);
case kY410_YUVFormat: return is_colorType_texturable(caps, GrColorType::kRGBA_1010102);
case kNV12_YUVFormat: // fall through
case kNV21_YUVFormat: return is_colorType_texturable(caps, GrColorType::kGray_8) &&
is_colorType_texturable(caps, GrColorType::kRG_88);
case kI420_YUVFormat: // fall through
case kYV12_YUVFormat: return is_colorType_texturable(caps, GrColorType::kGray_8);
}
SkUNREACHABLE;
}
// All the planes we need to construct the various YUV formats
struct PlaneData {
SkBitmap fYFull;
SkBitmap fUFull;
SkBitmap fVFull;
SkBitmap fAFull;
SkBitmap fUQuarter; // 2x2 downsampled U channel
SkBitmap fVQuarter; // 2x2 downsampled V channel
SkBitmap fFull;
SkBitmap fQuarter; // 2x2 downsampled YUVA
};
// Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle
// and have tangents 'v1' and 'v2'.
static void add_arc(SkPath* path,
const SkPoint& o1, const SkVector& v1,
const SkPoint& o2, const SkVector& v2,
SkTDArray<SkRect>* circles, bool takeLongWayRound) {
SkVector v3 = { -v1.fY, v1.fX };
SkVector v4 = { v2.fY, -v2.fX };
SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4);
SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY };
SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t };
if (circles) {
circles->push_back(r);
}
SkVector startV = o1 - center, endV = o2 - center;
startV.normalize();
endV.normalize();
SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX));
SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX));
startDeg += 360.0f;
startDeg = fmodf(startDeg, 360.0f);
endDeg += 360.0f;
endDeg = fmodf(endDeg, 360.0f);
if (endDeg < startDeg) {
endDeg += 360.0f;
}
SkScalar sweepDeg = SkTAbs(endDeg - startDeg);
if (!takeLongWayRound) {
sweepDeg = sweepDeg - 360;
}
path->arcTo(r, startDeg, sweepDeg, false);
}
static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius,
SkScalar ratio, int numLobes, SkTDArray<SkRect>* circles) {
if (numLobes <= 1) {
return SkPath();
}
SkPath p;
int numDivisions = 2 * numLobes;
SkScalar fullLobeDegrees = 360.0f / numLobes;
SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f);
SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f);
SkMatrix outerStep, innerStep;
outerStep.setRotate(outDegrees);
innerStep.setRotate(innerDegrees);
SkVector curV = SkVector::Make(0.0f, 1.0f);
if (circles) {
circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius,
o.fX + innerRadius, o.fY + innerRadius));
}
p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY);
for (int i = 0; i < numDivisions; ++i) {
SkVector nextV;
if (0 == (i % 2)) {
nextV = outerStep.mapVector(curV.fX, curV.fY);
SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX,
o.fY + outerRadius * curV.fY);
SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX,
o.fY + outerRadius * nextV.fY);
p.lineTo(top);
add_arc(&p, top, curV, nextTop, nextV, circles, true);
} else {
nextV = innerStep.mapVector(curV.fX, curV.fY);
SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX,
o.fY + innerRadius * curV.fY);
SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX,
o.fY + innerRadius * nextV.fY);
p.lineTo(bot);
add_arc(&p, bot, curV, nextBot, nextV, nullptr, false);
}
curV = nextV;
}
p.close();
return p;
}
static SkBitmap make_bitmap(SkColorType colorType, const SkPath& path,
const SkTDArray<SkRect>& circles, bool opaque, bool padWithRed) {
const SkColor kGreen = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104));
const SkColor kBlue = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252));
const SkColor kYellow = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117));
int widthHeight = kTileWidthHeight + (padWithRed ? 2 * kDomainPadding : 0);
SkImageInfo ii = SkImageInfo::Make(widthHeight, widthHeight,
colorType, kPremul_SkAlphaType);
SkBitmap bm;
bm.allocPixels(ii);
std::unique_ptr<SkCanvas> canvas = SkCanvas::MakeRasterDirect(ii,
bm.getPixels(),
bm.rowBytes());
if (padWithRed) {
canvas->clear(SK_ColorRED);
canvas->translate(kDomainPadding, kDomainPadding);
canvas->clipRect(SkRect::MakeWH(kTileWidthHeight, kTileWidthHeight));
}
canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT);
SkPaint paint;
paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency
paint.setColor(kBlue);
canvas->drawPath(path, paint);
paint.setColor(opaque ? kYellow : SK_ColorTRANSPARENT);
paint.setBlendMode(SkBlendMode::kSrc);
for (int i = 0; i < circles.count(); ++i) {
SkRect r = circles[i];
r.inset(r.width()/4, r.height()/4);
canvas->drawOval(r, paint);
}
return bm;
}
static void convert_rgba_to_yuva(const float mtx[20], SkColor col, uint8_t yuv[4]) {
const uint8_t r = SkColorGetR(col);
const uint8_t g = SkColorGetG(col);
const uint8_t b = SkColorGetB(col);
yuv[0] = SkTPin(SkScalarRoundToInt(mtx[ 0]*r + mtx[ 1]*g + mtx[ 2]*b + mtx[ 4]*255), 0, 255);
yuv[1] = SkTPin(SkScalarRoundToInt(mtx[ 5]*r + mtx[ 6]*g + mtx[ 7]*b + mtx[ 9]*255), 0, 255);
yuv[2] = SkTPin(SkScalarRoundToInt(mtx[10]*r + mtx[11]*g + mtx[12]*b + mtx[14]*255), 0, 255);
yuv[3] = SkColorGetA(col);
}
static SkPMColor convert_yuva_to_rgba(const float mtx[20], uint8_t yuva[4]) {
uint8_t y = yuva[0];
uint8_t u = yuva[1];
uint8_t v = yuva[2];
uint8_t a = yuva[3];
uint8_t r = SkTPin(SkScalarRoundToInt(mtx[ 0]*y + mtx[ 1]*u + mtx[ 2]*v + mtx[ 4]*255), 0, 255);
