skia2/tests/SkVMTest.cpp
Mike Klein 11efa18eca impl load32
This means we can write a memset32 (load32 -> store32),
tested explicitly with the new unit test.

Slightly changes to the type protocol,
  - load and splat now generate scalars or vectors
    depending on how `scalar` is set
  - store should no longer have to pay attention to `scalar`;
    it's input values will already be the right size

Clean up some of the type declarations where we don't
actually need the subclass types, holding llvm::Type* instead.
This makes using ?: easier.

Change-Id: I2f98701ebdeead0513d355b2666b024794b90193
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/273781
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
2020-02-27 18:50:05 +00:00

1602 lines
48 KiB
C++

/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkColorPriv.h"
#include "include/private/SkColorData.h"
#include "src/core/SkMSAN.h"
#include "src/core/SkVM.h"
#include "tests/Test.h"
#include "tools/Resources.h"
#include "tools/SkVMBuilders.h"
using Fmt = SrcoverBuilder_F32::Fmt;
const char* fmt_name(Fmt fmt) {
switch (fmt) {
case Fmt::A8: return "A8";
case Fmt::G8: return "G8";
case Fmt::RGBA_8888: return "RGBA_8888";
}
return "";
}
static void dump(skvm::Builder& builder, SkWStream* o) {
skvm::Program program = builder.done();
builder.dump(o);
o->writeText("\n");
program.dump(o);
o->writeText("\n");
}
// TODO: I'd like this to go away and have every test in here run both JIT and interpreter.
template <typename Fn>
static void test_interpreter_only(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
REPORTER_ASSERT(r, !program.hasJIT());
test((const skvm::Program&) program);
}
template <typename Fn>
static void test_jit_and_interpreter(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
static const bool can_jit = []{
// This is about the simplest program we can write, setting an int buffer to a constant.
// If this can't JIT, the platform does not support JITing.
skvm::Builder b;
b.store32(b.varying<int>(), b.splat(42));
skvm::Program p = b.done();
return p.hasJIT();
}();
if (can_jit) {
REPORTER_ASSERT(r, program.hasJIT());
test((const skvm::Program&) program);
program.dropJIT();
}
test_interpreter_only(r, std::move(program), std::move(test));
}
DEF_TEST(SkVM, r) {
SkDynamicMemoryWStream buf;
// Write all combinations of SrcoverBuilder_F32
for (int s = 0; s < 3; s++)
for (int d = 0; d < 3; d++) {
auto srcFmt = (Fmt)s,
dstFmt = (Fmt)d;
SrcoverBuilder_F32 builder{srcFmt, dstFmt};
buf.writeText(fmt_name(srcFmt));
buf.writeText(" over ");
buf.writeText(fmt_name(dstFmt));
buf.writeText("\n");
dump(builder, &buf);
}
// Write the I32 Srcovers also.
{
SrcoverBuilder_I32_Naive builder;
buf.writeText("I32 (Naive) 8888 over 8888\n");
dump(builder, &buf);
}
{
SrcoverBuilder_I32 builder;
buf.writeText("I32 8888 over 8888\n");
dump(builder, &buf);
}
{
SrcoverBuilder_I32_SWAR builder;
buf.writeText("I32 (SWAR) 8888 over 8888\n");
dump(builder, &buf);
}
{
skvm::Builder b;
skvm::Arg arg = b.varying<int>();
// x and y can both be hoisted,
// and x can die at y, while y must live for the loop.
skvm::I32 x = b.splat(1),
y = b.add(x, b.splat(2));
b.store32(arg, b.mul(b.load32(arg), y));
skvm::Program program = b.done();
REPORTER_ASSERT(r, program.nregs() == 2);
std::vector<skvm::OptimizedInstruction> insts = b.optimize();
REPORTER_ASSERT(r, insts.size() == 6);
REPORTER_ASSERT(r, insts[0].can_hoist && insts[0].death == 2 && !insts[0].used_in_loop);
REPORTER_ASSERT(r, insts[1].can_hoist && insts[1].death == 2 && !insts[1].used_in_loop);
REPORTER_ASSERT(r, insts[2].can_hoist && insts[2].death == 4 && insts[2].used_in_loop);
REPORTER_ASSERT(r, !insts[3].can_hoist);
REPORTER_ASSERT(r, !insts[4].can_hoist);
REPORTER_ASSERT(r, !insts[5].can_hoist);
dump(b, &buf);
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
int arg[] = {0,1,2,3,4,5,6,7,8,9};
program.eval(SK_ARRAY_COUNT(arg), arg);
for (int i = 0; i < (int)SK_ARRAY_COUNT(arg); i++) {
REPORTER_ASSERT(r, arg[i] == i*3);
}
});
}
{
// Demonstrate the value of program reordering.
skvm::Builder b;
skvm::Arg sp = b.varying<int>(),
dp = b.varying<int>();
skvm::I32 byte = b.splat(0xff);
skvm::I32 src = b.load32(sp),
sr = b.extract(src, 0, byte),
sg = b.extract(src, 8, byte),
sb = b.extract(src, 16, byte),
sa = b.extract(src, 24, byte);
skvm::I32 dst = b.load32(dp),
dr = b.extract(dst, 0, byte),
dg = b.extract(dst, 8, byte),
db = b.extract(dst, 16, byte),
da = b.extract(dst, 24, byte);
skvm::I32 R = b.add(sr, dr),
G = b.add(sg, dg),
B = b.add(sb, db),
A = b.add(sa, da);
skvm::I32 rg = b.pack(R, G, 8),
ba = b.pack(B, A, 8),
rgba = b.pack(rg, ba, 16);
b.store32(dp, rgba);
dump(b, &buf);
}
sk_sp<SkData> blob = buf.detachAsData();
{
sk_sp<SkData> expected = GetResourceAsData("SkVMTest.expected");
REPORTER_ASSERT(r, expected, "Couldn't load SkVMTest.expected.");
if (expected) {
if (blob->size() != expected->size()
|| 0 != memcmp(blob->data(), expected->data(), blob->size())) {
ERRORF(r, "SkVMTest expected\n%.*s\nbut got\n%.*s\n",
expected->size(), expected->data(),
blob->size(), blob->data());
}
SkFILEWStream out(GetResourcePath("SkVMTest.expected").c_str());
if (out.isValid()) {
out.write(blob->data(), blob->size());
}
}
}
auto test_8888 = [&](skvm::Program&& program) {
uint32_t src[9];
uint32_t dst[SK_ARRAY_COUNT(src)];
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
src[i] = 0xbb007733;
dst[i] = 0xffaaccee;
}
SkPMColor expected = SkPMSrcOver(src[0], dst[0]); // 0xff2dad73
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
// dst is probably 0xff2dad72.
