6f797092d2
- remove float -> int conversion, keeping float -> byte - remove support for doubles I was thinking of specializing Sk8f for AVX. This will help keep the complexity down. This may cause minor diffs in radial gradients: toBytes() rounds where castTrunc() truncated. But I don't see any diffs in Gold. https://gold.skia.org/search2?issue=1411563008&unt=true&query=source_type%3Dgm&master=false BUG=skia:4117 CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot Review URL: https://codereview.chromium.org/1411563008
223 lines
6.8 KiB
C++
223 lines
6.8 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "Sk4px.h"
|
|
#include "SkNx.h"
|
|
#include "SkRandom.h"
|
|
#include "Test.h"
|
|
|
|
template <int N>
|
|
static void test_Nf(skiatest::Reporter* r) {
|
|
|
|
auto assert_nearly_eq = [&](float eps, const SkNf<N>& v, float a, float b, float c, float d) {
|
|
auto close = [=](float a, float b) { return fabsf(a-b) <= eps; };
|
|
float vals[4];
|
|
v.store(vals);
|
|
bool ok = close(vals[0], a) && close(vals[1], b)
|
|
&& close(v.template kth<0>(), a) && close(v.template kth<1>(), b);
|
|
REPORTER_ASSERT(r, ok);
|
|
if (N == 4) {
|
|
ok = close(vals[2], c) && close(vals[3], d)
|
|
&& close(v.template kth<2>(), c) && close(v.template kth<3>(), d);
|
|
REPORTER_ASSERT(r, ok);
|
|
}
|
|
};
|
|
auto assert_eq = [&](const SkNf<N>& v, float a, float b, float c, float d) {
|
|
return assert_nearly_eq(0, v, a,b,c,d);
|
|
};
|
|
|
|
float vals[] = {3, 4, 5, 6};
|
|
SkNf<N> a = SkNf<N>::Load(vals),
|
|
b(a),
|
|
c = a;
|
|
SkNf<N> d;
|
|
d = a;
|
|
|
|
assert_eq(a, 3, 4, 5, 6);
|
|
assert_eq(b, 3, 4, 5, 6);
|
|
assert_eq(c, 3, 4, 5, 6);
|
|
assert_eq(d, 3, 4, 5, 6);
|
|
|
|
assert_eq(a+b, 6, 8, 10, 12);
|
|
assert_eq(a*b, 9, 16, 25, 36);
|
|
assert_eq(a*b-b, 6, 12, 20, 30);
|
|
assert_eq((a*b).sqrt(), 3, 4, 5, 6);
|
|
assert_eq(a/b, 1, 1, 1, 1);
|
|
assert_eq(SkNf<N>(0)-a, -3, -4, -5, -6);
|
|
|
|
SkNf<N> fours(4);
|
|
|
|
assert_eq(fours.sqrt(), 2,2,2,2);
|
|
assert_nearly_eq(0.001f, fours.rsqrt0(), 0.5, 0.5, 0.5, 0.5);
|
|
assert_nearly_eq(0.001f, fours.rsqrt1(), 0.5, 0.5, 0.5, 0.5);
|
|
assert_nearly_eq(0.001f, fours.rsqrt2(), 0.5, 0.5, 0.5, 0.5);
|
|
|
|
assert_eq( fours. invert(), 0.25, 0.25, 0.25, 0.25);
|
|
assert_nearly_eq(0.001f, fours.approxInvert(), 0.25, 0.25, 0.25, 0.25);
|
|
|
|
assert_eq(SkNf<N>::Min(a, fours), 3, 4, 4, 4);
|
|
assert_eq(SkNf<N>::Max(a, fours), 4, 4, 5, 6);
|
|
|
|
// Test some comparisons. This is not exhaustive.
