skia2/experimental/Intersection/EdgeWalker_TestUtility.cpp
skia.committer@gmail.com a27096b474 Sanitizing source files in Skia_Nightly_House_Keeping
git-svn-id: http://skia.googlecode.com/svn/trunk@5346 2bbb7eff-a529-9590-31e7-b0007b416f81
2012-08-30 14:38:00 +00:00

544 lines
18 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "EdgeWalker_Test.h"
#include "Intersection_Tests.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkPaint.h"
#include "SkStream.h"
#include <algorithm>
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#undef SkASSERT
#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
static const char marker[] =
"</div>\n"
"\n"
"<script type=\"text/javascript\">\n"
"\n"
"var testDivs = [\n";
static const char preferredFilename[] = "/flash/debug/XX.txt";
static const char backupFilename[] = "../../experimental/Intersection/debugXX.txt";
static bool gShowPath = false;
static bool gComparePaths = true;
//static bool gDrawLastAsciiPaths = true;
//static bool gDrawAllAsciiPaths = false;
static bool gShowOutputProgress = false;
static bool gShowAsciiPaths = true;
static bool gComparePathsAssert = false;
static bool gPathStrAssert = true;
void showPath(const SkPath& path, const char* str) {
SkDebugf("%s\n", !str ? "original:" : str);
SkPath::Iter iter(path, true);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkDebugf("path.moveTo(%1.9g, %1.9g);\n", pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
SkDebugf("path.lineTo(%1.9g, %1.9g);\n", pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
SkDebugf("path.quadTo(%1.9g, %1.9g, %1.9g, %1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
SkDebugf("path.cubicTo(%1.9g, %1.9g, %1.9g, %1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY,
pts[3].fX, pts[3].fY);
break;
case SkPath::kClose_Verb:
SkDebugf("path.close();\n");
continue;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static int pathsDrawTheSame(const SkPath& one, const SkPath& two,
SkBitmap& bits, SkCanvas* c, int& error2x2) {
SkCanvas* canvasPtr = c;
if (!c) {
canvasPtr = new SkCanvas(bits);
}
const int bitWidth = 64;
const int bitHeight = 64;
if (bits.width() == 0) {
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
canvasPtr->setBitmapDevice(bits);
}
SkRect larger = one.getBounds();
larger.join(two.getBounds());
SkScalar largerWidth = larger.width();
if (largerWidth < 4) {
largerWidth = 4;
}
SkScalar largerHeight = larger.height();
if (largerHeight < 4) {
largerHeight = 4;
}
SkScalar hScale = (bitWidth - 2) / largerWidth;
SkScalar vScale = (bitHeight - 2) / largerHeight;
SkMatrix scale;
scale.reset();
scale.preScale(hScale, vScale);
SkPath scaledOne, scaledTwo;
one.transform(scale, &scaledOne);
two.transform(scale, &scaledTwo);
const SkRect& bounds1 = scaledOne.getBounds();
SkCanvas& canvas = *canvasPtr;
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(scaledOne, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(scaledTwo, paint);
canvas.restore();
int errors2 = 0;
int errors = 0;
for (int y = 0; y < bitHeight - 1; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
uint32_t* addr2 = bits.getAddr32(0, y + 1);
uint32_t* addr3 = bits.getAddr32(bitWidth, y);
uint32_t* addr4 = bits.getAddr32(bitWidth, y + 1);
for (int x = 0; x < bitWidth - 1; ++x) {
// count 2x2 blocks
bool err = addr1[x] != addr3[x];
if (err) {
errors2 += addr1[x + 1] != addr3[x + 1]
&& addr2[x] != addr4[x] && addr2[x + 1] != addr4[x + 1];
errors++;
}
}
}
if (!c) {
delete canvasPtr;
}