for (auto got : dst) {
auto want = expected;
for (int i = 0; i < 4; i++) {
uint8_t d = got & 0xff,
w = want & 0xff;
if (abs(d-w) >= 2) {
SkDebugf("d %02x, w %02x\n", d,w);
}
REPORTER_ASSERT(r, abs(d-w) < 2);
got >>= 8;
want >>= 8;
}
}
});
};
test_8888(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::RGBA_8888}.done("srcover_f32"));
test_8888(SrcoverBuilder_I32_Naive{}.done("srcover_i32_naive"));
test_8888(SrcoverBuilder_I32{}.done("srcover_i32"));
test_8888(SrcoverBuilder_I32_SWAR{}.done("srcover_i32_SWAR"));
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::G8}.done(),
[&](const skvm::Program& program) {
uint32_t src[9];
uint8_t dst[SK_ARRAY_COUNT(src)];
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
src[i] = 0xbb007733;
dst[i] = 0x42;
}
SkPMColor over = SkPMSrcOver(SkPackARGB32(0xbb, 0x33, 0x77, 0x00),
0xff424242);
uint8_t want = SkComputeLuminance(SkGetPackedR32(over),
SkGetPackedG32(over),
SkGetPackedB32(over));
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
for (auto got : dst) {
REPORTER_ASSERT(r, abs(got-want) < 3);
}
});
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::A8, Fmt::A8}.done(),
[&](const skvm::Program& program) {
uint8_t src[256],
dst[256];
for (int i = 0; i < 256; i++) {
src[i] = 255 - i;
dst[i] = i;
}
program.eval(256, src, dst);
for (int i = 0; i < 256; i++) {
uint8_t want = SkGetPackedA32(SkPMSrcOver(SkPackARGB32(src[i], 0,0,0),
SkPackARGB32( i, 0,0,0)));
REPORTER_ASSERT(r, abs(dst[i]-want) < 2);
}
});
}
DEF_TEST(SkVM_Pointless, r) {
// Let's build a program with no memory arguments.
// It should all be pegged as dead code, but we should be able to "run" it.
skvm::Builder b;
{
b.add(b.splat(5.0f),
b.splat(4.0f));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
for (int N = 0; N < 64; N++) {
program.eval(N);
}
});
for (const skvm::OptimizedInstruction& inst : b.optimize()) {
REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true);
}
}
#if defined(SKVM_LLVM)
DEF_TEST(SkVM_LLVM_memset, r) {
skvm::Builder b;
b.store32(b.varying<int>(), b.splat(42));
skvm::Program p = b.done();
REPORTER_ASSERT(r, p.hasJIT());
int buf[18];
buf[17] = 47;
p.eval(17, buf);
for (int i = 0; i < 17; i++) {
REPORTER_ASSERT(r, buf[i] == 42);
}
REPORTER_ASSERT(r, buf[17] == 47);
}
DEF_TEST(SkVM_LLVM_memcpy, r) {
skvm::Builder b;
{
auto src = b.varying<int>(),
dst = b.varying<int>();
b.store32(dst, b.load32(src));
}
skvm::Program p = b.done();
REPORTER_ASSERT(r, p.hasJIT());
int src[] = {1,2,3,4,5,6,7,8,9},
dst[] = {0,0,0,0,0,0,0,0,0};
p.eval(SK_ARRAY_COUNT(src)-1, src, dst);
for (size_t i = 0; i < SK_ARRAY_COUNT(src)-1; i++) {
REPORTER_ASSERT(r, dst[i] == src[i]);
}
size_t i = SK_ARRAY_COUNT(src)-1;
REPORTER_ASSERT(r, dst[i] == 0);
}
#endif
DEF_TEST(SkVM_LoopCounts, r) {
// Make sure we cover all the exact N we want.
// buf[i] += 1
skvm::Builder b;
skvm::Arg arg = b.varying<int>();
b.store32(arg,
b.add(b.splat(1),
b.load32(arg)));
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int buf[64];
for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) {
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
buf[i] = i;
}
program.eval(N, buf);
for (int i = 0; i < N; i++) {
REPORTER_ASSERT(r, buf[i] == i+1);
}
for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) {
REPORTER_ASSERT(r, buf[i] == i);
}
}
});
}
DEF_TEST(SkVM_gather32, r) {
skvm::Builder b;
{
skvm::Arg uniforms = b.uniform(),
buf = b.varying<int>();
skvm::I32 x = b.load32(buf);
b.store32(buf, b.gather32(uniforms,0, b.bit_and(x, b.splat(7))));
}
#if defined(SK_CPU_X86)
test_jit_and_interpreter
#else
test_interpreter_only
#endif
(r, b.done(), [&](const skvm::Program& program) {
const int img[] = {12,34,56,78, 90,98,76,54};
int buf[20];
for (int i = 0; i < 20; i++) {
buf[i] = i;
}
struct Uniforms {
const int* img;
} uniforms{img};
program.eval(20, &uniforms, buf);
int i = 0;
REPORTER_ASSERT(r, buf[i] == 12); i++;
REPORTER_ASSERT(r, buf[i] == 34); i++;
REPORTER_ASSERT(r, buf[i] == 56); i++;
REPORTER_ASSERT(r, buf[i] == 78); i++;
REPORTER_ASSERT(r, buf[i] == 90); i++;
REPORTER_ASSERT(r, buf[i] == 98); i++;
REPORTER_ASSERT(r, buf[i] == 76); i++;
REPORTER_ASSERT(r, buf[i] == 54); i++;
REPORTER_ASSERT(r, buf[i] == 12); i++;
REPORTER_ASSERT(r, buf[i] == 34); i++;
REPORTER_ASSERT(r, buf[i] == 56); i++;
REPORTER_ASSERT(r, buf[i] == 78); i++;
REPORTER_ASSERT(r, buf[i] == 90); i++;
REPORTER_ASSERT(r, buf[i] == 98); i++;
REPORTER_ASSERT(r, buf[i] == 76); i++;
REPORTER_ASSERT(r, buf[i] == 54); i++;
REPORTER_ASSERT(r, buf[i] == 12); i++;
REPORTER_ASSERT(r, buf[i] == 34); i++;
REPORTER_ASSERT(r, buf[i] == 56); i++;
REPORTER_ASSERT(r, buf[i] == 78); i++;
});
}
DEF_TEST(SkVM_gathers, r) {
skvm::Builder b;
{
skvm::Arg uniforms = b.uniform(),
buf32 = b.varying<int>(),
buf16 = b.varying<uint16_t>(),
buf8 = b.varying<uint8_t>();
skvm::I32 x = b.load32(buf32);
b.store32(buf32, b.gather32(uniforms,0, b.bit_and(x, b.splat( 7))));
b.store16(buf16, b.gather16(uniforms,0, b.bit_and(x, b.splat(15))));
b.store8 (buf8 , b.gather8 (uniforms,0, b.bit_and(x, b.splat(31))));
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
const int img[] = {12,34,56,78, 90,98,76,54};
constexpr int N = 20;
int buf32[N];
uint16_t buf16[N];
uint8_t buf8 [N];
for (int i = 0; i < 20; i++) {
buf32[i] = i;
}
struct Uniforms {
const int* img;
} uniforms{img};
program.eval(N, &uniforms, buf32, buf16, buf8);
int i = 0;
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++;
