fdad22960e
Bug: skia:11837 Change-Id: I038aee81e41201668f891df9d589459553b757b2 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/417259 Commit-Queue: Robert Phillips <robertphillips@google.com> Reviewed-by: Michael Ludwig <michaelludwig@google.com>
454 lines
15 KiB
C++
454 lines
15 KiB
C++
// Copyright 2021 Google LLC.
|
|
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
|
|
|
|
#include "experimental/ngatoy/Cmds.h"
|
|
#include "experimental/ngatoy/Fake.h"
|
|
|
|
#include "include/core/SkCanvas.h"
|
|
#include "include/core/SkGraphics.h"
|
|
#include "include/gpu/GrDirectContext.h"
|
|
#include "src/core/SkOSFile.h"
|
|
#include "src/gpu/GrCaps.h"
|
|
#include "src/gpu/GrDirectContextPriv.h"
|
|
#include "src/utils/SkOSPath.h"
|
|
#include "tools/ToolUtils.h"
|
|
#include "tools/flags/CommandLineFlags.h"
|
|
#include "tools/gpu/GrContextFactory.h"
|
|
|
|
#include <algorithm>
|
|
|
|
/*
|
|
* Questions this is trying to answer:
|
|
* How to handle saveLayers (in w/ everything or separate)
|
|
* How to handle blurs & other off screen draws
|
|
* How to handle clipping
|
|
* How does sorting stack up against buckets
|
|
* How does creating batches interact w/ the sorting
|
|
* How does batching work w/ text
|
|
* How does text (esp. atlasing) work at all
|
|
* Batching quality vs. existing
|
|
* Memory churn/overhead vs existing (esp. wrt batching)
|
|
* gpu vs cpu boundedness
|
|
*
|
|
* Futher Questions:
|
|
* How can we collect uniforms & not store the fps -- seems complicated
|
|
* Do all the blend modes (esp. advanced work front-to-back)?
|
|
* NGA perf vs. OGA perf
|
|
* Can we prepare any of the saveLayers or off-screen draw render passes in parallel?
|
|
*
|
|
* Small potatoes:
|
|
* Incorporate CTM into the simulator
|
|
*/
|
|
|
|
/*
|
|
* How does this all work:
|
|
*
|
|
* Each test is specified by a set of RectCmds (which have a unique ID and carry their material
|
|
* and MC state info) along with the order they are expected to be drawn in with the NGA.
|
|
*
|
|
* To generate an expected image, the RectCmds are replayed into an SkCanvas in the order
|
|
* provided.
|
|
*
|
|
* For the actual (NGA) image, the RectCmds are replayed into a FakeCanvas - preserving the
|
|
* unique ID of the RectCmd. The FakeCanvas creates new RectCmd objects, sorts them using
|
|
* the SortKey and then performs a kludgey z-buffered rasterization. The FakeCanvas also
|
|
* preserves the RectCmd order it ultimately used for its rendering and this can be compared
|
|
* with the expected order from the test.
|
|
*
|
|
* The use of the RectCmds to create the tests is a mere convenience to avoid creating a
|
|
* separate representation of the desired draws.
|
|
*
|
|
***************************
|
|
* Here are some of the simplifying assumptions of this simulation (and their justification):
|
|
*
|
|
* Only SkIRects are used for draws and clips - since MSAA should be taking care of AA for us in
|
|
* the NGA we don't really need SkRects. This also greatly simplifies the z-buffered rasterization.