uint8_t g = SkTPin(SkScalarRoundToInt(mtx[ 5]*y + mtx[ 6]*u + mtx[ 7]*v + mtx[ 9]*255), 0, 255);
uint8_t b = SkTPin(SkScalarRoundToInt(mtx[10]*y + mtx[11]*u + mtx[12]*v + mtx[14]*255), 0, 255);
return SkPremultiplyARGBInline(a, r, g, b);
}
static void extract_planes(const SkBitmap& bm, SkYUVColorSpace yuvColorSpace, PlaneData* planes) {
if (kIdentity_SkYUVColorSpace == yuvColorSpace) {
// To test the identity color space we use JPEG YUV planes
yuvColorSpace = kJPEG_SkYUVColorSpace;
}
SkASSERT(!(bm.width() % 2));
SkASSERT(!(bm.height() % 2));
planes->fYFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fUFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fVFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fAFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height()));
planes->fUQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2,
kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fVQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2,
kGray_8_SkColorType, kUnpremul_SkAlphaType));
planes->fFull.allocPixels(
SkImageInfo::Make(bm.dimensions(), kRGBA_F32_SkColorType, kUnpremul_SkAlphaType));
planes->fQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2,
kRGBA_F32_SkColorType, kUnpremul_SkAlphaType));
float mtx[20];
SkColorMatrix_RGB2YUV(yuvColorSpace, mtx);
SkColor4f* dst = (SkColor4f *) planes->fFull.getAddr(0, 0);
for (int y = 0; y < bm.height(); ++y) {
for (int x = 0; x < bm.width(); ++x) {
SkColor col = bm.getColor(x, y);
uint8_t yuva[4];
convert_rgba_to_yuva(mtx, col, yuva);
*planes->fYFull.getAddr8(x, y) = yuva[0];
*planes->fUFull.getAddr8(x, y) = yuva[1];
*planes->fVFull.getAddr8(x, y) = yuva[2];
*planes->fAFull.getAddr8(x, y) = yuva[3];
// TODO: render in F32 rather than converting here
dst->fR = yuva[0] / 255.0f;
dst->fG = yuva[1] / 255.0f;
dst->fB = yuva[2] / 255.0f;
dst->fA = yuva[3] / 255.0f;
++dst;
}
}
dst = (SkColor4f *) planes->fQuarter.getAddr(0, 0);
for (int y = 0; y < bm.height()/2; ++y) {
for (int x = 0; x < bm.width()/2; ++x) {
uint32_t yAccum = 0, uAccum = 0, vAccum = 0, aAccum = 0;
yAccum += *planes->fYFull.getAddr8(2*x, 2*y);
yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y);
yAccum += *planes->fYFull.getAddr8(2*x, 2*y+1);
yAccum += *planes->fYFull.getAddr8(2*x+1, 2*y+1);
uAccum += *planes->fUFull.getAddr8(2*x, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1);
*planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f;
vAccum += *planes->fVFull.getAddr8(2*x, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1);
*planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f;
aAccum += *planes->fAFull.getAddr8(2*x, 2*y);
aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y);
aAccum += *planes->fAFull.getAddr8(2*x, 2*y+1);
aAccum += *planes->fAFull.getAddr8(2*x+1, 2*y+1);
// TODO: render in F32 rather than converting here
dst->fR = yAccum / (4.0f * 255.0f);
dst->fG = uAccum / (4.0f * 255.0f);
dst->fB = vAccum / (4.0f * 255.0f);
dst->fA = aAccum / (4.0f * 255.0f);
++dst;
}
}
}
// Create a 2x2 downsampled SkBitmap. It is stored in an RG texture. It can optionally be
// uv (i.e., NV12) or vu (i.e., NV21).
static SkBitmap make_quarter_2_channel(const SkBitmap& fullY,
const SkBitmap& quarterU,
const SkBitmap& quarterV,
bool uv) {
SkBitmap result;
result.allocPixels(SkImageInfo::Make(fullY.width()/2,
fullY.height()/2,
kR8G8_unorm_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < fullY.height()/2; ++y) {
for (int x = 0; x < fullY.width()/2; ++x) {
uint8_t u8 = *quarterU.getAddr8(x, y);
uint8_t v8 = *quarterV.getAddr8(x, y);
if (uv) {
*result.getAddr16(x, y) = (v8 << 8) | u8;
} else {
*result.getAddr16(x, y) = (u8 << 8) | v8;
}
}
}
return result;
}
// Create some flavor of a 16bits/channel bitmap from a RGBA_F32 source
static SkBitmap make_16(const SkBitmap& src, SkColorType dstCT,
std::function<void(uint16_t* dstPixel, const float* srcPixel)> convert) {
SkASSERT(src.colorType() == kRGBA_F32_SkColorType);
SkBitmap result;
result.allocPixels(SkImageInfo::Make(src.dimensions(), dstCT, kUnpremul_SkAlphaType));
for (int y = 0; y < src.height(); ++y) {
for (int x = 0; x < src.width(); ++x) {
const float* srcPixel = (const float*) src.getAddr(x, y);
uint16_t* dstPixel = (uint16_t*) result.getAddr(x, y);
convert(dstPixel, srcPixel);
}
}
return result;
}
static uint16_t flt_2_uint16(float flt) { return SkScalarRoundToInt(flt * 65535.0f); }
// Recombine the separate planes into some YUV format. Returns the number of planes.
static int create_YUV(const PlaneData& planes,
YUVFormat yuvFormat,
SkBitmap resultBMs[],
bool opaque) {
int nextLayer = 0;
switch (yuvFormat) {
case kY416_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kR16G16B16A16_unorm_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = flt_2_uint16(srcPixel[1]); // U
dstPixel[1] = flt_2_uint16(srcPixel[0]); // Y
dstPixel[2] = flt_2_uint16(srcPixel[2]); // V
dstPixel[3] = flt_2_uint16(srcPixel[3]); // A
});
break;
}
case kAYUV_YUVFormat: {
SkBitmap yuvaFull;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_8888_SkColorType, kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
uint8_t Y = *planes.fYFull.getAddr8(x, y);
uint8_t U = *planes.fUFull.getAddr8(x, y);
uint8_t V = *planes.fVFull.getAddr8(x, y);
uint8_t A = *planes.fAFull.getAddr8(x, y);
// NOT premul!