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++;
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++;
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++;
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++;
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
});
}
DEF_TEST(SkVM_bitops, r) {
skvm::Builder b;
{
skvm::Arg ptr = b.varying<int>();
skvm::I32 x = b.load32(ptr);
x = b.bit_and (x, b.splat(0xf1)); // 0x40
x = b.bit_or (x, b.splat(0x80)); // 0xc0
x = b.bit_xor (x, b.splat(0xfe)); // 0x3e
x = b.bit_clear(x, b.splat(0x30)); // 0x0e
x = b.shl(x, 28); // 0xe000'0000
x = b.sra(x, 28); // 0xffff'fffe
x = b.shr(x, 1); // 0x7fff'ffff
b.store32(ptr, x);
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int x = 0x42;
program.eval(1, &x);
REPORTER_ASSERT(r, x == 0x7fff'ffff);
});
}
DEF_TEST(SkVM_f32, r) {
skvm::Builder b;
{
skvm::Arg arg = b.varying<float>();
skvm::F32 x = b.bit_cast(b.load32(arg)),
y = b.add(x,x), // y = 2x
z = b.sub(y,x), // z = 2x-x = x
w = b.div(z,x); // w = x/x = 1
b.store32(arg, b.bit_cast(w));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
float buf[] = { 1,2,3,4,5,6,7,8,9 };
program.eval(SK_ARRAY_COUNT(buf), buf);
for (float v : buf) {
REPORTER_ASSERT(r, v == 1.0f);
}
});
}
DEF_TEST(SkVM_cmp_i32, r) {
skvm::Builder b;
{
skvm::I32 x = b.load32(b.varying<int>());
auto to_bit = [&](int shift, skvm::I32 mask) {
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
};
skvm::I32 m = b.splat(0);
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0))));
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1))));
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2))));
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3))));
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4))));
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5))));
b.store32(b.varying<int>(), m);
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
int in[] = { 0,1,2,3,4,5,6,7,8,9 };
int out[SK_ARRAY_COUNT(in)];
program.eval(SK_ARRAY_COUNT(in), in, out);
REPORTER_ASSERT(r, out[0] == 0b001111);
REPORTER_ASSERT(r, out[1] == 0b001100);
REPORTER_ASSERT(r, out[2] == 0b001010);
REPORTER_ASSERT(r, out[3] == 0b001010);
REPORTER_ASSERT(r, out[4] == 0b000010);
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
REPORTER_ASSERT(r, out[i] == 0b110010);
}
});
}
DEF_TEST(SkVM_cmp_f32, r) {
skvm::Builder b;
{
skvm::F32 x = b.bit_cast(b.load32(b.varying<float>()));
auto to_bit = [&](int shift, skvm::I32 mask) {
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
};
skvm::I32 m = b.splat(0);
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f))));
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f))));
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f))));
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f))));
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f))));
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f))));
b.store32(b.varying<int>(), m);
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
float in[] = { 0,1,2,3,4,5,6,7,8,9 };
int out[SK_ARRAY_COUNT(in)];
program.eval(SK_ARRAY_COUNT(in), in, out);
REPORTER_ASSERT(r, out[0] == 0b001111);
REPORTER_ASSERT(r, out[1] == 0b001100);
REPORTER_ASSERT(r, out[2] == 0b001010);
REPORTER_ASSERT(r, out[3] == 0b001010);
REPORTER_ASSERT(r, out[4] == 0b000010);
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
REPORTER_ASSERT(r, out[i] == 0b110010);
}
});
}
DEF_TEST(SkVM_i16x2, r) {
skvm::Builder b;
{
skvm::Arg buf = b.varying<int>();
skvm::I32 x = b.load32(buf),
y = b.add_16x2(x,x), // y = 2x
z = b.mul_16x2(x,y), // z = 2x^2
w = b.sub_16x2(z,x), // w = x(2x-1)
v = b.shl_16x2(w,7), // These shifts will be a no-op
u = b.sra_16x2(v,7); // for all but x=12 and x=13.
b.store32(buf, u);
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
uint16_t buf[] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13 };
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
for (int i = 0; i < 12; i++) {
REPORTER_ASSERT(r, buf[i] == i*(2*i-1));
}
REPORTER_ASSERT(r, buf[12] == 0xff14); // 12*23 = 0x114
REPORTER_ASSERT(r, buf[13] == 0xff45); // 13*25 = 0x145
});
}
DEF_TEST(SkVM_cmp_i16, r) {
skvm::Builder b;
{
skvm::Arg buf = b.varying<int>();
skvm::I32 x = b.load32(buf);
auto to_bit = [&](int shift, skvm::I32 mask) {
return b.shl_16x2(b.bit_and(mask, b.splat(0x0001'0001)), shift);
};
skvm::I32 m = b.splat(0);
m = b.bit_or(m, to_bit(0, b. eq_16x2(x, b.splat(0x0000'0000))));
m = b.bit_or(m, to_bit(1, b.neq_16x2(x, b.splat(0x0001'0001))));
m = b.bit_or(m, to_bit(2, b. lt_16x2(x, b.splat(0x0002'0002))));
m = b.bit_or(m, to_bit(3, b.lte_16x2(x, b.splat(0x0003'0003))));
m = b.bit_or(m, to_bit(4, b. gt_16x2(x, b.splat(0x0004'0004))));
m = b.bit_or(m, to_bit(5, b.gte_16x2(x, b.splat(0x0005'0005))));
b.store32(buf, m);
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
int16_t buf[] = { 0,1, 2,3, 4,5, 6,7, 8,9 };
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
REPORTER_ASSERT(r, buf[0] == 0b001111);
REPORTER_ASSERT(r, buf[1] == 0b001100);
REPORTER_ASSERT(r, buf[2] == 0b001010);
REPORTER_ASSERT(r, buf[3] == 0b001010);
REPORTER_ASSERT(r, buf[4] == 0b000010);
for (int i = 5; i < (int)SK_ARRAY_COUNT(buf); i++) {
REPORTER_ASSERT(r, buf[i] == 0b110010);
}
});
}
DEF_TEST(SkVM_mad, r) {
// This program is designed to exercise the tricky corners of instruction
// and register selection for Op::mad_f32.