|
|
REPORTER_ASSERT(r, (a == b).allTrue());
|
|
REPORTER_ASSERT(r, (a+b == a*b-b).anyTrue());
|
|
REPORTER_ASSERT(r, !(a+b == a*b-b).allTrue());
|
|
REPORTER_ASSERT(r, !(a+b == a*b).anyTrue());
|
|
REPORTER_ASSERT(r, !(a != b).anyTrue());
|
|
REPORTER_ASSERT(r, (a < fours).anyTrue());
|
|
REPORTER_ASSERT(r, (a <= fours).anyTrue());
|
|
REPORTER_ASSERT(r, !(a > fours).allTrue());
|
|
REPORTER_ASSERT(r, !(a >= fours).allTrue());
|
|
}
|
|
|
|
DEF_TEST(SkNf, r) {
|
|
test_Nf<2>(r);
|
|
test_Nf<4>(r);
|
|
}
|
|
|
|
template <int N, typename T>
|
|
void test_Ni(skiatest::Reporter* r) {
|
|
auto assert_eq = [&](const SkNi<N,T>& v, T a, T b, T c, T d, T e, T f, T g, T h) {
|
|
T vals[8];
|
|
v.store(vals);
|
|
|
|
switch (N) {
|
|
case 8: REPORTER_ASSERT(r, vals[4] == e && vals[5] == f && vals[6] == g && vals[7] == h);
|
|
case 4: REPORTER_ASSERT(r, vals[2] == c && vals[3] == d);
|
|
case 2: REPORTER_ASSERT(r, vals[0] == a && vals[1] == b);
|
|
}
|
|
switch (N) {
|
|
case 8: REPORTER_ASSERT(r, v.template kth<4>() == e && v.template kth<5>() == f &&
|
|
v.template kth<6>() == g && v.template kth<7>() == h);
|
|
case 4: REPORTER_ASSERT(r, v.template kth<2>() == c && v.template kth<3>() == d);
|
|
case 2: REPORTER_ASSERT(r, v.template kth<0>() == a && v.template kth<1>() == b);
|
|
}
|
|
};
|
|
|
|
T vals[] = { 1,2,3,4,5,6,7,8 };
|
|
SkNi<N,T> a = SkNi<N,T>::Load(vals),
|
|
b(a),
|
|
c = a;
|
|
SkNi<N,T> d;
|
|
d = a;
|
|
|
|
assert_eq(a, 1,2,3,4,5,6,7,8);
|
|
assert_eq(b, 1,2,3,4,5,6,7,8);
|
|
assert_eq(c, 1,2,3,4,5,6,7,8);
|
|
assert_eq(d, 1,2,3,4,5,6,7,8);
|
|
|
|
assert_eq(a+a, 2,4,6,8,10,12,14,16);
|
|
assert_eq(a*a, 1,4,9,16,25,36,49,64);
|
|
assert_eq(a*a-a, 0,2,6,12,20,30,42,56);
|
|
|
|
assert_eq(a >> 2, 0,0,0,1,1,1,1,2);
|
|
assert_eq(a << 1, 2,4,6,8,10,12,14,16);
|
|
|
|
REPORTER_ASSERT(r, a.template kth<1>() == 2);
|
|
}
|
|
|
|
DEF_TEST(SkNi, r) {
|
|
test_Ni<2, uint16_t>(r);
|
|
test_Ni<4, uint16_t>(r);
|
|
test_Ni<8, uint16_t>(r);
|
|
|
|
test_Ni<2, int>(r);
|
|
test_Ni<4, int>(r);
|
|
test_Ni<8, int>(r);
|
|
}
|
|
|
|
DEF_TEST(SkNi_min_lt, r) {
|
|
// Exhaustively check the 8x8 bit space.
|
|
for (int a = 0; a < (1<<8); a++) {
|
|
for (int b = 0; b < (1<<8); b++) {
|
|
Sk16b aw(a), bw(b);
|
|
REPORTER_ASSERT(r, Sk16b::Min(aw, bw).kth<0>() == SkTMin(a, b));
|
|
REPORTER_ASSERT(r, !(aw < bw).kth<0>() == !(a < b));
|
|
}}
|
|
|
|
// Exhausting the 16x16 bit space is kind of slow, so only do that in release builds.