|
|
*
|
|
**************************
|
|
* Areas for improvement:
|
|
* We should add strokes since there are two distinct drawing methods in the NGA (fill v. stroke)
|
|
*/
|
|
|
|
using sk_gpu_test::GrContextFactory;
|
|
|
|
static DEFINE_string2(writePath, w, "", "If set, write bitmaps here as .pngs.");
|
|
|
|
static void exitf(const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
vfprintf(stderr, format, args);
|
|
va_end(args);
|
|
|
|
exit(1);
|
|
}
|
|
|
|
static void save_files(int testID, const SkBitmap& expected, const SkBitmap& actual) {
|
|
if (FLAGS_writePath.isEmpty()) {
|
|
return;
|
|
}
|
|
|
|
const char* dir = FLAGS_writePath[0];
|
|
|
|
SkString path = SkOSPath::Join(dir, "expected");
|
|
path.appendU32(testID);
|
|
path.append(".png");
|
|
|
|
if (!sk_mkdir(dir)) {
|
|
exitf("failed to create directory for png \"%s\"", path.c_str());
|
|
}
|
|
if (!ToolUtils::EncodeImageToFile(path.c_str(), expected, SkEncodedImageFormat::kPNG, 100)) {
|
|
exitf("failed to save png to \"%s\"", path.c_str());
|
|
}
|
|
|
|
path = SkOSPath::Join(dir, "actual");
|
|
path.appendU32(testID);
|
|
path.append(".png");
|
|
|
|
if (!ToolUtils::EncodeImageToFile(path.c_str(), actual, SkEncodedImageFormat::kPNG, 100)) {
|
|
exitf("failed to save png to \"%s\"", path.c_str());
|
|
}
|
|
}
|
|
|
|
// Exercise basic SortKey behavior
|
|
static void key_test() {
|
|
SortKey k;
|
|
SkASSERT(!k.transparent());
|
|
SkASSERT(k.clipID() == 0);
|
|
SkASSERT(k.depth() == 0);
|
|
SkASSERT(k.material() == 0);
|
|
// k.dump();
|
|
|
|
SortKey k1(false, 4, 1, 3);
|
|
SkASSERT(!k1.transparent());
|
|
SkASSERT(k1.clipID() == 4);
|
|
SkASSERT(k1.depth() == 1);
|
|
SkASSERT(k1.material() == 3);
|
|
// k1.dump();
|
|
|
|
SortKey k2(true, 7, 2, 1);
|
|
SkASSERT(k2.transparent());
|
|
SkASSERT(k2.clipID() == 7);
|
|
SkASSERT(k2.depth() == 2);
|
|
SkASSERT(k2.material() == 1);
|
|
// k2.dump();
|
|
}
|
|
|
|
static void check_state(FakeMCBlob* actualState,
|
|
SkIPoint expectedCTM,
|
|
const std::vector<SkIRect>& expectedClips) {
|
|
SkASSERT(actualState->ctm() == expectedCTM);
|
|
|
|
int i = 0;
|
|
auto states = actualState->mcStates();
|
|
for (auto& s : states) {
|
|
for (auto r : s.rects()) {
|
|
SkAssertResult(i < (int) expectedClips.size());
|
|
SkAssertResult(r == expectedClips[i]);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Exercise the FakeMCBlob object
|
|
static void mcstack_test() {
|
|
const SkIRect r { 0, 0, 10, 10 };
|
|
const SkIPoint s1Trans { 10, 10 };
|
|
const SkIPoint s2TransA { -5, -2 };
|
|
const SkIPoint s2TransB { -3, -1 };
|
|
|
|
const std::vector<SkIRect> expectedS0Clips;
|
|
const std::vector<SkIRect> expectedS1Clips {
|
|
r.makeOffset(s1Trans)
|
|
};
|
|
const std::vector<SkIRect> expectedS2aClips {
|
|
r.makeOffset(s1Trans),
|
|
r.makeOffset(s2TransA)
|
|
};
|
|
const std::vector<SkIRect> expectedS2bClips {
|
|
r.makeOffset(s1Trans),
|
|
r.makeOffset(s2TransA),
|
|
r.makeOffset(s2TransA + s2TransB)
|
|
};
|
|
|
|
//----------------
|
|
FakeStateTracker s;
|
|
|
|
auto state0 = s.snapState();
|
|
// The initial state should have no translation & no clip
|
|
check_state(state0.get(), { 0, 0 }, expectedS0Clips);
|
|
|
|
//----------------
|
|
s.push();
|
|
s.translate(s1Trans);
|
|
s.clipRect(r);
|
|
|
|
auto state1 = s.snapState();
|
|
check_state(state1.get(), s1Trans, expectedS1Clips);
|
|
|
|
//----------------
|
|
s.push();
|
|
s.translate(s2TransA);
|
|
s.clipRect(r);
|
|
|
|
auto state2a = s.snapState();
|
|
check_state(state2a.get(), s1Trans + s2TransA, expectedS2aClips);
|
|
|
|
s.translate(s2TransB);
|
|
s.clipRect(r);
|
|
|
|
auto state2b = s.snapState();
|
|
check_state(state2b.get(), s1Trans + s2TransA + s2TransB, expectedS2bClips);