if (errors2 >= 3 || errors > 96) {
SkDebugf("%s errors2=%d errors=%d\n", __FUNCTION__, errors2, errors);
}
if (errors2 >= 4 || errors > 192) {
drawAsciiPaths(scaledOne, scaledTwo, true);
}
error2x2 = errors2;
return errors;
}
bool drawAsciiPaths(const SkPath& one, const SkPath& two, bool drawPaths) {
if (!drawPaths) {
return true;
}
if (gShowAsciiPaths) {
showPath(one, "one:");
showPath(two, "two:");
}
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkBitmap bits;
char out[256];
int bitWidth = SkScalarCeil(larger.width()) + 2;
if (bitWidth * 2 + 1 >= (int) sizeof(out)) {
return false;
}
int bitHeight = SkScalarCeil(larger.height()) + 2;
if (bitHeight >= (int) sizeof(out)) {
return false;
}
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
for (int y = 0; y < bitHeight; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
int x;
char* outPtr = out;
for (x = 0; x < bitWidth; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '|';
for (x = bitWidth; x < bitWidth * 2; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '\0';
SkDebugf("%s\n", out);
}
return true;
}
int comparePaths(const SkPath& one, const SkPath& two, SkBitmap& bitmap,
SkCanvas* canvas) {
int errors2x2;
int errors = pathsDrawTheSame(one, two, bitmap, canvas, errors2x2);
if (errors2x2 == 0) {
return 0;
}
const int MAX_ERRORS = 5;
if (errors2x2 > MAX_ERRORS && gComparePathsAssert) {
SkDebugf("%s errors=%d\n", __FUNCTION__, errors);
showPath(one);
showPath(two, "simplified:");
SkASSERT(0);
}
return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
}
// doesn't work yet
void comparePathsTiny(const SkPath& one, const SkPath& two) {
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkBitmap bits;
int bitWidth = SkScalarCeil(larger.width()) + 2;
int bitHeight = SkScalarCeil(larger.height()) + 2;
bits.setConfig(SkBitmap::kA1_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds2.fLeft + 1, -bounds2.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
for (int y = 0; y < bitHeight; ++y) {
uint8_t* addr1 = bits.getAddr1(0, y);
uint8_t* addr2 = bits.getAddr1(bitWidth, y);
for (int x = 0; x < bits.rowBytes(); ++x) {
SkASSERT(addr1[x] == addr2[x]);
}
}
}
bool testSimplify(const SkPath& path, bool fill, SkPath& out, SkBitmap& bitmap,
SkCanvas* canvas) {
if (gShowPath) {
showPath(path);
}
simplify(path, fill, out);
if (!gComparePaths) {
return true;
}
return comparePaths(path, out, bitmap, canvas) == 0;
}
bool testSimplifyx(SkPath& path, bool useXor, SkPath& out, State4& state,
const char* pathStr) {
SkPath::FillType fillType = useXor ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType;
path.setFillType(fillType);
if (gShowPath) {
showPath(path);
}
simplifyx(path, out);
if (!gComparePaths) {
return true;
}
int result = comparePaths(path, out, state.bitmap, state.canvas);
if (result && gPathStrAssert) {
char temp[8192];
bzero(temp, sizeof(temp));
SkMemoryWStream stream(temp, sizeof(temp));
outputToStream(state, pathStr, fillType, stream);
SkDebugf(temp);
SkASSERT(0);
}
return result == 0;
}
bool testSimplifyx(const SkPath& path) {
SkPath out;
simplifyx(path, out);
SkBitmap bitmap;
int result = comparePaths(path, out, bitmap, 0);
if (result && gPathStrAssert) {
SkASSERT(0);
}
return result == 0;
}
const int maxThreadsAllocated = 64;
static int maxThreads = 1;
static int threadIndex;
State4 threadState[maxThreadsAllocated];
static int testNumber;
static const char* testName;
static bool debugThreads = false;
State4* State4::queue = NULL;
