skia2/tools/colorspaceinfo.cpp
Hal Canary 1fcc40474f SkEncodeImage: no more link-time registration
Also, no more SkImageEncoder class.

SK_SUPPORT_LEGACY_IMAGE_ENCODER_CLASS now only guards some
old API shims.

GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=5006

Change-Id: I3797f584f3e8e12ade10d31e8733163453725f40
Reviewed-on: https://skia-review.googlesource.com/5006
Commit-Queue: Hal Canary <halcanary@google.com>
Reviewed-by: Leon Scroggins <scroggo@google.com>
Reviewed-by: Mike Reed <reed@google.com>
2016-11-30 22:48:56 +00:00

260 lines
9.9 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkColorSpace_XYZ.h"
#include "SkCommandLineFlags.h"
#include "SkImageEncoder.h"
#include "SkMatrix44.h"
#include "SkOSFile.h"
#include "sk_tool_utils.h"
DEFINE_string(input, "input.png", "A path to the input image or icc profile.");
DEFINE_string(output, "output.png", "A path to the output image.");
DEFINE_bool(sRGB, false, "Draws the sRGB gamut.");
DEFINE_bool(adobeRGB, false, "Draws the Adobe RGB gamut.");
DEFINE_string(uncorrected, "", "A path to reencode the uncorrected input image.");
static void dump_transfer_fn(SkColorSpace_XYZ* colorSpace) {
switch (colorSpace->gammaNamed()) {
case kSRGB_SkGammaNamed:
SkDebugf("Transfer Function: sRGB\n");
return;
case k2Dot2Curve_SkGammaNamed:
SkDebugf("Exponential Transfer Function: Exponent 2.2\n");
return;
case kLinear_SkGammaNamed:
SkDebugf("Transfer Function: Linear\n");
return;
default:
break;
}
static const char* kChannels[] = { "Red ", "Green", "Blue ", };
const SkGammas* gammas = colorSpace->gammas();
for (int i = 0; i < 3; i++) {
if (gammas->isNamed(i)) {
switch (gammas->data(i).fNamed) {
case kSRGB_SkGammaNamed:
SkDebugf("%s Transfer Function: sRGB\n", kChannels[i]);
return;
case k2Dot2Curve_SkGammaNamed:
SkDebugf("%s Transfer Function: Exponent 2.2\n", kChannels[i]);
return;
case kLinear_SkGammaNamed:
SkDebugf("%s Transfer Function: Linear\n", kChannels[i]);
return;
default:
SkASSERT(false);
continue;
}
} else if (gammas->isValue(i)) {
SkDebugf("%s Transfer Function: Exponent %.3f\n", kChannels[i], gammas->data(i).fValue);
} else if (gammas->isParametric(i)) {
const SkColorSpaceTransferFn& fn = gammas->data(i).params(gammas);
SkDebugf("%s Transfer Function: Parametric A = %.3f, B = %.3f, C = %.3f, D = %.3f, "
"E = %.3f, F = %.3f, G = %.3f\n", kChannels[i], fn.fA, fn.fB, fn.fC, fn.fD,
fn.fE, fn.fF, fn.fG);
} else {
SkASSERT(gammas->isTable(i));
SkDebugf("%s Transfer Function: Table (%d entries)\n", kChannels[i],
gammas->data(i).fTable.fSize);
}
}
}
/**
* Loads the triangular gamut as a set of three points.
*/
static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
// rx = rX / (rX + rY + rZ)
// ry = rX / (rX + rY + rZ)
// gx, gy, bx, and gy are calulcated similarly.
float rSum = xyz.get(0, 0) + xyz.get(1, 0) + xyz.get(2, 0);
float gSum = xyz.get(0, 1) + xyz.get(1, 1) + xyz.get(2, 1);
float bSum = xyz.get(0, 2) + xyz.get(1, 2) + xyz.get(2, 2);
rgb[0].fX = xyz.get(0, 0) / rSum;
rgb[0].fY = xyz.get(1, 0) / rSum;
rgb[1].fX = xyz.get(0, 1) / gSum;
rgb[1].fY = xyz.get(1, 1) / gSum;
rgb[2].fX = xyz.get(0, 2) / bSum;
rgb[2].fY = xyz.get(1, 2) / bSum;
}
/**
* Calculates the area of the triangular gamut.
*/
static float calculate_area(SkPoint abc[]) {
SkPoint a = abc[0];
SkPoint b = abc[1];
SkPoint c = abc[2];
return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
}
static void draw_gamut(SkCanvas* canvas, const SkMatrix44& xyz, const char* name, SkColor color,
bool label) {
// Report the XYZ values.
SkDebugf("%s\n", name);
SkDebugf(" R G B\n");
SkDebugf("X %.3f %.3f %.3f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
SkDebugf("Y %.3f %.3f %.3f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
SkDebugf("Z %.3f %.3f %.3f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));
// Calculate the points in the gamut from the XYZ values.
SkPoint rgb[4];
load_gamut(rgb, xyz);
// Report the area of the gamut.
SkDebugf("Area of Gamut: %.3f\n\n", calculate_area(rgb));
// Magic constants that help us place the gamut triangles in the appropriate position
// on the canvas.
const float xScale = 2071.25f; // Num pixels from 0 to 1 in x
const float xOffset = 241.0f; // Num pixels until start of x-axis
const float yScale = 2067.78f; // Num pixels from 0 to 1 in y
const float yOffset = -144.78f; // Num pixels until start of y-axis
// (negative because y extends beyond image bounds)