|
|
SkASSERT(state2a != state2b);
|
|
|
|
//----------------
|
|
s.pop();
|
|
auto state3 = s.snapState();
|
|
check_state(state3.get(), s1Trans, expectedS1Clips);
|
|
SkASSERT(state1 == state3);
|
|
|
|
//----------------
|
|
s.pop();
|
|
auto state4 = s.snapState();
|
|
check_state(state4.get(), { 0, 0 }, expectedS0Clips);
|
|
SkASSERT(state0 == state4);
|
|
}
|
|
|
|
static void check_order(const std::vector<ID>& actualOrder,
|
|
const std::vector<ID>& expectedOrder) {
|
|
if (expectedOrder.size() != actualOrder.size()) {
|
|
exitf("Op count mismatch. Expected %d - got %d\n",
|
|
expectedOrder.size(),
|
|
actualOrder.size());
|
|
}
|
|
|
|
if (expectedOrder != actualOrder) {
|
|
SkDebugf("order mismatch:\n");
|
|
SkDebugf("E %d: ", expectedOrder.size());
|
|
for (auto t : expectedOrder) {
|
|
SkDebugf("%d", t.toInt());
|
|
}
|
|
SkDebugf("\n");
|
|
|
|
SkDebugf("A %d: ", actualOrder.size());
|
|
for (auto t : actualOrder) {
|
|
SkDebugf("%d", t.toInt());
|
|
}
|
|
SkDebugf("\n");
|
|
}
|
|
}
|
|
|
|
typedef int (*PFTest)(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder);
|
|
|
|
static void sort_test(PFTest testcase) {
|
|
std::vector<const Cmd*> test;
|
|
std::vector<ID> expectedOrder;
|
|
int testID = testcase(&test, &expectedOrder);
|
|
|
|
|
|
SkBitmap expectedBM;
|
|
expectedBM.allocPixels(SkImageInfo::MakeN32Premul(256, 256));
|
|
expectedBM.eraseColor(SK_ColorBLACK);
|
|
SkCanvas real(expectedBM);
|
|
|
|
SkBitmap actualBM;
|
|
actualBM.allocPixels(SkImageInfo::MakeN32Premul(256, 256));
|
|
actualBM.eraseColor(SK_ColorBLACK);
|
|
|
|
FakeCanvas fake(actualBM);
|
|
const FakeMCBlob* prior = nullptr;
|
|
for (auto c : test) {
|
|
c->execute(&fake);
|
|
c->execute(&real, prior);
|
|
prior = c->state();
|
|
}
|
|
|
|
fake.finalize();
|
|
|
|
std::vector<ID> actualOrder = fake.getOrder();
|
|
check_order(actualOrder, expectedOrder);
|
|
|
|
save_files(testID, expectedBM, actualBM);
|
|
}
|
|
|
|
// Simple test - green rect should appear atop the red rect
|
|
static int test1(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder) {
|
|
// front-to-back order bc all opaque
|
|
expectedOrder->push_back(ID(1));
|
|
expectedOrder->push_back(ID(0));
|
|
|
|
//---------------------------------------------------------------------------------------------
|
|
FakeStateTracker s;
|
|
sk_sp<FakeMCBlob> state = s.snapState();
|
|
|
|
SkIRect r{0, 0, 100, 100};
|
|
test->push_back(new RectCmd(ID(0), {}, r.makeOffset(8, 8), FakePaint(SK_ColorRED), state));
|
|
test->push_back(new RectCmd(ID(1), {}, r.makeOffset(48, 48), FakePaint(SK_ColorGREEN), state));
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Simple test - blue rect atop green rect atop red rect
|
|
static int test2(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder) {
|
|
// front-to-back order bc all opaque
|
|
expectedOrder->push_back(ID(2));
|
|
expectedOrder->push_back(ID(1));
|
|
expectedOrder->push_back(ID(0));
|
|
|
|
//---------------------------------------------------------------------------------------------
|
|
FakeStateTracker s;
|
|
sk_sp<FakeMCBlob> state = s.snapState();
|
|
|
|
SkIRect r{0, 0, 100, 100};
|
|
test->push_back(new RectCmd(ID(0), {}, r.makeOffset(8, 8), FakePaint(SK_ColorRED), state));
|
|
test->push_back(new RectCmd(ID(1), {}, r.makeOffset(48, 48), FakePaint(SK_ColorGREEN), state));
|
|
test->push_back(new RectCmd(ID(2), {}, r.makeOffset(98, 98), FakePaint(SK_ColorBLUE), state));
|
|
return 2;
|
|
}
|
|
|
|
// Transparency test - opaque blue rect atop transparent green rect atop opaque red rect
|
|
static int test3(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder) {
|
|
// opaque draws are first and are front-to-back. Transparent draw is last.
