fdfbb9d5f0
R=robertphillips@google.com, jvanverth@google.com Author: bsalomon@google.com Review URL: https://chromiumcodereview.appspot.com/23034003 git-svn-id: http://skia.googlecode.com/svn/trunk@10744 2bbb7eff-a529-9590-31e7-b0007b416f81
295 lines
12 KiB
C++
295 lines
12 KiB
C++
|
|
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "gm.h"
|
|
#include "SkRandom.h"
|
|
#include "SkTArray.h"
|
|
|
|
class SkOnce : SkNoncopyable {
|
|
public:
|
|
SkOnce() { fDidOnce = false; }
|
|
|
|
bool needToDo() const { return !fDidOnce; }
|
|
bool alreadyDone() const { return fDidOnce; }
|
|
void accomplished() {
|
|
SkASSERT(!fDidOnce);
|
|
fDidOnce = true;
|
|
}
|
|
|
|
private:
|
|
bool fDidOnce;
|
|
};
|
|
|
|
namespace skiagm {
|
|
|
|
class ConvexPathsGM : public GM {
|
|
SkOnce fOnce;
|
|
public:
|
|
ConvexPathsGM() {
|
|
this->setBGColor(0xFF000000);
|
|
}
|
|
|
|
protected:
|
|
virtual SkString onShortName() {
|
|
return SkString("convexpaths");
|
|
}
|
|
|
|
|
|
virtual SkISize onISize() {
|
|
return make_isize(1200, 1100);
|
|
}
|
|
|
|
void makePaths() {
|
|
if (fOnce.alreadyDone()) {
|
|
return;
|
|
}
|
|
fOnce.accomplished();
|
|
|
|
fPaths.push_back().moveTo(0, 0);
|
|
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
|
|
0, 100 * SK_Scalar1);
|
|
fPaths.back().lineTo(0, 0);
|
|
|
|
fPaths.push_back().moveTo(0, 50 * SK_Scalar1);
|
|
fPaths.back().quadTo(50 * SK_Scalar1, 0,
|
|
100 * SK_Scalar1, 50 * SK_Scalar1);
|
|
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
|
|
0, 50 * SK_Scalar1);
|
|
|
|
fPaths.push_back().addRect(0, 0,
|
|
100 * SK_Scalar1, 100 * SK_Scalar1,
|
|
SkPath::kCW_Direction);
|
|
|
|
fPaths.push_back().addRect(0, 0,
|
|
100 * SK_Scalar1, 100 * SK_Scalar1,
|
|
SkPath::kCCW_Direction);
|
|
|
|
fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
50 * SK_Scalar1, SkPath::kCW_Direction);
|
|
|
|
|
|
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
|
|
50 * SK_Scalar1,
|
|
100 * SK_Scalar1),
|
|
SkPath::kCW_Direction);
|
|
|
|
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
|
|
100 * SK_Scalar1,
|
|
5 * SK_Scalar1),
|
|
SkPath::kCCW_Direction);
|
|
|
|
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
|
|
SK_Scalar1,
|
|
100 * SK_Scalar1),
|
|
SkPath::kCCW_Direction);
|
|
|
|
fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0,
|
|
SK_Scalar1 * 100,
|
|
SK_Scalar1 * 100),
|
|
40 * SK_Scalar1, 20 * SK_Scalar1,
|
|
SkPath::kCW_Direction);
|
|
|
|
// large number of points
|
|
enum {
|
|
kLength = 100,
|
|
kPtsPerSide = (1 << 12),
|
|
};
|
|
fPaths.push_back().moveTo(0, 0);
|
|
for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo.
|
|
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0);
|
|
}
|
|
for (int i = 0; i < kPtsPerSide; ++i) {
|
|
fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide);
|
|
}
|
|
for (int i = kPtsPerSide; i > 0; --i) {
|
|
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength);
|
|
}
|
|
for (int i = kPtsPerSide; i > 0; --i) {
|
|
fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide);
|
|
}
|
|
|
|
// shallow diagonals
|
|
fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1);
|
|
fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1);
|
|
fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1);
|
|
|
|
fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0,
|
|
50 * SK_Scalar1,
|
|
100 * SK_Scalar1),
|
|
25 * SK_Scalar1, 130 * SK_Scalar1, false);
|
|
|
|
// cubics
|
|
fPaths.push_back().cubicTo( 1 * SK_Scalar1, 1 * SK_Scalar1,
|
|
10 * SK_Scalar1, 90 * SK_Scalar1,
|
|
0 * SK_Scalar1, 100 * SK_Scalar1);
|
|
fPaths.push_back().cubicTo(100 * SK_Scalar1, 50 * SK_Scalar1,
|
|
20 * SK_Scalar1, 100 * SK_Scalar1,
|
|
0 * SK_Scalar1, 0 * SK_Scalar1);
|
|
|
|
// path that has a cubic with a repeated first control point and
|
|
// a repeated last control point.
|
|
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
|
|
fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1,
|
|
10 * SK_Scalar1, 0,
|
|
20 * SK_Scalar1, 0);
|
|
fPaths.back().lineTo(40 * SK_Scalar1, 0);
|
|
fPaths.back().cubicTo(40 * SK_Scalar1, 0,
|
|
50 * SK_Scalar1, 0,
|
|
50 * SK_Scalar1, 10 * SK_Scalar1);
|
|
|
|
// path that has two cubics with repeated middle control points.