pthread_mutex_t State4::addQueue = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t State4::checkQueue = PTHREAD_COND_INITIALIZER;
State4::State4() {
bitmap.setConfig(SkBitmap::kARGB_8888_Config, 150 * 2, 100);
bitmap.allocPixels();
canvas = new SkCanvas(bitmap);
}
void createThread(State4* statePtr, void* (*testFun)(void* )) {
int threadError = pthread_create(&statePtr->threadID, NULL, testFun,
(void*) statePtr);
SkASSERT(!threadError);
}
int dispatchTest4(void* (*testFun)(void* ), int a, int b, int c, int d) {
int testsRun = 0;
State4* statePtr;
if (!gRunTestsInOneThread) {
pthread_mutex_lock(&State4::addQueue);
if (threadIndex < maxThreads) {
statePtr = &threadState[threadIndex];
statePtr->testsRun = 0;
statePtr->a = a;
statePtr->b = b;
statePtr->c = c;
statePtr->d = d;
statePtr->done = false;
statePtr->index = threadIndex;
statePtr->last = false;
if (debugThreads) SkDebugf("%s %d create done=%d last=%d\n", __FUNCTION__,
statePtr->index, statePtr->done, statePtr->last);
pthread_cond_init(&statePtr->initialized, NULL);
++threadIndex;
createThread(statePtr, testFun);
} else {
while (!State4::queue) {
if (debugThreads) SkDebugf("%s checkQueue\n", __FUNCTION__);
pthread_cond_wait(&State4::checkQueue, &State4::addQueue);
}
statePtr = State4::queue;
testsRun += statePtr->testsRun;
statePtr->testsRun = 0;
statePtr->a = a;
statePtr->b = b;
statePtr->c = c;
statePtr->d = d;
statePtr->done = false;
State4::queue = NULL;
for (int index = 0; index < maxThreads; ++index) {
if (threadState[index].done) {
State4::queue = &threadState[index];
}
}
if (debugThreads) SkDebugf("%s %d init done=%d last=%d queued=%d\n", __FUNCTION__,
statePtr->index, statePtr->done, statePtr->last,
State4::queue ? State4::queue->index : -1);
pthread_cond_signal(&statePtr->initialized);
}
pthread_mutex_unlock(&State4::addQueue);
} else {
statePtr = &threadState[0];
testsRun += statePtr->testsRun;
statePtr->testsRun = 0;
statePtr->a = a;
statePtr->b = b;
statePtr->c = c;
statePtr->d = d;
statePtr->done = false;
statePtr->index = threadIndex;
statePtr->last = false;
(*testFun)(statePtr);
}
return testsRun;
}
void initializeTests(const char* test, size_t testNameSize) {
testName = test;
if (!gRunTestsInOneThread) {
int threads = -1;
size_t size = sizeof(threads);
sysctlbyname("hw.logicalcpu_max", &threads, &size, NULL, 0);
if (threads > 0) {
maxThreads = threads;
} else {
maxThreads = 8;
}
}
SkFILEStream inFile("../../experimental/Intersection/op.htm");
if (inFile.isValid()) {
SkTDArray<char> inData;
inData.setCount(inFile.getLength());
size_t inLen = inData.count();
inFile.read(inData.begin(), inLen);
inFile.setPath(NULL);
char* insert = strstr(inData.begin(), marker);
if (insert) {
insert += sizeof(marker) - 1;
const char* numLoc = insert + 4 /* indent spaces */ + testNameSize - 1;
testNumber = atoi(numLoc) + 1;
}
}
const char* filename = preferredFilename;
SkFILEWStream preferredTest(filename);
if (!preferredTest.isValid()) {
filename = backupFilename;
SkFILEWStream backupTest(filename);
SkASSERT(backupTest.isValid());
}
for (int index = 0; index < maxThreads; ++index) {
State4* statePtr = &threadState[index];
strcpy(statePtr->filename, filename);
size_t len = strlen(filename);
SkASSERT(statePtr->filename[len - 6] == 'X');
SkASSERT(statePtr->filename[len - 5] == 'X');
statePtr->filename[len - 6] = '0' + index / 10;
statePtr->filename[len - 5] = '0' + index % 10;
}
threadIndex = 0;
}
void outputProgress(const State4& state, const char* pathStr, SkPath::FillType pathFillType) {