|
|
expectedOrder->push_back(ID(2));
|
|
expectedOrder->push_back(ID(0));
|
|
expectedOrder->push_back(ID(1));
|
|
|
|
//---------------------------------------------------------------------------------------------
|
|
FakeStateTracker s;
|
|
sk_sp<FakeMCBlob> state = s.snapState();
|
|
|
|
SkIRect r{0, 0, 100, 100};
|
|
test->push_back(new RectCmd(ID(0), {}, r.makeOffset(8, 8), FakePaint(SK_ColorRED), state));
|
|
test->push_back(new RectCmd(ID(1), {}, r.makeOffset(48, 48), FakePaint(0x8000FF00), state));
|
|
test->push_back(new RectCmd(ID(2), {}, r.makeOffset(98, 98), FakePaint(SK_ColorBLUE), state));
|
|
return 3;
|
|
}
|
|
|
|
// Multi-transparency test - transparent blue rect atop transparent green rect atop
|
|
// transparent red rect
|
|
static int test4(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder) {
|
|
// All in back-to-front order bc they're all transparent
|
|
expectedOrder->push_back(ID(0));
|
|
expectedOrder->push_back(ID(1));
|
|
expectedOrder->push_back(ID(2));
|
|
|
|
//---------------------------------------------------------------------------------------------
|
|
FakeStateTracker s;
|
|
sk_sp<FakeMCBlob> state = s.snapState();
|
|
|
|
SkIRect r{0, 0, 100, 100};
|
|
test->push_back(new RectCmd(ID(0), {}, r.makeOffset(8, 8), FakePaint(0x80FF0000), state));
|
|
test->push_back(new RectCmd(ID(1), {}, r.makeOffset(48, 48), FakePaint(0x8000FF00), state));
|
|
test->push_back(new RectCmd(ID(2), {}, r.makeOffset(98, 98), FakePaint(0x800000FF), state));
|
|
return 4;
|
|
}
|
|
|
|
// Multiple opaque materials test
|
|
// All opaque:
|
|
// normal1, linear1, radial1, normal2, linear2, radial2
|
|
// Which gets sorted to:
|
|
// normal2, normal1, linear2, linear1, radial2, radial1
|
|
// So, front to back w/in each material type.
|
|
static int test5(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder) {
|
|
// Note: This pushes sorting by material above sorting by Z. Thus we'll get less front to
|
|
// back benefit.