|
|
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
|
|
fPaths.back().cubicTo(10 * SK_Scalar1, 0,
|
|
10 * SK_Scalar1, 0,
|
|
20 * SK_Scalar1, 0);
|
|
fPaths.back().lineTo(40 * SK_Scalar1, 0);
|
|
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
|
|
50 * SK_Scalar1, 0,
|
|
50 * SK_Scalar1, 10 * SK_Scalar1);
|
|
|
|
// cubic where last three points are almost a line
|
|
fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8);
|
|
fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8,
|
|
1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8,
|
|
1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8);
|
|
|
|
// flat cubic where the at end point tangents both point outward.
|
|
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
|
|
fPaths.back().cubicTo(0, SK_Scalar1,
|
|
30 * SK_Scalar1, SK_Scalar1,
|
|
20 * SK_Scalar1, 0);
|
|
|
|
// flat cubic where initial tangent is in, end tangent out
|
|
fPaths.push_back().moveTo(0, 0 * SK_Scalar1);
|
|
fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1,
|
|
30 * SK_Scalar1, SK_Scalar1,
|
|
20 * SK_Scalar1, 0);
|
|
|
|
// flat cubic where initial tangent is out, end tangent in
|
|
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
|
|
fPaths.back().cubicTo(0, SK_Scalar1,
|
|
20 * SK_Scalar1, SK_Scalar1,
|
|
30 * SK_Scalar1, 0);
|
|
|
|
// triangle where one edge is a degenerate quad
|
|
fPaths.push_back().moveTo(SkFloatToScalar(8.59375f), 45 * SK_Scalar1);
|
|
fPaths.back().quadTo(SkFloatToScalar(16.9921875f), 45 * SK_Scalar1,
|
|
SkFloatToScalar(31.25f), 45 * SK_Scalar1);
|
|
fPaths.back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
|
|
fPaths.back().lineTo(SkFloatToScalar(8.59375f), 45 * SK_Scalar1);
|
|
|
|
// triangle where one edge is a quad with a repeated point
|
|
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
|
|
fPaths.back().lineTo(50 * SK_Scalar1, 0);
|
|
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// triangle where one edge is a cubic with a 2x repeated point
|
|
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
|
|
fPaths.back().lineTo(50 * SK_Scalar1, 0);
|
|
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// triangle where one edge is a quad with a nearly repeated point
|
|
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
|
|
fPaths.back().lineTo(50 * SK_Scalar1, 0);
|
|
fPaths.back().quadTo(50 * SK_Scalar1, SkFloatToScalar(49.95f),
|
|
50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// triangle where one edge is a cubic with a 3x nearly repeated point
|
|
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
|
|
fPaths.back().lineTo(50 * SK_Scalar1, 0);
|
|
fPaths.back().cubicTo(50 * SK_Scalar1, SkFloatToScalar(49.95f),
|
|
50 * SK_Scalar1, SkFloatToScalar(49.97f),
|
|
50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// triangle where there is a point degenerate cubic at one corner
|
|
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
|
|
fPaths.back().lineTo(50 * SK_Scalar1, 0);
|
|
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// point line
|
|
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// point quad
|
|
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// point cubic
|
|
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
|
|
// moveTo only paths
|
|
fPaths.push_back().moveTo(0, 0);
|
|
fPaths.back().moveTo(0, 0);
|
|
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
|
|
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
|
|
fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1);
|
|
|
|
fPaths.push_back().moveTo(0, 0);
|
|
fPaths.back().moveTo(0, 0);
|
|
|
|
// line degenerate
|
|
fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
|
|
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0);
|
|
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1,
|
|
50 * SK_Scalar1, 50 * SK_Scalar1);
|
|
fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
|
|
100 * SK_Scalar1, 100 * SK_Scalar1);
|
|
fPaths.push_back().cubicTo(0, 0,
|
|
0, 0,
|
|
100 * SK_Scalar1, 100 * SK_Scalar1);
|
|
|
|
// small circle. This is listed last so that it has device coords far
|
|
// from the origin (small area relative to x,y values).
|
|
fPaths.push_back().addCircle(0, 0, SkFloatToScalar(1.2f));
|
|
}
|
|
|
|
virtual void onDraw(SkCanvas* canvas) {
|
|
this->makePaths();
|
|
|
|
SkPaint paint;
|
|
paint.setAntiAlias(true);
|
|
SkRandom rand;
|
|
canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1);
|
|
|
|
// As we've added more paths this has gotten pretty big. Scale the whole thing down.
|
|
canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3);
|
|
|
|
for (int i = 0; i < fPaths.count(); ++i) {
|
|
canvas->save();
|
|
// position the path, and make it at off-integer coords.
|
|
canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10,
|
|
SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10);
|
|
SkColor color = rand.nextU();
|
|
color |= 0xff000000;
|
|
paint.setColor(color);
|
|
SkASSERT(fPaths[i].isConvex());
|
|
canvas->drawPath(fPaths[i], paint);
|
|
canvas->restore();
|
|
}
|
|
}
|
|
|
|
private:
|
|
typedef GM INHERITED;
|
|
SkTArray<SkPath> fPaths;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
static GM* MyFactory(void*) { return new ConvexPathsGM; }
|
|
static GMRegistry reg(MyFactory);
|
|
|
|
}
|