// V and Y swapped to match RGBA layout
SkColor c = SkColorSetARGB(A, V, U, Y);
*yuvaFull.getAddr32(x, y) = c;
}
}
resultBMs[nextLayer++] = yuvaFull;
break;
}
case kY410_YUVFormat: {
SkBitmap yuvaFull;
uint32_t Y, U, V;
uint8_t A;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_1010102_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
Y = SkScalarRoundToInt((*planes.fYFull.getAddr8(x, y) / 255.0f) * 1023.0f);
U = SkScalarRoundToInt((*planes.fUFull.getAddr8(x, y) / 255.0f) * 1023.0f);
V = SkScalarRoundToInt((*planes.fVFull.getAddr8(x, y) / 255.0f) * 1023.0f);
A = SkScalarRoundToInt((*planes.fAFull.getAddr8(x, y) / 255.0f) * 3.0f);
// NOT premul!
*yuvaFull.getAddr32(x, y) = (A << 30) | (V << 20) | (Y << 10) | (U << 0);
}
}
resultBMs[nextLayer++] = yuvaFull;
break;
}
case kP016_YUVFormat: // fall through
case kP010_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t val16 = flt_2_uint16(srcPixel[0]);
dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0)
: val16;
});
resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t u16 = flt_2_uint16(srcPixel[1]);
uint16_t v16 = flt_2_uint16(srcPixel[2]);
dstPixel[0] = tenBitsPP ? (u16 & 0xFFC0) : u16;
dstPixel[1] = tenBitsPP ? (v16 & 0xFFC0) : v16;
});
if (!opaque) {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_unorm_SkColorType,
[tenBitsPP = (yuvFormat == kP010_YUVFormat)]
(uint16_t* dstPixel, const float* srcPixel) {
uint16_t val16 = flt_2_uint16(srcPixel[3]);
dstPixel[0] = tenBitsPP ? (val16 & 0xFFC0)
: val16;
});
}
return nextLayer;
}
case kP016F_YUVFormat: {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[0]);
});
resultBMs[nextLayer++] = make_16(planes.fQuarter, kR16G16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[1]);
dstPixel[1] = SkFloatToHalf(srcPixel[2]);
});
if (!opaque) {
resultBMs[nextLayer++] = make_16(planes.fFull, kA16_float_SkColorType,
[] (uint16_t* dstPixel, const float* srcPixel) {
dstPixel[0] = SkFloatToHalf(srcPixel[3]);
});
}
return nextLayer;
}
case kNV12_YUVFormat: {
SkBitmap uvQuarter = make_quarter_2_channel(planes.fYFull,
planes.fUQuarter,
planes.fVQuarter, true);
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = uvQuarter;
break;
}
case kNV21_YUVFormat: {
SkBitmap vuQuarter = make_quarter_2_channel(planes.fYFull,
planes.fUQuarter,
planes.fVQuarter, false);
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = vuQuarter;
break;
}
case kI420_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fUQuarter;
resultBMs[nextLayer++] = planes.fVQuarter;
break;
case kYV12_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fVQuarter;
resultBMs[nextLayer++] = planes.fUQuarter;
break;
}
if (!YUVAFormatPlanarConfig(yuvFormat).hasAlpha() && !opaque) {
resultBMs[nextLayer++] = planes.fAFull;
}
return nextLayer;
}
static uint8_t look_up(float x1, float y1, const SkBitmap& bm, int channelIdx) {
SkASSERT(x1 > 0 && x1 < 1.0f);
SkASSERT(y1 > 0 && y1 < 1.0f);
int x = SkScalarFloorToInt(x1 * bm.width());
int y = SkScalarFloorToInt(y1 * bm.height());
auto channelMask = SkColorTypeChannelFlags(bm.colorType());
SkColorChannel channel;
SkAssertResult(YUVAPlanarConfig::ChannelIndexToChannel(channelMask, channelIdx, &channel));
auto ii = SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, bm.alphaType(), bm.refColorSpace());
uint32_t pixel;
SkAssertResult(bm.readPixels(ii, &pixel, sizeof(pixel), x, y));
int shift = static_cast<int>(channel) * 8;
return static_cast<uint8_t>((pixel >> shift) & 0xff);
}
class YUVGenerator : public SkImageGenerator {
public:
YUVGenerator(const SkImageInfo& ii,
SkYUVColorSpace yuvColorSpace,
YUVFormat yuvFormat,
bool externalAlphaPlane,
SkBitmap bitmaps[SkYUVASizeInfo::kMaxCount])
: SkImageGenerator(ii)
, fYUVFormat(yuvFormat)
, fYUVColorSpace(yuvColorSpace)
, fExternalAlphaPlane(externalAlphaPlane)
, fAllA8(true) {
SkASSERT(!externalAlphaPlane || !YUVAFormatPlanarConfig(fYUVFormat).hasAlpha());
int numPlanes = this->numPlanes();
for (int i = 0; i < numPlanes; ++i) {
fYUVBitmaps[i] = bitmaps[i];
if (kAlpha_8_SkColorType != fYUVBitmaps[i].colorType()) {
fAllA8 = false;
}
}
}
protected:
bool onGetPixels(const SkImageInfo& info, void* pixels, size_t rowBytes,
const Options&) override {
if (kUnknown_SkColorType == fFlattened.colorType()) {
fFlattened.allocPixels(info);
SkASSERT(kN32_SkColorType == info.colorType());
SkASSERT(kPremul_SkAlphaType == info.alphaType());
float mtx[20];
SkColorMatrix_YUV2RGB(fYUVColorSpace, mtx);
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
float x1 = (x + 0.5f) / info.width();
float y1 = (y + 0.5f) / info.height();
uint8_t yuva[4] = {0, 0, 0, 255};
const auto& planarConfig = YUVAFormatPlanarConfig(fYUVFormat);
using YUVAChannel = YUVAPlanarConfig::YUVAChannel;
for (auto c : {YUVAChannel::kY, YUVAChannel::kU, YUVAChannel::kV}) {
const auto& bmp = fYUVBitmaps[planarConfig.planeIndex(c)];
int channelIdx = planarConfig.channelIndex(c);
yuva[static_cast<int>(c)] = look_up(x1, y1, bmp, channelIdx);
}
if (planarConfig.hasAlpha()) {
const auto& bmp = fYUVBitmaps[planarConfig.planeIndex(YUVAChannel::kA)];
int channelIdx = planarConfig.channelIndex(YUVAChannel::kA);
yuva[3] = look_up(x1, y1, bmp, channelIdx);
} else if (fExternalAlphaPlane) {
const auto& bmp = fYUVBitmaps[this->numPlanes() - 1];
yuva[3] = look_up(x1, y1, bmp, 0);
}
// Making premul here.