|
|
#ifdef SK_DEBUG
|
|
SkRandom rand;
|
|
for (int i = 0; i < (1<<16); i++) {
|
|
uint16_t a = rand.nextU() >> 16,
|
|
b = rand.nextU() >> 16;
|
|
REPORTER_ASSERT(r, Sk8h::Min(Sk8h(a), Sk8h(b)).kth<0>() == SkTMin(a, b));
|
|
}
|
|
#else
|
|
for (int a = 0; a < (1<<16); a++) {
|
|
for (int b = 0; b < (1<<16); b++) {
|
|
REPORTER_ASSERT(r, Sk8h::Min(Sk8h(a), Sk8h(b)).kth<0>() == SkTMin(a, b));
|
|
}}
|
|
#endif
|
|
}
|
|
|
|
DEF_TEST(SkNi_saturatedAdd, r) {
|
|
for (int a = 0; a < (1<<8); a++) {
|
|
for (int b = 0; b < (1<<8); b++) {
|
|
int exact = a+b;
|
|
if (exact > 255) { exact = 255; }
|
|
if (exact < 0) { exact = 0; }
|
|
|
|
REPORTER_ASSERT(r, Sk16b(a).saturatedAdd(Sk16b(b)).kth<0>() == exact);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_TEST(Sk4px_muldiv255round, r) {
|
|
for (int a = 0; a < (1<<8); a++) {
|
|
for (int b = 0; b < (1<<8); b++) {
|
|
int exact = (a*b+127)/255;
|
|
|
|
// Duplicate a and b 16x each.
|
|
auto av = Sk4px::DupAlpha(a),
|
|
bv = Sk4px::DupAlpha(b);
|
|
|
|
// This way should always be exactly correct.
|
|
int correct = (av * bv).div255().kth<0>();
|
|
REPORTER_ASSERT(r, correct == exact);
|
|
|
|
// We're a bit more flexible on this method: correct for 0 or 255, otherwise off by <=1.
|
|
int fast = av.approxMulDiv255(bv).kth<0>();
|
|
REPORTER_ASSERT(r, fast-exact >= -1 && fast-exact <= 1);
|
|
if (a == 0 || a == 255 || b == 0 || b == 255) {
|
|
REPORTER_ASSERT(r, fast == exact);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_TEST(Sk4px_widening, r) {
|
|
SkPMColor colors[] = {
|
|
SkPreMultiplyColor(0xff00ff00),
|
|
SkPreMultiplyColor(0x40008000),
|
|
SkPreMultiplyColor(0x7f020406),
|
|
SkPreMultiplyColor(0x00000000),
|
|
};
|
|
auto packed = Sk4px::Load4(colors);
|
|
|
|
auto wideLo = packed.widenLo(),
|
|
wideHi = packed.widenHi(),
|
|
wideLoHi = packed.widenLoHi(),
|
|
wideLoHiAlt = wideLo + wideHi;
|
|
REPORTER_ASSERT(r, 0 == memcmp(&wideLoHi, &wideLoHiAlt, sizeof(wideLoHi)));
|
|
}
|
|
|
|
DEF_TEST(Sk4f_toBytes, r) {
|
|
uint8_t bytes[4];
|
|
|
|
// toBytes truncates, not rounds.
|
|
Sk4f(0.7f).toBytes(bytes);
|
|
REPORTER_ASSERT(r, bytes[0] == 0);
|
|
|
|
// Clamping edge cases.
|
|
Sk4f(-2.0f, -0.7f, 255.9f, 256.0f).toBytes(bytes);
|
|
REPORTER_ASSERT(r, bytes[0] == 0);
|
|
REPORTER_ASSERT(r, bytes[1] == 0);
|
|
REPORTER_ASSERT(r, bytes[2] == 255);
|
|
REPORTER_ASSERT(r, bytes[3] == 255);
|
|
}
|