// Now transform the points so they can be drawn on our canvas.
// Note that y increases as we move down the canvas.
rgb[0].fX = xOffset + xScale * rgb[0].fX;
rgb[0].fY = yOffset + yScale * (1.0f - rgb[0].fY);
rgb[1].fX = xOffset + xScale * rgb[1].fX;
rgb[1].fY = yOffset + yScale * (1.0f - rgb[1].fY);
rgb[2].fX = xOffset + xScale * rgb[2].fX;
rgb[2].fY = yOffset + yScale * (1.0f - rgb[2].fY);
// Repeat the first point to connect the polygon.
rgb[3] = rgb[0];
SkPaint paint;
paint.setColor(color);
paint.setStrokeWidth(6.0f);
paint.setTextSize(75.0f);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
if (label) {
canvas->drawText("R", 1, rgb[0].fX + 5.0f, rgb[0].fY + 75.0f, paint);
canvas->drawText("G", 1, rgb[1].fX + 5.0f, rgb[1].fY - 5.0f, paint);
canvas->drawText("B", 1, rgb[2].fX - 75.0f, rgb[2].fY - 5.0f, paint);
}
}
int main(int argc, char** argv) {
SkCommandLineFlags::SetUsage(
"Usage: colorspaceinfo --input <path to input image or icc profile> "
"--output <path to output image> "
"--sRGB <draw canonical sRGB gamut> "
"--adobeRGB <draw canonical Adobe RGB gamut> "
"--uncorrected <path to reencoded, uncorrected input image>\n"
"Description: Writes a visualization of the color space to the output image ."
"Also, if a path is provided, writes uncorrected bytes to an unmarked "
"png, for comparison with the input image.\n");
SkCommandLineFlags::Parse(argc, argv);
const char* input = FLAGS_input[0];
const char* output = FLAGS_output[0];
if (!input || !output) {
SkCommandLineFlags::PrintUsage();
return -1;
}
sk_sp<SkData> data(SkData::MakeFromFileName(input));
if (!data) {
SkDebugf("Cannot find input image.\n");
return -1;
}
std::unique_ptr<SkCodec> codec(SkCodec::NewFromData(data));
sk_sp<SkColorSpace> colorSpace = nullptr;
if (codec) {
colorSpace = sk_ref_sp(codec->getInfo().colorSpace());
} else {
colorSpace = SkColorSpace::MakeICC(data->bytes(), data->size());
}
if (!colorSpace) {
SkDebugf("Cannot create codec or icc profile from input file.\n");
return -1;
}
// Load a graph of the CIE XYZ color gamut.
SkBitmap gamut;
if (!GetResourceAsBitmap("gamut.png", &gamut)) {
SkDebugf("Program failure.\n");
return -1;
}
SkCanvas canvas(gamut);
// Draw the sRGB gamut if requested.
if (FLAGS_sRGB) {
sk_sp<SkColorSpace> sRGBSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
const SkMatrix44* mat = as_CSB(sRGBSpace)->toXYZD50();
SkASSERT(mat);
draw_gamut(&canvas, *mat, "sRGB", 0xFFFF9394, false);
}
// Draw the Adobe RGB gamut if requested.
if (FLAGS_adobeRGB) {
sk_sp<SkColorSpace> adobeRGBSpace = SkColorSpace::MakeNamed(SkColorSpace::kAdobeRGB_Named);
const SkMatrix44* mat = as_CSB(adobeRGBSpace)->toXYZD50();
SkASSERT(mat);
draw_gamut(&canvas, *mat, "Adobe RGB", 0xFF31a9e1, false);
}
if (SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type()) {
const SkMatrix44* mat = as_CSB(colorSpace)->toXYZD50();
SkASSERT(mat);
draw_gamut(&canvas, *mat, input, 0xFF000000, true);
dump_transfer_fn((SkColorSpace_XYZ*) colorSpace.get());
} else {
SkDebugf("Color space is defined using an A2B tag. It cannot be represented by "
"a transfer function and to D50 matrix.\n");
}
// Finally, encode the result to the output file.
sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(gamut, SkEncodedImageFormat::kPNG, 100);
if (!out) {
SkDebugf("Failed to encode gamut output.\n");
return -1;
}
SkFILEWStream stream(output);
bool result = stream.write(out->data(), out->size());
if (!result) {
SkDebugf("Failed to write gamut output.\n");
return -1;
}
// Also, if requested, decode and reencode the uncorrected input image.
if (!FLAGS_uncorrected.isEmpty() && codec) {
SkBitmap bitmap;
int width = codec->getInfo().width();
int height = codec->getInfo().height();
bitmap.allocN32Pixels(width, height, kOpaque_SkAlphaType == codec->getInfo().alphaType());
SkImageInfo decodeInfo = SkImageInfo::MakeN32(width, height, kUnpremul_SkAlphaType);
if (SkCodec::kSuccess != codec->getPixels(decodeInfo, bitmap.getPixels(),
bitmap.rowBytes())) {
SkDebugf("Could not decode input image.\n");
return -1;
}
out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG, 100);
if (!out) {
SkDebugf("Failed to encode uncorrected image.\n");
return -1;
}
SkFILEWStream bitmapStream(FLAGS_uncorrected[0]);
result = bitmapStream.write(out->data(), out->size());
if (!result) {
SkDebugf("Failed to write uncorrected image output.\n");
return -1;
}
}
return 0;
}