skia2/include/core/SkWriter32.h

281 lines
8.9 KiB
C++

/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkWriter32_DEFINED
#define SkWriter32_DEFINED
#include "SkMatrix.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkRRect.h"
#include "SkRect.h"
#include "SkRegion.h"
#include "SkScalar.h"
#include "SkStream.h"
#include "SkTDArray.h"
#include "SkTypes.h"
class SkWriter32 : SkNoncopyable {
public:
/**
* The caller can specify an initial block of storage, which the caller manages.
*
* SkWriter32 will try to back reserve and write calls with this external storage until the
* first time an allocation doesn't fit. From then it will use dynamically allocated storage.
* This used to be optional behavior, but pipe now relies on it.
*/
SkWriter32(void* external = NULL, size_t externalBytes = 0) {
this->reset(external, externalBytes);
}
// return the current offset (will always be a multiple of 4)
size_t bytesWritten() const { return fCount * 4; }
SK_ATTR_DEPRECATED("use bytesWritten")
size_t size() const { return this->bytesWritten(); }
void reset(void* external = NULL, size_t externalBytes = 0) {
SkASSERT(SkIsAlign4((uintptr_t)external));
SkASSERT(SkIsAlign4(externalBytes));
fExternal = (uint32_t*)external;
fExternalLimit = SkToInt(externalBytes/4);
fCount = 0;
fInternal.rewind();
}
// If all data written is contiguous, then this returns a pointer to it, otherwise NULL.
// This will work if we've only written to the externally supplied block of storage, or if we've
// only written to our internal dynamic storage, but will fail if we have written into both.
const uint32_t* contiguousArray() const {
if (this->externalCount() == 0) {
return fInternal.begin();
} else if (fInternal.isEmpty()) {
return fExternal;
}
return NULL;
}
// size MUST be multiple of 4
uint32_t* reserve(size_t size) {
SkASSERT(SkAlign4(size) == size);
const int count = SkToInt(size/4);
uint32_t* p;
// Once we start writing to fInternal, we never write to fExternal again.
// This simplifies tracking what data is where.
if (fInternal.isEmpty() && this->externalCount() + count <= fExternalLimit) {
p = fExternal + fCount;
} else {
p = fInternal.append(count);
}
fCount += count;
return p;
}
// Read or write 4 bytes at offset, which must be a multiple of 4 <= size().
uint32_t read32At(size_t offset) { return this->atOffset(offset); }
void write32At(size_t offset, uint32_t val) { this->atOffset(offset) = val; }
bool writeBool(bool value) {
this->write32(value);
return value;
}
void writeInt(int32_t value) {
this->write32(value);
}
void write8(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
}
void write16(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
}
void write32(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value;
}
void writePtr(void* value) {
*(void**)this->reserve(sizeof(value)) = value;
}
void writeScalar(SkScalar value) {
*(SkScalar*)this->reserve(sizeof(value)) = value;
}
void writePoint(const SkPoint& pt) {
*(SkPoint*)this->reserve(sizeof(pt)) = pt;
}
void writeRect(const SkRect& rect) {
*(SkRect*)this->reserve(sizeof(rect)) = rect;
}
void writeIRect(const SkIRect& rect) {
*(SkIRect*)this->reserve(sizeof(rect)) = rect;
}
void writeRRect(const SkRRect& rrect) {
rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
}
void writePath(const SkPath& path) {
size_t size = path.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
path.writeToMemory(this->reserve(size));
}
void writeMatrix(const SkMatrix& matrix) {
size_t size = matrix.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
matrix.writeToMemory(this->reserve(size));
}
void writeRegion(const SkRegion& rgn) {
size_t size = rgn.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
rgn.writeToMemory(this->reserve(size));
}
// write count bytes (must be a multiple of 4)
void writeMul4(const void* values, size_t size) {
this->write(values, size);
}
/**
* Write size bytes from values. size must be a multiple of 4, though
* values need not be 4-byte aligned.
*/
void write(const void* values, size_t size) {
SkASSERT(SkAlign4(size) == size);
// TODO: If we're going to spill from fExternal to fInternal, we might want to fill
// fExternal as much as possible before writing to fInternal.
memcpy(this->reserve(size), values, size);
}
/**
* Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
* filled in with zeroes.
*/
uint32_t* reservePad(size_t size) {
uint32_t* p = this->reserve(SkAlign4(size));
uint8_t* tail = (uint8_t*)p + size;
switch (SkAlign4(size) - size) {
default: SkDEBUGFAIL("SkAlign4(x) - x should always be 0, 1, 2, or 3.");
case 3: *tail++ = 0x00; // fallthrough is intentional
case 2: *tail++ = 0x00; // fallthrough is intentional
case 1: *tail++ = 0x00;
case 0: ;/*nothing to do*/
}
return p;
}
/**
* Write size bytes from src, and pad to 4 byte alignment with zeroes.
*/
void writePad(const void* src, size_t size) {
memcpy(this->reservePad(size), src, size);
}
/**
* Writes a string to the writer, which can be retrieved with
* SkReader32::readString().
* The length can be specified, or if -1 is passed, it will be computed by
* calling strlen(). The length must be < max size_t.
*
* If you write NULL, it will be read as "".
*/
void writeString(const char* str, size_t len = (size_t)-1);
/**
* Computes the size (aligned to multiple of 4) need to write the string
* in a call to writeString(). If the length is not specified, it will be
* computed by calling strlen().
*/
static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
/**
* Move the cursor back to offset bytes from the beginning.
* offset must be a multiple of 4 no greater than size().
*/
void rewindToOffset(size_t offset) {
SkASSERT(SkAlign4(offset) == offset);
const int count = SkToInt(offset/4);
if (count < this->externalCount()) {
fInternal.setCount(0);
} else {
fInternal.setCount(count - this->externalCount());
}
fCount = count;
}
// copy into a single buffer (allocated by caller). Must be at least size()
void flatten(void* dst) const {
const size_t externalBytes = this->externalCount()*4;
memcpy(dst, fExternal, externalBytes);
dst = (uint8_t*)dst + externalBytes;
memcpy(dst, fInternal.begin(), fInternal.bytes());
}
bool writeToStream(SkWStream* stream) const {
return stream->write(fExternal, this->externalCount()*4)
&& stream->write(fInternal.begin(), fInternal.bytes());
}
// read from the stream, and write up to length bytes. Return the actual
// number of bytes written.
size_t readFromStream(SkStream* stream, size_t length) {
return stream->read(this->reservePad(length), length);
}
private:
uint32_t& atOffset(size_t offset) {
SkASSERT(SkAlign4(offset) == offset);
const int count = SkToInt(offset/4);
SkASSERT(count < fCount);
if (count < this->externalCount()) {
return fExternal[count];
}
return fInternal[count - this->externalCount()];
}
// Number of uint32_t written into fExternal. <= fExternalLimit.
int externalCount() const { return fCount - fInternal.count(); }
int fCount; // Total number of uint32_t written.
int fExternalLimit; // Number of uint32_t we can write to fExternal.
uint32_t* fExternal; // Unmanaged memory block.
SkTDArray<uint32_t> fInternal; // Managed memory block.
};
/**
* Helper class to allocated SIZE bytes as part of the writer, and to provide
* that storage to the constructor as its initial storage buffer.
*
* This wrapper ensures proper alignment rules are met for the storage.
*/
template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
public:
SkSWriter32() : SkWriter32(fData.fStorage, SIZE) {}
private:
union {
void* fPtrAlignment;
double fDoubleAlignment;
char fStorage[SIZE];
} fData;
};
#endif