*fFlattened.getAddr32(x, y) = convert_yuva_to_rgba(mtx, yuva);
}
}
}
return fFlattened.readPixels(info, pixels, rowBytes, 0, 0);
}
bool onQueryYUVA8(SkYUVASizeInfo* size,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkYUVColorSpace* yuvColorSpace) const override {
if (!fAllA8) {
return false;
}
const auto& planarConfig = YUVAFormatPlanarConfig(fYUVFormat);
if (!planarConfig.getYUVAIndices(fYUVBitmaps, this->numPlanes(), fExternalAlphaPlane,
yuvaIndices)) {
return false;
}
*yuvColorSpace = fYUVColorSpace;
int numPlanes = this->numPlanes();
int i = 0;
for (; i < numPlanes; ++i) {
size->fSizes[i].fWidth = fYUVBitmaps[i].width();
size->fSizes[i].fHeight = fYUVBitmaps[i].height();
size->fWidthBytes[i] = fYUVBitmaps[i].rowBytes();
}
for ( ; i < SkYUVASizeInfo::kMaxCount; ++i) {
size->fSizes[i].fWidth = 0;
size->fSizes[i].fHeight = 0;
size->fWidthBytes[i] = 0;
}
return true;
}
bool onGetYUVA8Planes(const SkYUVASizeInfo&, const SkYUVAIndex[SkYUVAIndex::kIndexCount],
void* planes[SkYUVASizeInfo::kMaxCount]) override {
SkASSERT(fAllA8);
int numPlanes = this->numPlanes();
for (int i = 0; i < numPlanes; ++i) {
planes[i] = fYUVBitmaps[i].getPixels();
}
return true;
}
private:
int numPlanes() const {
return YUVAFormatPlanarConfig(fYUVFormat).numPlanes() + SkToInt(fExternalAlphaPlane);
}
YUVFormat fYUVFormat;
SkYUVColorSpace fYUVColorSpace;
bool fExternalAlphaPlane;
SkBitmap fYUVBitmaps[SkYUVASizeInfo::kMaxCount];
SkBitmap fFlattened;
bool fAllA8; // are all the SkBitmaps in "fYUVBitmaps" A8?
};
static sk_sp<SkImage> make_yuv_gen_image(const SkImageInfo& ii,
YUVFormat yuvFormat,
SkYUVColorSpace yuvColorSpace,
bool opaque,
SkBitmap bitmaps[]) {
bool externalAlphaPlane = !opaque && !YUVAFormatPlanarConfig(yuvFormat).hasAlpha();
std::unique_ptr<SkImageGenerator> gen(
new YUVGenerator(ii, yuvColorSpace, yuvFormat, externalAlphaPlane, bitmaps));
return SkImage::MakeFromGenerator(std::move(gen));
}
static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) {
static const char* kYUVColorSpaceNames[] = {"JPEG", "601", "709F", "709L",
"2020_8F", "2020_8L", "2020_10F", "2020_10L",
"2020_12F", "2020_12L", "Identity"};
static_assert(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace + 1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString colLabel;
colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]);
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
int y = textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
colLabel.printf("%s", opaque ? "Opaque" : "Transparent");
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
}
static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) {
static const char* kYUVFormatNames[] = {
"P016", "P010", "P016F", "Y416", "AYUV", "Y410", "NV12", "NV21", "I420", "YV12"
};
static_assert(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat + 1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString rowLabel;
rowLabel.printf("%s", kYUVFormatNames[yuvFormat]);
font.measureText(rowLabel.c_str(), rowLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += kTileWidthHeight/2 + textRect.height()/2;
canvas->drawString(rowLabel, 0, y, font, paint);
}
static GrBackendTexture create_yuva_texture(GrDirectContext* context, const SkBitmap& bm, int index,
YUVABackendReleaseContext* releaseContext) {
return context->createBackendTexture(bm.pixmap(), GrRenderable::kNo, GrProtected::kNo,
YUVABackendReleaseContext::CreationCompleteProc(index),
releaseContext);
}
static sk_sp<SkColorFilter> yuv_to_rgb_colorfilter() {
static const float kJPEGConversionMatrix[20] = {
1.0f, 0.0f, 1.402f, 0.0f, -180.0f/255,
1.0f, -0.344136f, -0.714136f, 0.0f, 136.0f/255,
1.0f, 1.772f, 0.0f, 0.0f, -227.6f/255,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f
};
return SkColorFilters::Matrix(kJPEGConversionMatrix);
}
// Get the SkColorType to use when creating an SkSurface wrapping 'format'.