|
|
expectedOrder->push_back(ID(3));
|
|
expectedOrder->push_back(ID(0));
|
|
expectedOrder->push_back(ID(4));
|
|
expectedOrder->push_back(ID(1));
|
|
expectedOrder->push_back(ID(5));
|
|
expectedOrder->push_back(ID(2));
|
|
|
|
//---------------------------------------------------------------------------------------------
|
|
FakeStateTracker s;
|
|
sk_sp<FakeMCBlob> state = s.snapState();
|
|
|
|
FakePaint p;
|
|
|
|
SkIRect r{0, 0, 100, 100};
|
|
test->push_back(new RectCmd(ID(0), {}, r.makeOffset(8, 8), FakePaint(SK_ColorRED), state));
|
|
p.setLinear(SK_ColorGREEN, SK_ColorWHITE);
|
|
test->push_back(new RectCmd(ID(1), {}, r.makeOffset(48, 48), p, state));
|
|
p.setRadial(SK_ColorBLUE, SK_ColorBLACK);
|
|
test->push_back(new RectCmd(ID(2), {}, r.makeOffset(98, 98), p, state));
|
|
test->push_back(new RectCmd(ID(3), {}, r.makeOffset(148, 148), FakePaint(SK_ColorCYAN), state));
|
|
p.setLinear(SK_ColorMAGENTA, SK_ColorWHITE);
|
|
test->push_back(new RectCmd(ID(4), {}, r.makeOffset(148, 8), p, state));
|
|
p.setRadial(SK_ColorYELLOW, SK_ColorBLACK);
|
|
test->push_back(new RectCmd(ID(5), {}, r.makeOffset(8, 148), p, state));
|
|
return 5;
|
|
}
|
|
|
|
// simple clipping test - 1 clip w/ two opaque rects
|
|
static int test6(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder) {
|
|
// The expected is front to back after the clip
|
|
expectedOrder->push_back(ID(1));
|
|
expectedOrder->push_back(ID(0));
|
|
|
|
//---------------------------------------------------------------------------------------------
|
|
FakeStateTracker s;
|
|
s.clipRect(SkIRect::MakeXYWH(28, 28, 40, 40));
|
|
|
|
sk_sp<FakeMCBlob> state = s.snapState();
|
|
|
|
SkIRect r{0, 0, 100, 100};
|
|
test->push_back(new RectCmd(ID(0), {}, r.makeOffset(8, 8), FakePaint(SK_ColorRED), state));
|
|
test->push_back(new RectCmd(ID(1), {}, r.makeOffset(48, 48), FakePaint(SK_ColorGREEN), state));
|
|
|
|
return 6;
|
|
}
|
|
|
|
// more complicated clipping w/ opaque draws -> should reorder
|
|
static int test7(std::vector<const Cmd*>* test, std::vector<ID>* expectedOrder) {
|
|
// The expected is front to back modulated by the two clip states
|
|
expectedOrder->push_back(ID(5));
|
|
expectedOrder->push_back(ID(4));
|
|
expectedOrder->push_back(ID(1));
|
|
expectedOrder->push_back(ID(0));
|
|
|
|
expectedOrder->push_back(ID(3));
|
|
expectedOrder->push_back(ID(2));
|
|
|
|
//---------------------------------------------------------------------------------------------
|
|
FakeStateTracker s;
|
|
s.clipRect(SkIRect::MakeXYWH(85, 0, 86, 256)); // select the middle third in x
|
|
|
|
sk_sp<FakeMCBlob> state = s.snapState();
|
|
|
|
SkIRect r{0, 0, 100, 100};
|
|
test->push_back(new RectCmd(ID(0), {}, r.makeOffset(8, 8), FakePaint(SK_ColorRED), state));
|
|
test->push_back(new RectCmd(ID(1), {}, r.makeOffset(48, 48), FakePaint(SK_ColorGREEN), state));
|
|
|
|
s.push();
|
|
s.clipRect(SkIRect::MakeXYWH(0, 85, 256, 86)); // intersect w/ the middle third in y
|
|
state = s.snapState();
|
|
|
|
test->push_back(new RectCmd(ID(2), {}, r.makeOffset(98, 98), FakePaint(SK_ColorBLUE), state));
|
|
test->push_back(new RectCmd(ID(3), {}, r.makeOffset(148, 148), FakePaint(SK_ColorCYAN), state));
|
|
|
|
s.pop();
|
|
state = s.snapState();
|
|
|
|
test->push_back(new RectCmd(ID(4), {}, r.makeOffset(148, 8), FakePaint(SK_ColorMAGENTA), state));
|
|
test->push_back(new RectCmd(ID(5), {}, r.makeOffset(8, 148), FakePaint(SK_ColorYELLOW), state));
|
|
|
|
return 7;
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
CommandLineFlags::Parse(argc, argv);
|
|
|
|
SkGraphics::Init();
|
|
|
|
key_test();
|
|
mcstack_test();
|
|
sort_test(test1);
|
|
sort_test(test2);
|
|
sort_test(test3);
|
|
sort_test(test4);
|
|
sort_test(test5);
|
|
sort_test(test6);
|
|
sort_test(test7);
|
|
|
|
return 0;
|
|
}
|