skvm::Builder b;
{
skvm::Arg arg = b.varying<int>();
skvm::F32 x = b.to_f32(b.load32(arg)),
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok.
w = b.mad(z,z,y), // w can alias z but not y.
v = b.mad(w,y,w); // Got to stop somewhere.
b.store32(arg, b.trunc(v));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int x = 2;
program.eval(1, &x);
// x = 2
// y = 2*2 + 2 = 6
// z = 6*6 + 2 = 38
// w = 38*38 + 6 = 1450
// v = 1450*6 + 1450 = 10150
REPORTER_ASSERT(r, x == 10150);
});
}
DEF_TEST(SkVM_madder, r) {
skvm::Builder b;
{
skvm::Arg arg = b.varying<float>();
skvm::F32 x = b.bit_cast(b.load32(arg)),
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y].
w = b.mad(y,y,z);
b.store32(arg, b.bit_cast(w));
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
float x = 2.0f;
// y = 2*2 + 2 = 6
// z = 6*2 + 6 = 18
// w = 6*6 + 18 = 54
program.eval(1, &x);
REPORTER_ASSERT(r, x == 54.0f);
});
}
DEF_TEST(SkVM_floor, r) {
skvm::Builder b;
{
skvm::Arg arg = b.varying<float>();
b.store32(arg, b.bit_cast(b.floor(b.bit_cast(b.load32(arg)))));
}
#if defined(SK_CPU_X86)
test_jit_and_interpreter
#else
test_interpreter_only
#endif
(r, b.done(), [&](const skvm::Program& program) {
float buf[] = { -2.0f, -1.5f, -1.0f, 0.0f, 1.0f, 1.5f, 2.0f };
float want[] = { -2.0f, -2.0f, -1.0f, 0.0f, 1.0f, 1.0f, 2.0f };
program.eval(SK_ARRAY_COUNT(buf), buf);
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
REPORTER_ASSERT(r, buf[i] == want[i]);
}
});
}
DEF_TEST(SkVM_hoist, r) {
// This program uses enough constants that it will fail to JIT if we hoist them.
// The JIT will try again without hoisting, and that'll just need 2 registers.
skvm::Builder b;
{
skvm::Arg arg = b.varying<int>();
skvm::I32 x = b.load32(arg);
for (int i = 0; i < 32; i++) {
x = b.add(x, b.splat(i));
}
b.store32(arg, x);
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int x = 4;
program.eval(1, &x);
// x += 0 + 1 + 2 + 3 + ... + 30 + 31
// x += 496
REPORTER_ASSERT(r, x == 500);
});
}
DEF_TEST(SkVM_select, r) {
skvm::Builder b;
{
skvm::Arg buf = b.varying<int>();
skvm::I32 x = b.load32(buf);
x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) );
b.store32(buf, x);
}
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int buf[] = { 0,1,2,3,4,5,6,7,8 };
program.eval(SK_ARRAY_COUNT(buf), buf);
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42));
}
});
}
DEF_TEST(SkVM_NewOps, r) {
// Exercise a somewhat arbitrary set of new ops.
skvm::Builder b;
{
skvm::Arg buf = b.varying<int16_t>(),
uniforms = b.uniform();
skvm::I32 x = b.load16(buf);
const size_t kPtr = sizeof(const int*);
x = b.add(x, b.uniform32(uniforms, kPtr+0));
x = b.mul(x, b.uniform8 (uniforms, kPtr+4));
x = b.sub(x, b.uniform16(uniforms, kPtr+6));
skvm::I32 limit = b.uniform32(uniforms, kPtr+8);
x = b.select(b.lt(x, b.splat(0)), b.splat(0), x);
x = b.select(b.gt(x, limit ), limit , x);
x = b.gather8(uniforms,0, x);
b.store16(buf, x);
}
if ((false)) {
SkDynamicMemoryWStream buf;
dump(b, &buf);
sk_sp<SkData> blob = buf.detachAsData();
SkDebugf("%.*s\n", blob->size(), blob->data());
}
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
const int N = 31;
int16_t buf[N];
for (int i = 0; i < N; i++) {
buf[i] = i;
}
const int M = 16;
uint8_t img[M];
for (int i = 0; i < M; i++) {
img[i] = i*i;
}
struct {
const uint8_t* img;
int add = 5;
uint8_t mul = 3;
uint16_t sub = 18;
int limit = M-1;
} uniforms{img};
program.eval(N, buf, &uniforms);
for (int i = 0; i < N; i++) {
// Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1).
int x = 3*(i-1);
// Then that's pinned to the limits of img.
if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly...
if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly
REPORTER_ASSERT(r, buf[i] == img[x]);
}
});
}
DEF_TEST(SkVM_MSAN, r) {
// This little memset32() program should be able to JIT, but if we run that
// JIT code in an MSAN build, it won't see the writes initialize buf. So
// this tests that we're using the interpreter instead.
skvm::Builder b;
b.store32(b.varying<int>(), b.splat(42));
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
constexpr int K = 17;
int buf[K]; // Intentionally uninitialized.
program.eval(K, buf);
sk_msan_assert_initialized(buf, buf+K);
for (int x : buf) {
REPORTER_ASSERT(r, x == 42);
}
});
}
DEF_TEST(SkVM_assert, r) {
skvm::Builder b;
b.assert_true(b.lt(b.load32(b.varying<int>()),
b.splat(42)));
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
int buf[] = { 0,1,2,3,4,5,6,7,8,9 };
program.eval(SK_ARRAY_COUNT(buf), buf);
});
}
DEF_TEST(SkVM_premul, reporter) {
// Test that premul is short-circuited when alpha is known opaque.
{
skvm::Builder p;
auto rptr = p.varying<int>(),
aptr = p.varying<int>();
skvm::F32 r = p.bit_cast(p.load32(rptr)),
g = p.splat(0.0f),
b = p.splat(0.0f),
a = p.bit_cast(p.load32(aptr));
p.premul(&r, &g, &b, a);
p.store32(rptr, p.bit_cast(r));
// load red, load alpha, red *= alpha, store red
REPORTER_ASSERT(reporter, p.done().instructions().size() == 4);
}
{
skvm::Builder p;
auto rptr = p.varying<int>();
skvm::F32 r = p.bit_cast(p.load32(rptr)),
g = p.splat(0.0f),
b = p.splat(0.0f),
a = p.splat(1.0f);
p.premul(&r, &g, &b, a);
p.store32(rptr, p.bit_cast(r));
// load red, store red
REPORTER_ASSERT(reporter, p.done().instructions().size() == 2);
}
// Same deal for unpremul.