static SkColorType get_color_type(const GrBackendFormat& format) {
GrGLFormat glFormat = format.asGLFormat();
if (GrGLFormat::kUnknown != glFormat) {
switch (glFormat) {
case GrGLFormat::kLUMINANCE8: // fall through
case GrGLFormat::kR8: // fall through
case GrGLFormat::kALPHA8: return kAlpha_8_SkColorType;
case GrGLFormat::kRG8: return kR8G8_unorm_SkColorType;
case GrGLFormat::kRGB8: return kRGB_888x_SkColorType;
case GrGLFormat::kRGBA8: return kRGBA_8888_SkColorType;
case GrGLFormat::kBGRA8: return kBGRA_8888_SkColorType;
case GrGLFormat::kRGB10_A2: return kRGBA_1010102_SkColorType;
case GrGLFormat::kLUMINANCE16F: // fall through
case GrGLFormat::kR16F: return kA16_float_SkColorType;
case GrGLFormat::kRG16F: return kR16G16_float_SkColorType;
case GrGLFormat::kR16: return kA16_unorm_SkColorType;
case GrGLFormat::kRG16: return kR16G16_unorm_SkColorType;
case GrGLFormat::kRGBA16: return kR16G16B16A16_unorm_SkColorType;
default: return kUnknown_SkColorType;
}
SkUNREACHABLE;
}
VkFormat vkFormat;
if (format.asVkFormat(&vkFormat)) {
switch (vkFormat) {
case VK_FORMAT_R8_UNORM: return kAlpha_8_SkColorType;
case VK_FORMAT_R8G8_UNORM: return kR8G8_unorm_SkColorType;
case VK_FORMAT_R8G8B8_UNORM: return kRGB_888x_SkColorType;
case VK_FORMAT_R8G8B8A8_UNORM: return kRGBA_8888_SkColorType;
case VK_FORMAT_B8G8R8A8_UNORM: return kBGRA_8888_SkColorType;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32: return kRGBA_1010102_SkColorType;
case VK_FORMAT_A2R10G10B10_UNORM_PACK32: return kBGRA_1010102_SkColorType;
case VK_FORMAT_R16_SFLOAT: return kA16_float_SkColorType;
case VK_FORMAT_R16G16_SFLOAT: return kR16G16_float_SkColorType;
case VK_FORMAT_R16_UNORM: return kA16_unorm_SkColorType;
case VK_FORMAT_R16G16_UNORM: return kR16G16_unorm_SkColorType;
case VK_FORMAT_R16G16B16A16_UNORM: return kR16G16B16A16_unorm_SkColorType;
default: return kUnknown_SkColorType;
}
SkUNREACHABLE;
}
return kUnknown_SkColorType;
}
namespace skiagm {
// This GM creates an opaque and transparent bitmap, extracts the planes and then recombines
// them into various YUV formats. It then renders the results in the grid:
//
// JPEG 601 709 Identity
// Transparent Opaque Transparent Opaque Transparent Opaque Transparent Opaque
// originals
// P016
// P010
// P016F
// Y416
// AYUV
// Y410
// NV12
// NV21
// I420
// YV12
class WackyYUVFormatsGM : public GM {
public:
WackyYUVFormatsGM(bool useTargetColorSpace, bool useDomain, bool quarterSize)
: fUseTargetColorSpace(useTargetColorSpace)
, fUseDomain(useDomain)
, fQuarterSize(quarterSize) {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
SkString name("wacky_yuv_formats");
if (fUseTargetColorSpace) {
name += "_cs";
}
if (fUseDomain) {
name += "_domain";
}
if (fQuarterSize) {
name += "_qtr";
}
return name;
}
SkISize onISize() override {
int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x #-color-spaces
int numRows = 1 + (kLast_YUVFormat + 1); // original + #-yuv-formats
int wh = SkScalarCeilToInt(kTileWidthHeight * (fUseDomain ? 1.5f : 1.f));
return SkISize::Make(kLabelWidth + numCols * (wh + kPad),
kLabelHeight + numRows * (wh + kPad));
}
void createBitmaps() {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kRGBA_8888_SkColorType, path, circles, false, fUseDomain);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kRGBA_8888_SkColorType, path, circles, true, fUseDomain);
}
if (fUseTargetColorSpace) {
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
}
// Resize all the backend textures in 'yuvaTextures' to a quarter their size.
sk_sp<SkImage> resizeOnGpu(GrDirectContext* dContext,
YUVFormat yuvFormat,
SkYUVColorSpace yuvColorSpace,
bool opaque,
const GrBackendTexture yuvaTextures[],
const SkYUVAIndex yuvaIndices[4],
int numTextures,
SkISize imageSize) {
auto releaseContext = new YUVABackendReleaseContext(dContext);
for (int i = 0; i < numTextures; ++i) {
const GrBackendTexture& curTex = yuvaTextures[i];
SkColorType ct = get_color_type(curTex.getBackendFormat());
if (ct == kUnknown_SkColorType || !dContext->colorTypeSupportedAsSurface(ct)) {
YUVABackendReleaseContext::Unwind(dContext, releaseContext, true);
return nullptr;
}
if (ct == kRGBA_8888_SkColorType || ct == kRGBA_1010102_SkColorType) {
// We disallow resizing AYUV and Y410 formats on the GPU bc resizing them w/ a
// premul draw combines the YUV channels w/ the A channel in an inappropriate
// manner.