if (gRunTestsInOneThread && gShowOutputProgress) {
if (pathFillType == SkPath::kEvenOdd_FillType) {
SkDebugf(" path.setFillType(SkPath::kEvenOdd_FillType);\n", pathStr);
}
SkDebugf("%s\n", pathStr);
}
SkFILEWStream outFile(state.filename);
if (!outFile.isValid()) {
SkASSERT(0);
return;
}
outputToStream(state, pathStr, pathFillType, outFile);
}
static void writeTestName(SkPath::FillType pathFillType, SkWStream& outFile) {
outFile.writeText(testName);
outFile.writeDecAsText(testNumber);
if (pathFillType == SkPath::kEvenOdd_FillType) {
outFile.writeText("x");
}
}
void outputToStream(const State4& state, const char* pathStr, SkPath::FillType pathFillType, SkWStream& outFile) {
outFile.writeText("<div id=\"");
writeTestName(pathFillType, outFile);
outFile.writeText("\">\n");
if (pathFillType == SkPath::kEvenOdd_FillType) {
outFile.writeText(" path.setFillType(SkPath::kEvenOdd_FillType);\n");
}
outFile.writeText(pathStr);
outFile.writeText("</div>\n\n");
outFile.writeText(marker);
outFile.writeText(" ");
writeTestName(pathFillType, outFile);
outFile.writeText(",\n\n\n");
outFile.writeText("static void ");
writeTestName(pathFillType, outFile);
outFile.writeText("() {\n SkPath path;\n");
if (pathFillType == SkPath::kEvenOdd_FillType) {
outFile.writeText(" path.setFillType(SkPath::kEvenOdd_FillType);\n");
}
outFile.writeText(pathStr);
outFile.writeText(" testSimplifyx(path);\n}\n\n");
outFile.writeText("static void (*firstTest)() = ");
writeTestName(pathFillType, outFile);
outFile.writeText(";\n\n");
outFile.writeText("static struct {\n");
outFile.writeText(" void (*fun)();\n");
outFile.writeText(" const char* str;\n");
outFile.writeText("} tests[] = {\n");
outFile.writeText(" TEST(");
writeTestName(pathFillType, outFile);
outFile.writeText("),\n");
outFile.flush();
}
bool runNextTestSet(State4& state) {
if (gRunTestsInOneThread) {
return false;
}
pthread_mutex_lock(&State4::addQueue);
state.done = true;
State4::queue = &state;
if (debugThreads) SkDebugf("%s %d checkQueue done=%d last=%d\n", __FUNCTION__, state.index,
state.done, state.last);
pthread_cond_signal(&State4::checkQueue);
while (state.done && !state.last) {
if (debugThreads) SkDebugf("%s %d done=%d last=%d\n", __FUNCTION__, state.index, state.done, state.last);
pthread_cond_wait(&state.initialized, &State4::addQueue);
}
pthread_mutex_unlock(&State4::addQueue);
return !state.last;
}
int waitForCompletion() {
int testsRun = 0;
if (!gRunTestsInOneThread) {
pthread_mutex_lock(&State4::addQueue);
int runningThreads = maxThreads;
int index;
while (runningThreads > 0) {
while (!State4::queue) {
if (debugThreads) SkDebugf("%s checkQueue\n", __FUNCTION__);
pthread_cond_wait(&State4::checkQueue, &State4::addQueue);
}
while (State4::queue) {
--runningThreads;
SkDebugf("");
State4::queue->last = true;
State4* next = NULL;
for (index = 0; index < maxThreads; ++index) {
State4& test = threadState[index];
if (test.done && !test.last) {
next = &test;
}
}
if (debugThreads) SkDebugf("%s %d next=%d deQueue\n", __FUNCTION__,
State4::queue->index, next ? next->index : -1);
pthread_cond_signal(&State4::queue->initialized);
State4::queue = next;
}
}
pthread_mutex_unlock(&State4::addQueue);
for (index = 0; index < maxThreads; ++index) {
pthread_join(threadState[index].threadID, NULL);
testsRun += threadState[index].testsRun;
}
SkDebugf("\n");
}
#ifdef SK_DEBUG
gDebugMaxWindSum = SK_MaxS32;
gDebugMaxWindValue = SK_MaxS32;
#endif
return testsRun;
}