{
skvm::Builder p;
auto rptr = p.varying<int>(),
aptr = p.varying<int>();
skvm::F32 r = p.bit_cast(p.load32(rptr)),
g = p.splat(0.0f),
b = p.splat(0.0f),
a = p.bit_cast(p.load32(aptr));
p.unpremul(&r, &g, &b, a);
p.store32(rptr, p.bit_cast(r));
// load red, load alpha, a bunch of unpremul instructions, store red
REPORTER_ASSERT(reporter, p.done().instructions().size() >= 4);
}
{
skvm::Builder p;
auto rptr = p.varying<int>();
skvm::F32 r = p.bit_cast(p.load32(rptr)),
g = p.splat(0.0f),
b = p.splat(0.0f),
a = p.splat(1.0f);
p.unpremul(&r, &g, &b, a);
p.store32(rptr, p.bit_cast(r));
// load red, store red
REPORTER_ASSERT(reporter, p.done().instructions().size() == 2);
}
}
template <typename Fn>
static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) {
uint8_t buf[4096];
skvm::Assembler a{buf};
fn(a);
REPORTER_ASSERT(r, a.size() == expected.size());
auto got = (const uint8_t*)buf,
want = expected.begin();
for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) {
REPORTER_ASSERT(r, got[i] == want[i],
"byte %d was %02x, want %02x", i, got[i], want[i]);
}
}
DEF_TEST(SkVM_Assembler, r) {
// Easiest way to generate test cases is
//
// echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel
//
// The -x86-asm-syntax=intel bit is optional, controlling the
// input syntax only; the output will always be AT&T op x,y,dst style.
// Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find
// that a bit easier to use here, despite maybe favoring AT&T overall.
using A = skvm::Assembler;
// Our exit strategy from AVX code.
test_asm(r, [&](A& a) {
a.int3();
a.vzeroupper();
a.ret();
},{
0xcc,
0xc5, 0xf8, 0x77,
0xc3,
});
// Align should pad with zero
test_asm(r, [&](A& a) {
a.ret();
a.align(4);
},{
0xc3,
0x00, 0x00, 0x00,
});
test_asm(r, [&](A& a) {
a.add(A::rax, 8); // Always good to test rax.
a.sub(A::rax, 32);
a.add(A::rdi, 12); // Last 0x48 REX
a.sub(A::rdi, 8);
a.add(A::r8 , 7); // First 0x49 REX
a.sub(A::r8 , 4);
a.add(A::rsi, 128); // Requires 4 byte immediate.
a.sub(A::r8 , 1000000);
},{
0x48, 0x83, 0b11'000'000, 0x08,
0x48, 0x83, 0b11'101'000, 0x20,
0x48, 0x83, 0b11'000'111, 0x0c,
0x48, 0x83, 0b11'101'111, 0x08,
0x49, 0x83, 0b11'000'000, 0x07,
0x49, 0x83, 0b11'101'000, 0x04,
0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00,
0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00,
});
test_asm(r, [&](A& a) {
a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX.
a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX.
a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX.
a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX.
a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX.
a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right.
},{
/* VEX */ /*op*/ /*modRM*/
0xc5, 0xf5, 0xfe, 0xc2,
0xc5, 0x75, 0xfe, 0xc2,
0xc5, 0xbd, 0xfe, 0xc2,
0xc4, 0xc1, 0x75, 0xfe, 0xc0,
0xc4, 0xe2, 0x75, 0x40, 0xc2,
0xc5, 0xf5, 0xfa, 0xc2,
});
test_asm(r, [&](A& a) {
a.vpcmpeqd (A::ymm0, A::ymm1, A::ymm2);
a.vpcmpgtd (A::ymm0, A::ymm1, A::ymm2);
a.vcmpeqps (A::ymm0, A::ymm1, A::ymm2);
a.vcmpltps (A::ymm0, A::ymm1, A::ymm2);
a.vcmpleps (A::ymm0, A::ymm1, A::ymm2);
a.vcmpneqps(A::ymm0, A::ymm1, A::ymm2);
},{
0xc5,0xf5,0x76,0xc2,
0xc5,0xf5,0x66,0xc2,
0xc5,0xf4,0xc2,0xc2,0x00,
0xc5,0xf4,0xc2,0xc2,0x01,
0xc5,0xf4,0xc2,0xc2,0x02,
0xc5,0xf4,0xc2,0xc2,0x04,
});
test_asm(r, [&](A& a) {
a.vminps(A::ymm0, A::ymm1, A::ymm2);
a.vmaxps(A::ymm0, A::ymm1, A::ymm2);
},{
0xc5,0xf4,0x5d,0xc2,
0xc5,0xf4,0x5f,0xc2,
});
test_asm(r, [&](A& a) {
a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3);
},{
0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30,
});
test_asm(r, [&](A& a) {
a.vpsrld(A::ymm15, A::ymm2, 8);
a.vpsrld(A::ymm0 , A::ymm8, 5);
},{
0xc5, 0x85, 0x72,0xd2, 0x08,
0xc4,0xc1,0x7d, 0x72,0xd0, 0x05,
});
test_asm(r, [&](A& a) {
a.vpermq(A::ymm1, A::ymm2, 5);
},{
0xc4,0xe3,0xfd, 0x00,0xca, 0x05,
});
test_asm(r, [&](A& a) {
a.vroundps(A::ymm1, A::ymm2, A::NEAREST);
a.vroundps(A::ymm1, A::ymm2, A::FLOOR);
a.vroundps(A::ymm1, A::ymm2, A::CEIL);
a.vroundps(A::ymm1, A::ymm2, A::TRUNC);
},{
0xc4,0xe3,0x7d,0x08,0xca,0x00,
0xc4,0xe3,0x7d,0x08,0xca,0x01,
0xc4,0xe3,0x7d,0x08,0xca,0x02,
0xc4,0xe3,0x7d,0x08,0xca,0x03,
});
test_asm(r, [&](A& a) {
A::Label l = a.here();
a.byte(1);
a.byte(2);