YUVABackendReleaseContext::Unwind(dContext, releaseContext, true);
return nullptr;
}
SkISize shrunkPlaneSize = {curTex.width() / 2, curTex.height() / 2 };
sk_sp<SkImage> wrappedOrig = SkImage::MakeFromTexture(dContext, curTex,
kTopLeft_GrSurfaceOrigin,
ct,
kPremul_SkAlphaType,
nullptr);
GrBackendTexture tmp = dContext->createBackendTexture(shrunkPlaneSize.width(),
shrunkPlaneSize.height(),
curTex.getBackendFormat(),
GrMipmapped::kNo,
GrRenderable::kYes);
if (!tmp.isValid()) {
YUVABackendReleaseContext::Unwind(dContext, releaseContext, true);
return nullptr;
}
releaseContext->set(i, tmp);
// uninitialized beTextures don't have any pending work
releaseContext->setCreationComplete(i);
sk_sp<SkSurface> s = SkSurface::MakeFromBackendTexture(dContext, tmp,
kTopLeft_GrSurfaceOrigin, 0,
ct, nullptr, nullptr);
if (!s) {
YUVABackendReleaseContext::Unwind(dContext, releaseContext, true);
return nullptr;
}
SkCanvas* c = s->getCanvas();
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
c->drawImageRect(wrappedOrig,
SkRect::MakeWH(shrunkPlaneSize.width(), shrunkPlaneSize.height()),
&paint);
s->flushAndSubmit();
}
SkISize shrunkImageSize = { imageSize.width() / 2, imageSize.height() / 2 };
return SkImage::MakeFromYUVATextures(dContext,
yuvColorSpace,
releaseContext->beTextures(),
yuvaIndices,
shrunkImageSize,
kTopLeft_GrSurfaceOrigin,
nullptr,
YUVABackendReleaseContext::Release,
releaseContext);
}
bool createImages(GrDirectContext* dContext) {
int counter = 0;
for (bool opaque : { false, true }) {
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque], (SkYUVColorSpace) cs, &planes);
for (int f = kP016_YUVFormat; f <= kLast_YUVFormat; ++f) {
auto format = static_cast<YUVFormat>(f);
SkBitmap resultBMs[4];
int numTextures = create_YUV(planes, format, resultBMs, opaque);
if (dContext) {
fGpuGeneratedImages = true;
if (dContext->abandoned()) {
return false;
}
if (!is_format_natively_supported(dContext, format)) {
continue;
}
auto releaseCtx = new YUVABackendReleaseContext(dContext);
for (int i = 0; i < numTextures; ++i) {
GrBackendTexture tmp = create_yuva_texture(dContext, resultBMs[i], i,
releaseCtx);
if (!tmp.isValid()) {
YUVABackendReleaseContext::Unwind(dContext, releaseCtx, false);
return false;
}
releaseCtx->set(i, tmp);
}
SkYUVAIndex yuvaIndices[4];
const auto& planarConfig = YUVAFormatPlanarConfig(format);
bool externalAlphaPlane = !opaque && !planarConfig.hasAlpha();
if (!planarConfig.getYUVAIndices(releaseCtx->beTextures(), numTextures,
externalAlphaPlane, yuvaIndices)) {
YUVABackendReleaseContext::Unwind(dContext, releaseCtx, false);
continue;
}
if (fQuarterSize) {
fImages[opaque][cs][format] =
this->resizeOnGpu(dContext,
format,
(SkYUVColorSpace)cs,
opaque,
releaseCtx->beTextures(),
yuvaIndices,
numTextures,
fOriginalBMs[opaque].dimensions());
YUVABackendReleaseContext::Unwind(dContext, releaseCtx, true);
} else {
int counterMod = counter % 3;
if (fUseDomain && counterMod == 0) {
// Copies flatten to RGB when they copy the YUVA data, which doesn't
// know about the intended domain and the domain padding bleeds in
counterMod = 1;
}
const SkISize imgSize { fOriginalBMs[opaque].width(),
fOriginalBMs[opaque].height() };
switch (counterMod) {
case 0:
fImages[opaque][cs][format] = SkImage::MakeFromYUVATexturesCopy(
dContext,
(SkYUVColorSpace)cs,
releaseCtx->beTextures(),
yuvaIndices,
imgSize,
kTopLeft_GrSurfaceOrigin);
YUVABackendReleaseContext::Unwind(dContext, releaseCtx, true);
break;
case 1:
fImages[opaque][cs][format] = SkImage::MakeFromYUVATextures(
dContext,
(SkYUVColorSpace)cs,
releaseCtx->beTextures(),
yuvaIndices,
imgSize,
kTopLeft_GrSurfaceOrigin,
nullptr,
YUVABackendReleaseContext::Release,
releaseCtx);
break;
case 2:
default: {
// TODO: we did a lot of work to delete these here
YUVABackendReleaseContext::Unwind(dContext, releaseCtx, false);
SkPixmap yuvaPixmaps[4];
for (int i = 0; i < numTextures; ++i) {
yuvaPixmaps[i] = resultBMs[i].pixmap();
}
fImages[opaque][cs][format] = SkImage::MakeFromYUVAPixmaps(
dContext,
(SkYUVColorSpace)cs,
yuvaPixmaps,
yuvaIndices,
imgSize,
kTopLeft_GrSurfaceOrigin, true);
break;
}
}
++counter;
}
} else {
SkImageInfo ii = SkImageInfo::MakeN32(fOriginalBMs[opaque].width(),
fOriginalBMs[opaque].height(),
kPremul_SkAlphaType);
fImages[opaque][cs][format] = make_yuv_gen_image(
ii, format, (SkYUVColorSpace)cs, opaque, resultBMs);
}
}
}
}
if (dContext) {
// Some backends (e.g., Vulkan) require all work be completed for backend textures
// before they are deleted. Since we don't know when we'll next have access to a
// direct context, flush all the work now.
dContext->flush();
dContext->submit(true);
}
return true;
}
DrawResult onGpuSetup(GrDirectContext* dContext, SkString* errorMsg) override {
this->createBitmaps();
if (dContext && dContext->abandoned()) {
// This isn't a GpuGM so a null 'context' is okay but an abandoned context
// if forbidden.
return DrawResult::kSkip;
}
if (!this->createImages(dContext)) {
*errorMsg = "Failed to create YUV images";
return DrawResult::kFail;
}
return DrawResult::kOk;
}
void onGpuTeardown() override {
for (int i = 0; i < 2; ++i) {
for (int j = 0; j <= kLastEnum_SkYUVColorSpace; ++j) {
for (int k = 0; k <= kLast_YUVFormat; ++k) {
fImages[i][j][k] = nullptr;
}
}
}
}
void onDraw(SkCanvas* canvas) override {
float cellWidth = kTileWidthHeight, cellHeight = kTileWidthHeight;
if (fUseDomain) {
cellWidth *= 1.5f;
cellHeight *= 1.5f;
}
auto direct = GrAsDirectContext(canvas->recordingContext());
SkRect origSrcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height());
SkRect srcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height());
SkRect dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, srcRect.width(), srcRect.height());
if (fQuarterSize) {
if (fGpuGeneratedImages) {
// The src is only shrunk on the GPU
srcRect = SkRect::MakeWH(fOriginalBMs[0].width()/2.0f,
fOriginalBMs[0].height()/2.0f);
}
// but the dest is always drawn smaller
dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f,
fOriginalBMs[0].width()/2.0f,
fOriginalBMs[0].height()/2.0f);
}
SkCanvas::SrcRectConstraint constraint = SkCanvas::kFast_SrcRectConstraint;
if (fUseDomain) {
srcRect.inset(kDomainPadding, kDomainPadding);
origSrcRect.inset(kDomainPadding, kDomainPadding);
// Draw a larger rectangle to ensure bilerp filtering would normally read outside the
// srcRect and hit the red pixels, if strict constraint weren't used.