a.byte(3);
a.byte(4);
a.vbroadcastss(A::ymm0 , &l);
a.vbroadcastss(A::ymm1 , &l);
a.vbroadcastss(A::ymm8 , &l);
a.vbroadcastss(A::ymm15, &l);
a.vpshufb(A::ymm4, A::ymm3, &l);
a.vpaddd (A::ymm4, A::ymm3, &l);
a.vpsubd (A::ymm4, A::ymm3, &l);
a.vptest(A::ymm4, &l);
a.vmulps (A::ymm4, A::ymm3, &l);
},{
0x01, 0x02, 0x03, 0x4,
/* VEX */ /*op*/ /* ModRM */ /* offset */
0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13
0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22
0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31
0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40
0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49
0xc5, 0xe5, 0xfe, 0b00'100'101, 0xc7,0xff,0xff,0xff, // 0xffffffc7 == -57
0xc5, 0xe5, 0xfa, 0b00'100'101, 0xbf,0xff,0xff,0xff, // 0xffffffbf == -65
0xc4, 0xe2, 0x7d, 0x17, 0b00'100'101, 0xb6,0xff,0xff,0xff, // 0xffffffb6 == -74
0xc5, 0xe4, 0x59, 0b00'100'101, 0xae,0xff,0xff,0xff, // 0xffffffaf == -82
});
test_asm(r, [&](A& a) {
a.vbroadcastss(A::ymm0, A::rdi, 0);
a.vbroadcastss(A::ymm13, A::r14, 7);
a.vbroadcastss(A::ymm8, A::rdx, -12);
a.vbroadcastss(A::ymm8, A::rdx, 400);
a.vbroadcastss(A::ymm8, A::xmm0);
a.vbroadcastss(A::ymm0, A::xmm13);
},{
/* VEX */ /*op*/ /*ModRM*/ /*offset*/
0xc4,0xe2,0x7d, 0x18, 0b00'000'111,
0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07,
0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4,
0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00,
0xc4,0x62,0x7d, 0x18, 0b11'000'000,
0xc4,0xc2,0x7d, 0x18, 0b11'000'101,
});
test_asm(r, [&](A& a) {
A::Label l = a.here();
a.jne(&l);
a.jne(&l);
a.je (&l);
a.jmp(&l);
a.jl (&l);
a.jc (&l);
a.cmp(A::rdx, 0);
a.cmp(A::rax, 12);
a.cmp(A::r14, 2000000000);
},{
0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes
0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes
0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes
0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes
0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes
0x0f,0x82, 0xdd,0xff,0xff,0xff, // near jc -35 bytes
0x48,0x83,0xfa,0x00,
0x48,0x83,0xf8,0x0c,
0x49,0x81,0xfe,0x00,0x94,0x35,0x77,
});
test_asm(r, [&](A& a) {
a.vmovups(A::ymm5, A::rsi);
a.vmovups(A::rsi, A::ymm5);
a.vmovups(A::rsi, A::xmm5);
a.vpmovzxwd(A::ymm4, A::rsi);
a.vpmovzxbd(A::ymm4, A::rsi);
a.vmovq(A::rdx, A::xmm15);
},{
/* VEX */ /*Op*/ /* ModRM */
0xc5, 0xfc, 0x10, 0b00'101'110,
0xc5, 0xfc, 0x11, 0b00'101'110,
0xc5, 0xf8, 0x11, 0b00'101'110,
0xc4,0xe2,0x7d, 0x33, 0b00'100'110,
0xc4,0xe2,0x7d, 0x31, 0b00'100'110,
0xc5, 0x79, 0xd6, 0b00'111'010,
});
test_asm(r, [&](A& a) {
a.movzbl(A::rax, A::rsi, 0); // Low registers for src and dst.
a.movzbl(A::rax, A::r8, 0); // High src register.
a.movzbl(A::r8 , A::rsi, 0); // High dst register.
a.movzbl(A::r8, A::rsi, 12);
a.movzbl(A::r8, A::rsi, 400);
a.vmovd(A::rax, A::xmm0);
a.vmovd(A::rax, A::xmm8);
a.vmovd(A::r8, A::xmm0);
a.vmovd(A::xmm0, A::rax);
a.vmovd(A::xmm8, A::rax);
a.vmovd(A::xmm0, A::r8);
a.vmovd(A::xmm0 , A::FOUR, A::rcx, A::rax);
a.vmovd(A::xmm15, A::TWO, A::r8, A::rax);
a.vmovd(A::xmm0 , A::ONE, A::rcx, A::r8);
a.vmovd_direct(A::rax, A::xmm0);
a.vmovd_direct(A::rax, A::xmm8);
a.vmovd_direct(A::r8, A::xmm0);
a.vmovd_direct(A::xmm0, A::rax);
a.vmovd_direct(A::xmm8, A::rax);
a.vmovd_direct(A::xmm0, A::r8);
a.movb(A::rdx, A::rax);
a.movb(A::rdx, A::r8);
a.movb(A::r8 , A::rax);
},{
0x0f,0xb6,0x06,
0x41,0x0f,0xb6,0x00,
0x44,0x0f,0xb6,0x06,
0x44,0x0f,0xb6,0x46, 12,
0x44,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00,
0xc5,0xf9,0x7e,0x00,
0xc5,0x79,0x7e,0x00,
0xc4,0xc1,0x79,0x7e,0x00,
0xc5,0xf9,0x6e,0x00,
0xc5,0x79,0x6e,0x00,
0xc4,0xc1,0x79,0x6e,0x00,
0xc5,0xf9,0x6e,0x04,0x88,
0xc4,0x21,0x79,0x6e,0x3c,0x40,
0xc4,0xc1,0x79,0x6e,0x04,0x08,
0xc5,0xf9,0x7e,0xc0,
0xc5,0x79,0x7e,0xc0,
0xc4,0xc1,0x79,0x7e,0xc0,
0xc5,0xf9,0x6e,0xc0,
0xc5,0x79,0x6e,0xc0,
0xc4,0xc1,0x79,0x6e,0xc0,
0x88, 0x02,
0x44, 0x88, 0x02,
0x41, 0x88, 0x00,
});
test_asm(r, [&](A& a) {
a.vpinsrw(A::xmm1, A::xmm8, A::rsi, 4);
a.vpinsrw(A::xmm8, A::xmm1, A::r8, 12);
a.vpinsrb(A::xmm1, A::xmm8, A::rsi, 4);
a.vpinsrb(A::xmm8, A::xmm1, A::r8, 12);
a.vpextrw(A::rsi, A::xmm8, 7);
a.vpextrw(A::r8, A::xmm1, 15);
a.vpextrb(A::rsi, A::xmm8, 7);
a.vpextrb(A::r8, A::xmm1, 15);
},{
0xc5,0xb9, 0xc4, 0x0e, 4,