dstRect.fRight = kLabelWidth + 1.5f * srcRect.width();
dstRect.fBottom = 1.5f * srcRect.height();
constraint = SkCanvas::kStrict_SrcRectConstraint;
}
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
SkPaint paint;
paint.setFilterQuality(kLow_SkFilterQuality);
if (kIdentity_SkYUVColorSpace == cs) {
// The identity color space needs post processing to appear correctly
paint.setColorFilter(yuv_to_rgb_colorfilter());
}
for (int opaque : { 0, 1 }) {
dstRect.offsetTo(dstRect.fLeft, kLabelHeight);
draw_col_label(canvas, dstRect.fLeft + cellWidth / 2, cs, opaque);
canvas->drawBitmapRect(fOriginalBMs[opaque], origSrcRect, dstRect,
nullptr, constraint);
dstRect.offset(0.f, cellHeight + kPad);
for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) {
draw_row_label(canvas, dstRect.fTop, format);
if (fUseTargetColorSpace && fImages[opaque][cs][format]) {
// Making a CS-specific version of a kIdentity_SkYUVColorSpace YUV image
// doesn't make a whole lot of sense. The colorSpace conversion will
// operate on the YUV components rather than the RGB components.
sk_sp<SkImage> csImage =
fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace, direct);
canvas->drawImageRect(csImage, srcRect, dstRect, &paint, constraint);
} else {
canvas->drawImageRect(fImages[opaque][cs][format], srcRect, dstRect,
&paint, constraint);
}
dstRect.offset(0.f, cellHeight + kPad);
}
dstRect.offset(cellWidth + kPad, 0.f);
}
}
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1];
bool fUseTargetColorSpace;
bool fUseDomain;
bool fQuarterSize;
sk_sp<SkColorSpace> fTargetColorSpace;
bool fGpuGeneratedImages = false;
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false, /* quarterSize */ false);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false, /* quarterSize */ true);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ true, /* domain */ false, /* quarterSize */ false);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ true, /* quarterSize */ false);)
class YUVMakeColorSpaceGM : public GpuGM {
public:
YUVMakeColorSpaceGM() {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
return SkString("yuv_make_color_space");
}
SkISize onISize() override {
int numCols = 4; // (transparent, opaque) x (untagged, tagged)
int numRows = 5; // original, YUV, subset, makeNonTextureImage, readPixels
return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad,
numRows * (kTileWidthHeight + kPad) + kPad);
}
void createBitmaps() {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kN32_SkColorType, path, circles, false, false);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kN32_SkColorType, path, circles, true, false);
}
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
bool createImages(GrDirectContext* context) {
for (bool opaque : { false, true }) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque], kJPEG_SkYUVColorSpace, &planes);
SkBitmap resultBMs[4];
create_YUV(planes, kAYUV_YUVFormat, resultBMs, opaque);
auto& planarConfig = YUVAFormatPlanarConfig(kAYUV_YUVFormat);
int numPlanes = planarConfig.numPlanes();
auto releaseContext = new YUVABackendReleaseContext(context);
auto srgbReleaseContext = new YUVABackendReleaseContext(context);
for (int i = 0; i < numPlanes; ++i) {
GrBackendTexture tmp = create_yuva_texture(context, resultBMs[i], i,
releaseContext);
if (!tmp.isValid()) {
YUVABackendReleaseContext::Unwind(context, releaseContext, false);
YUVABackendReleaseContext::Unwind(context, srgbReleaseContext, false);
return false;
}
releaseContext->set(i, tmp);
tmp = create_yuva_texture(context, resultBMs[i], i, srgbReleaseContext);
if (!tmp.isValid()) {
YUVABackendReleaseContext::Unwind(context, releaseContext, false);
YUVABackendReleaseContext::Unwind(context, srgbReleaseContext, false);
return false;
}
srgbReleaseContext->set(i, tmp);
}
SkYUVAIndex yuvaIndices[4];
planarConfig.getYUVAIndices(releaseContext->beTextures(), numPlanes,
false, yuvaIndices);
fImages[opaque][0] = SkImage::MakeFromYUVATextures(
context,
kJPEG_SkYUVColorSpace,
releaseContext->beTextures(),
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin, nullptr,
YUVABackendReleaseContext::Release, releaseContext);
fImages[opaque][1] = SkImage::MakeFromYUVATextures(
context,
kJPEG_SkYUVColorSpace,
srgbReleaseContext->beTextures(),
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin,
SkColorSpace::MakeSRGB(),
YUVABackendReleaseContext::Release, srgbReleaseContext);
}
// Some backends (e.g., Vulkan) require all work be completed for backend textures before
// they are deleted. Since we don't know when we'll next have access to a direct context,
// flush all the work now.
context->flush();
context->submit(true);
return true;
}
DrawResult onGpuSetup(GrDirectContext* context, SkString* errorMsg) override {
if (!context || context->abandoned()) {
return DrawResult::kSkip;
}
this->createBitmaps();
if (!this->createImages(context)) {
*errorMsg = "Failed to create YUV images";
return DrawResult::kFail;
}
return DrawResult::kOk;
}
void onGpuTeardown() override {
fImages[0][0] = fImages[0][1] = fImages[1][0] = fImages[1][1] = nullptr;
}
DrawResult onDraw(GrRecordingContext* recording, GrRenderTargetContext*,
SkCanvas* canvas, SkString* msg) override {
SkASSERT(fImages[0][0] && fImages[0][1] && fImages[1][0] && fImages[1][1]);
auto direct = GrAsDirectContext(recording);
if (recording && !direct) {
*msg = "YUV ColorSpace image creation requires a direct context.";
return DrawResult::kSkip;
}
int x = kPad;
for (int tagged : { 0, 1 }) {
for (int opaque : { 0, 1 }) {
int y = kPad;
auto raster = SkImage::MakeFromBitmap(fOriginalBMs[opaque])
->makeColorSpace(fTargetColorSpace, nullptr);
canvas->drawImage(raster, x, y);
y += kTileWidthHeight + kPad;
if (fImages[opaque][tagged]) {
auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace, direct);
SkASSERT(yuv);
SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get()));
canvas->drawImage(yuv, x, y);
y += kTileWidthHeight + kPad;
SkIRect bounds = SkIRect::MakeWH(kTileWidthHeight / 2, kTileWidthHeight / 2);
auto subset = yuv->makeSubset(bounds, direct);
SkASSERT(subset);
canvas->drawImage(subset, x, y);
y += kTileWidthHeight + kPad;
auto nonTexture = yuv->makeNonTextureImage();
SkASSERT(nonTexture);
canvas->drawImage(nonTexture, x, y);
y += kTileWidthHeight + kPad;
SkBitmap readBack;
readBack.allocPixels(yuv->imageInfo());
SkAssertResult(yuv->readPixels(readBack.pixmap(), 0, 0));
canvas->drawBitmap(readBack, x, y);
}
x += kTileWidthHeight + kPad;
}
}
return DrawResult::kOk;
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][2];
sk_sp<SkColorSpace> fTargetColorSpace;
typedef GM INHERITED;
};
DEF_GM(return new YUVMakeColorSpaceGM();)
}
///////////////
#include "include/effects/SkColorMatrix.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "tools/Resources.h"
static void draw_into_alpha(const SkImage* img, sk_sp<SkColorFilter> cf, const SkPixmap& dst) {
auto canvas = SkCanvas::MakeRasterDirect(dst.info(), dst.writable_addr(), dst.rowBytes());
canvas->scale(1.0f * dst.width() / img->width(), 1.0f * dst.height() / img->height());
SkPaint paint;
paint.setFilterQuality(kLow_SkFilterQuality);
paint.setColorFilter(cf);
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawImage(img, 0, 0, &paint);
}
static void split_into_yuv(const SkImage* img, SkYUVColorSpace cs, const SkPixmap dst[3]) {
float m[20];
SkColorMatrix_RGB2YUV(cs, m);
memcpy(m + 15, m + 0, 5 * sizeof(float)); // copy Y into A
draw_into_alpha(img, SkColorFilters::Matrix(m), dst[0]);
memcpy(m + 15, m + 5, 5 * sizeof(float)); // copy U into A
draw_into_alpha(img, SkColorFilters::Matrix(m), dst[1]);
memcpy(m + 15, m + 10, 5 * sizeof(float)); // copy V into A
draw_into_alpha(img, SkColorFilters::Matrix(m), dst[2]);
}
static void draw_diff(SkCanvas* canvas, SkScalar x, SkScalar y,
const SkImage* a, const SkImage* b) {
auto sh = SkShaders::Blend(SkBlendMode::kDifference, a->makeShader(), b->makeShader());
SkPaint paint;
paint.setShader(sh);
canvas->save();
canvas->translate(x, y);
canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint);
SkColorMatrix cm;
cm.setScale(64, 64, 64);
paint.setShader(sh->makeWithColorFilter(SkColorFilters::Matrix(cm)));
canvas->translate(0, a->height());
canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint);
canvas->restore();
}
// Exercises SkColorMatrix_RGB2YUV for yuv colorspaces, showing the planes, and the
// resulting (recombined) images (gpu only for now).
//
class YUVSplitterGM : public skiagm::GM {
sk_sp<SkImage> fOrig;
SkAutoPixmapStorage fStorage[3];
SkPixmap fPM[3];
public:
YUVSplitterGM() {}
protected:
SkString onShortName() override {
return SkString("yuv_splitter");
}
SkISize onISize() override {
return SkISize::Make(1280, 768);
}
void onOnceBeforeDraw() override {
fOrig = GetResourceAsImage("images/mandrill_256.png");
SkImageInfo info = SkImageInfo::Make(fOrig->width(), fOrig->height(), kAlpha_8_SkColorType,
kPremul_SkAlphaType);
fStorage[0].alloc(info);
if (0) {
// if you want to scale U,V down by 1/2
info = info.makeWH(info.width()/2, info.height()/2);
}
fStorage[1].alloc(info);
fStorage[2].alloc(info);
for (int i = 0; i < 3; ++i) {
fPM[i] = fStorage[i];
}
}
void onDraw(SkCanvas* canvas) override {
SkYUVAIndex indices[4];
indices[SkYUVAIndex::kY_Index] = {0, SkColorChannel::kR};
indices[SkYUVAIndex::kU_Index] = {1, SkColorChannel::kR};
indices[SkYUVAIndex::kV_Index] = {2, SkColorChannel::kR};
indices[SkYUVAIndex::kA_Index] = {-1, SkColorChannel::kR};
canvas->translate(fOrig->width(), 0);
canvas->save();
for (auto cs : {kRec709_SkYUVColorSpace, kRec601_SkYUVColorSpace, kJPEG_SkYUVColorSpace,
kBT2020_SkYUVColorSpace}) {
split_into_yuv(fOrig.get(), cs, fPM);
auto img = SkImage::MakeFromYUVAPixmaps(canvas->getGrContext(), cs, fPM, indices,
fPM[0].info().dimensions(),
kTopLeft_GrSurfaceOrigin,
false, false, nullptr);
if (img) {
canvas->drawImage(img, 0, 0, nullptr);
draw_diff(canvas, 0, fOrig->height(), fOrig.get(), img.get());
}
canvas->translate(fOrig->width(), 0);
}
canvas->restore();
canvas->translate(-fOrig->width(), 0);
canvas->drawImage(SkImage::MakeRasterCopy(fPM[0]), 0, 0, nullptr);
canvas->drawImage(SkImage::MakeRasterCopy(fPM[1]), 0, fPM[0].height(), nullptr);
canvas->drawImage(SkImage::MakeRasterCopy(fPM[2]),
0, fPM[0].height() + fPM[1].height(), nullptr);
}
private:
typedef GM INHERITED;
};
DEF_GM( return new YUVSplitterGM; )