0xc4,0x41,0x71, 0xc4, 0x00, 12,
0xc4,0xe3,0x39, 0x20, 0x0e, 4,
0xc4,0x43,0x71, 0x20, 0x00, 12,
0xc4,0x63,0x79, 0x15, 0x06, 7,
0xc4,0xc3,0x79, 0x15, 0x08, 15,
0xc4,0x63,0x79, 0x14, 0x06, 7,
0xc4,0xc3,0x79, 0x14, 0x08, 15,
});
test_asm(r, [&](A& a) {
a.vpandn(A::ymm3, A::ymm12, A::ymm2);
},{
0xc5, 0x9d, 0xdf, 0xda,
});
test_asm(r, [&](A& a) {
a.vmovdqa (A::ymm3, A::ymm2);
a.vcvttps2dq(A::ymm3, A::ymm2);
a.vcvtdq2ps (A::ymm3, A::ymm2);
a.vcvtps2dq (A::ymm3, A::ymm2);
a.vsqrtps (A::ymm3, A::ymm2);
},{
0xc5,0xfd,0x6f,0xda,
0xc5,0xfe,0x5b,0xda,
0xc5,0xfc,0x5b,0xda,
0xc5,0xfd,0x5b,0xda,
0xc5,0xfc,0x51,0xda,
});
test_asm(r, [&](A& a) {
a.vgatherdps(A::ymm1 , A::FOUR , A::ymm0 , A::rdi, A::ymm2 );
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm1 );
a.vgatherdps(A::ymm10, A::ONE , A::ymm2 , A::rax, A::ymm1 );
a.vgatherdps(A::ymm0 , A::ONE , A::ymm12, A::rax, A::ymm1 );
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::r9 , A::ymm1 );
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm12);
a.vgatherdps(A::ymm0 , A::EIGHT, A::ymm2 , A::rax, A::ymm12);
},{
0xc4,0xe2,0x6d,0x92,0x0c,0x87,
0xc4,0xe2,0x75,0x92,0x04,0x10,
0xc4,0x62,0x75,0x92,0x14,0x10,
0xc4,0xa2,0x75,0x92,0x04,0x20,
0xc4,0xc2,0x75,0x92,0x04,0x11,
0xc4,0xe2,0x1d,0x92,0x04,0x10,
0xc4,0xe2,0x1d,0x92,0x04,0xd0,
});
test_asm(r, [&](A& a) {
a.movq(A::rax, A::rdi, 0);
a.movq(A::rax, A::rdi, 1);
a.movq(A::rax, A::rdi, 512);
a.movq(A::r15, A::r13, 42);
a.movq(A::rax, A::r13, 42);
a.movq(A::r15, A::rax, 42);
},{
0x48, 0x8b, 0x07,
0x48, 0x8b, 0x47, 0x01,
0x48, 0x8b, 0x87, 0x00,0x02,0x00,0x00,
0x4d, 0x8b, 0x7d, 0x2a,
0x49, 0x8b, 0x45, 0x2a,
0x4c, 0x8b, 0x78, 0x2a,
});
// echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64
test_asm(r, [&](A& a) {
a.and16b(A::v4, A::v3, A::v1);
a.orr16b(A::v4, A::v3, A::v1);
a.eor16b(A::v4, A::v3, A::v1);
a.bic16b(A::v4, A::v3, A::v1);
a.bsl16b(A::v4, A::v3, A::v1);
a.not16b(A::v4, A::v3);
a.add4s(A::v4, A::v3, A::v1);
a.sub4s(A::v4, A::v3, A::v1);
a.mul4s(A::v4, A::v3, A::v1);
a.cmeq4s(A::v4, A::v3, A::v1);
a.cmgt4s(A::v4, A::v3, A::v1);
a.sub8h(A::v4, A::v3, A::v1);
a.mul8h(A::v4, A::v3, A::v1);
a.fadd4s(A::v4, A::v3, A::v1);
a.fsub4s(A::v4, A::v3, A::v1);
a.fmul4s(A::v4, A::v3, A::v1);
a.fdiv4s(A::v4, A::v3, A::v1);
a.fmin4s(A::v4, A::v3, A::v1);
a.fmax4s(A::v4, A::v3, A::v1);
a.fmla4s(A::v4, A::v3, A::v1);
a.fmls4s(A::v4, A::v3, A::v1);
a.fcmeq4s(A::v4, A::v3, A::v1);
a.fcmgt4s(A::v4, A::v3, A::v1);
a.fcmge4s(A::v4, A::v3, A::v1);
},{
0x64,0x1c,0x21,0x4e,
0x64,0x1c,0xa1,0x4e,
0x64,0x1c,0x21,0x6e,
0x64,0x1c,0x61,0x4e,
0x64,0x1c,0x61,0x6e,
0x64,0x58,0x20,0x6e,
0x64,0x84,0xa1,0x4e,
0x64,0x84,0xa1,0x6e,
0x64,0x9c,0xa1,0x4e,
0x64,0x8c,0xa1,0x6e,
0x64,0x34,0xa1,0x4e,
0x64,0x84,0x61,0x6e,
0x64,0x9c,0x61,0x4e,
0x64,0xd4,0x21,0x4e,
0x64,0xd4,0xa1,0x4e,
0x64,0xdc,0x21,0x6e,
0x64,0xfc,0x21,0x6e,
0x64,0xf4,0xa1,0x4e,
0x64,0xf4,0x21,0x4e,
0x64,0xcc,0x21,0x4e,
0x64,0xcc,0xa1,0x4e,
0x64,0xe4,0x21,0x4e,
0x64,0xe4,0xa1,0x6e,
0x64,0xe4,0x21,0x6e,
});
test_asm(r, [&](A& a) {
a.shl4s(A::v4, A::v3, 0);
a.shl4s(A::v4, A::v3, 1);
a.shl4s(A::v4, A::v3, 8);
a.shl4s(A::v4, A::v3, 16);
a.shl4s(A::v4, A::v3, 31);
a.sshr4s(A::v4, A::v3, 1);
a.sshr4s(A::v4, A::v3, 8);
a.sshr4s(A::v4, A::v3, 31);
a.ushr4s(A::v4, A::v3, 1);
a.ushr4s(A::v4, A::v3, 8);
a.ushr4s(A::v4, A::v3, 31);
a.ushr8h(A::v4, A::v3, 1);
a.ushr8h(A::v4, A::v3, 8);
a.ushr8h(A::v4, A::v3, 15);
},{
0x64,0x54,0x20,0x4f,
0x64,0x54,0x21,0x4f,
0x64,0x54,0x28,0x4f,
0x64,0x54,0x30,0x4f,
0x64,0x54,0x3f,0x4f,
0x64,0x04,0x3f,0x4f,
0x64,0x04,0x38,0x4f,
0x64,0x04,0x21,0x4f,
0x64,0x04,0x3f,0x6f,
0x64,0x04,0x38,0x6f,
0x64,0x04,0x21,0x6f,
0x64,0x04,0x1f,0x6f,
0x64,0x04,0x18,0x6f,
0x64,0x04,0x11,0x6f,
});
test_asm(r, [&](A& a) {
a.sli4s(A::v4, A::v3, 0);
a.sli4s(A::v4, A::v3, 1);
a.sli4s(A::v4, A::v3, 8);
a.sli4s(A::v4, A::v3, 16);
a.sli4s(A::v4, A::v3, 31);
},{
0x64,0x54,0x20,0x6f,
0x64,0x54,0x21,0x6f,
0x64,0x54,0x28,0x6f,
0x64,0x54,0x30,0x6f,
0x64,0x54,0x3f,0x6f,
});
test_asm(r, [&](A& a) {
a.scvtf4s (A::v4, A::v3);
a.fcvtzs4s(A::v4, A::v3);
a.fcvtns4s(A::v4, A::v3);
},{
0x64,0xd8,0x21,0x4e,
0x64,0xb8,0xa1,0x4e,
0x64,0xa8,0x21,0x4e,
});
test_asm(r, [&](A& a) {
a.brk(0);
a.brk(65535);
a.ret(A::x30); // Conventional ret using link register.
a.ret(A::x13); // Can really return using any register if we like.
a.add(A::x2, A::x2, 4);
a.add(A::x3, A::x2, 32);
a.sub(A::x2, A::x2, 4);
a.sub(A::x3, A::x2, 32);
a.subs(A::x2, A::x2, 4);
a.subs(A::x3, A::x2, 32);
a.subs(A::xzr, A::x2, 4); // These are actually the same instruction!
a.cmp(A::x2, 4);
A::Label l = a.here();
a.bne(&l);
a.bne(&l);
a.blt(&l);
a.b(&l);
a.cbnz(A::x2, &l);
a.cbz(A::x2, &l);
},{
0x00,0x00,0x20,0xd4,
0xe0,0xff,0x3f,0xd4,
0xc0,0x03,0x5f,0xd6,
0xa0,0x01,0x5f,0xd6,
0x42,0x10,0x00,0x91,
0x43,0x80,0x00,0x91,
0x42,0x10,0x00,0xd1,
0x43,0x80,0x00,0xd1,
0x42,0x10,0x00,0xf1,
0x43,0x80,0x00,0xf1,
0x5f,0x10,0x00,0xf1,
0x5f,0x10,0x00,0xf1,
0x01,0x00,0x00,0x54, // b.ne #0
0xe1,0xff,0xff,0x54, // b.ne #-4
0xcb,0xff,0xff,0x54, // b.lt #-8
0xae,0xff,0xff,0x54, // b.al #-12
0x82,0xff,0xff,0xb5, // cbnz x2, #-16
0x62,0xff,0xff,0xb4, // cbz x2, #-20
});
// Can we cbz() to a not-yet-defined label?
test_asm(r, [&](A& a) {
A::Label l;
a.cbz(A::x2, &l);
a.add(A::x3, A::x2, 32);
a.label(&l);
a.ret(A::x30);
},{
0x42,0x00,0x00,0xb4, // cbz x2, #8
0x43,0x80,0x00,0x91, // add x3, x2, #32
0xc0,0x03,0x5f,0xd6, // ret
});
// If we start a label as a backward label,
// can we redefine it to be a future label?
// (Not sure this is useful... just want to test it works.)
test_asm(r, [&](A& a) {
A::Label l1 = a.here();
a.add(A::x3, A::x2, 32);
a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky.
A::Label l2 = a.here(); // Start off the same...
a.add(A::x3, A::x2, 32);
a.cbz(A::x2, &l2); // Looks like this will go backward...
a.add(A::x2, A::x2, 4);
a.add(A::x3, A::x2, 32);
a.label(&l2); // But no... actually forward! What a switcheroo!
},{
0x43,0x80,0x00,0x91, // add x3, x2, #32
0xe2,0xff,0xff,0xb4, // cbz x2, #-4
0x43,0x80,0x00,0x91, // add x3, x2, #32
0x62,0x00,0x00,0xb4, // cbz x2, #12
0x42,0x10,0x00,0x91, // add x2, x2, #4
0x43,0x80,0x00,0x91, // add x3, x2, #32
});
// Loading from a label on ARM.
test_asm(r, [&](A& a) {
A::Label fore,aft;
a.label(&fore);
a.word(0x01234567);
a.ldrq(A::v1, &fore);
a.ldrq(A::v2, &aft);
a.label(&aft);
a.word(0x76543210);
},{
0x67,0x45,0x23,0x01,
0xe1,0xff,0xff,0x9c, // ldr q1, #-4
0x22,0x00,0x00,0x9c, // ldr q2, #4
0x10,0x32,0x54,0x76,
});
test_asm(r, [&](A& a) {
a.ldrq(A::v0, A::x8);
a.strq(A::v0, A::x8);
},{
0x00,0x01,0xc0,0x3d,
0x00,0x01,0x80,0x3d,
});
test_asm(r, [&](A& a) {
a.xtns2h(A::v0, A::v0);
a.xtnh2b(A::v0, A::v0);
a.strs (A::v0, A::x0);
a.ldrs (A::v0, A::x0);
a.uxtlb2h(A::v0, A::v0);
a.uxtlh2s(A::v0, A::v0);
a.uminv4s(A::v3, A::v4);
a.fmovs (A::x3, A::v4); // fmov w3,s4
},{
0x00,0x28,0x61,0x0e,
0x00,0x28,0x21,0x0e,
0x00,0x00,0x00,0xbd,
0x00,0x00,0x40,0xbd,
0x00,0xa4,0x08,0x2f,
0x00,0xa4,0x10,0x2f,
0x83,0xa8,0xb1,0x6e,
0x83,0x00,0x26,0x1e,
});
test_asm(r, [&](A& a) {
a.ldrb(A::v0, A::x8);
a.strb(A::v0, A::x8);
},{
0x00,0x01,0x40,0x3d,
0x00,0x01,0x00,0x3d,
});
test_asm(r, [&](A& a) {
a.tbl(A::v0, A::v1, A::v2);
},{
0x20,0x00,0x02,0x4e,
});
}