skia2/tests/GrMeshTest.cpp
Brian Salomon 27ae52c6f4 Make deferred render target context without config or format
config is completely redundant. No caller really cares what the backend
format is.

Change-Id: I93f1feb3ee61db6c21b7915bab3ee3fba5656f92
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/225194
Commit-Queue: Brian Salomon <bsalomon@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
2019-07-03 16:53:48 +00:00

420 lines
16 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkTypes.h"
#include "tests/Test.h"
#include <array>
#include <vector>
#include "include/core/SkBitmap.h"
#include "include/gpu/GrContext.h"
#include "include/private/GrResourceKey.h"
#include "src/core/SkMakeUnique.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrGpuCommandBuffer.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
static constexpr int kBoxSize = 2;
static constexpr int kBoxCountY = 8;
static constexpr int kBoxCountX = 8;
static constexpr int kBoxCount = kBoxCountY * kBoxCountX;
static constexpr int kImageWidth = kBoxCountY * kBoxSize;
static constexpr int kImageHeight = kBoxCountX * kBoxSize;
static constexpr int kIndexPatternRepeatCount = 3;
constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3};
class DrawMeshHelper {
public:
DrawMeshHelper(GrOpFlushState* state) : fState(state) {}
sk_sp<const GrBuffer> getIndexBuffer();
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) {
return this->makeVertexBuffer(data.begin(), data.count());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) {
return this->makeVertexBuffer(data.data(), data.size());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count);
void drawMesh(const GrMesh& mesh);
private:
GrOpFlushState* fState;
};
struct Box {
float fX, fY;
GrColor fColor;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This is a GPU-backend specific test. It tries to test all possible usecases of GrMesh. The test
* works by drawing checkerboards of colored boxes, reading back the pixels, and comparing with
* expected results. The boxes are drawn on integer boundaries and the (opaque) colors are chosen
* from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to produce exact matches.
*/
static void run_test(GrContext* context, const char* testName, skiatest::Reporter*,
const sk_sp<GrRenderTargetContext>&, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> testFn);
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
sk_sp<GrRenderTargetContext> rtc(context->priv().makeDeferredRenderTargetContext(
SkBackingFit::kExact, kImageWidth, kImageHeight, GrColorType::kRGBA_8888, nullptr));
if (!rtc) {
ERRORF(reporter, "could not create render target context.");
return;
}
SkTArray<Box> boxes;
SkTArray<std::array<Box, 4>> vertexData;
SkBitmap gold;
// ---- setup ----------
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
gold.allocN32Pixels(kImageWidth, kImageHeight);
SkCanvas goldCanvas(gold);
for (int y = 0; y < kBoxCountY; ++y) {
for (int x = 0; x < kBoxCountX; ++x) {
int c = y + x;
int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff};
const Box box = boxes.push_back() = {
float(x * kBoxSize),
float(y * kBoxSize),
GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255)
};
std::array<Box, 4>& boxVertices = vertexData.push_back();
for (int i = 0; i < 4; ++i) {
boxVertices[i] = {
box.fX + (i / 2) * kBoxSize,
box.fY + (i % 2) * kBoxSize,
box.fColor
};
}
paint.setARGB(255, rgb[0], rgb[1], rgb[2]);
goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint);
}
}
// ---- tests ----------
#define VALIDATE(buff) \
do { \
if (!buff) { \
ERRORF(reporter, #buff " is null."); \
return; \
} \
} while (0)
run_test(context, "setNonIndexedNonInstanced", reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
SkTArray<Box> expandedVertexData;
for (int i = 0; i < kBoxCount; ++i) {
for (int j = 0; j < 6; ++j) {
expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]);
}
}
// Draw boxes one line at a time to exercise base vertex.
auto vbuff = helper->makeVertexBuffer(expandedVertexData);
VALIDATE(vbuff);
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setNonIndexedNonInstanced(kBoxCountX * 6);
mesh.setVertexData(vbuff, y * kBoxCountX * 6);
helper->drawMesh(mesh);
}
});
run_test(context, "setIndexed", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto ibuff = helper->getIndexBuffer();
VALIDATE(ibuff);
auto vbuff = helper->makeVertexBuffer(vertexData);
VALIDATE(vbuff);
int baseRepetition = 0;
int i = 0;
// Start at various repetitions within the patterned index buffer to exercise base index.
while (i < kBoxCount) {
GR_STATIC_ASSERT(kIndexPatternRepeatCount >= 3);
int repetitionCount = SkTMin(3 - baseRepetition, kBoxCount - i);
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexed(ibuff, repetitionCount * 6, baseRepetition * 6, baseRepetition * 4,
(baseRepetition + repetitionCount) * 4 - 1, GrPrimitiveRestart::kNo);
mesh.setVertexData(vbuff, (i - baseRepetition) * 4);
helper->drawMesh(mesh);
baseRepetition = (baseRepetition + 1) % 3;
i += repetitionCount;
}
});
run_test(context, "setIndexedPatterned", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto ibuff = helper->getIndexBuffer();
VALIDATE(ibuff);
auto vbuff = helper->makeVertexBuffer(vertexData);
VALIDATE(vbuff);
// Draw boxes one line at a time to exercise base vertex. setIndexedPatterned does not
// support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexedPatterned(ibuff, 6, 4, kBoxCountX, kIndexPatternRepeatCount);
mesh.setVertexData(vbuff, y * kBoxCountX * 4);
helper->drawMesh(mesh);
}
});
for (bool indexed : {false, true}) {
if (!context->priv().caps()->instanceAttribSupport()) {
break;
}
run_test(context, indexed ? "setIndexedInstanced" : "setInstanced",
reporter, rtc, gold, [&](DrawMeshHelper* helper) {
auto idxbuff = indexed ? helper->getIndexBuffer() : nullptr;
auto instbuff = helper->makeVertexBuffer(boxes);
VALIDATE(instbuff);
auto vbuff = helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1});
VALIDATE(vbuff);
auto vbuff2 = helper->makeVertexBuffer( // for testing base vertex.
std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1});
VALIDATE(vbuff2);
// Draw boxes one line at a time to exercise base instance, base vertex, and null vertex
// buffer. setIndexedInstanced intentionally does not support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
GrMesh mesh(indexed ? GrPrimitiveType::kTriangles
: GrPrimitiveType::kTriangleStrip);
if (indexed) {
VALIDATE(idxbuff);
mesh.setIndexedInstanced(idxbuff, 6, instbuff, kBoxCountX, y * kBoxCountX,
GrPrimitiveRestart::kNo);
} else {
mesh.setInstanced(instbuff, kBoxCountX, y * kBoxCountX, 4);
}
switch (y % 3) {
case 0:
if (context->priv().caps()->shaderCaps()->vertexIDSupport()) {
if (y % 2) {
// We don't need this call because it's the initial state of GrMesh.
mesh.setVertexData(nullptr);
}
break;
}
// Fallthru.
case 1:
mesh.setVertexData(vbuff);
break;
case 2:
mesh.setVertexData(vbuff2, 2);
break;
}
helper->drawMesh(mesh);
}
});
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
class GrMeshTestOp : public GrDrawOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
std::function<void(DrawMeshHelper*)> testFn) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<GrMeshTestOp>(testFn);
}
private:
friend class GrOpMemoryPool; // for ctor
GrMeshTestOp(std::function<void(DrawMeshHelper*)> testFn)
: INHERITED(ClassID())
, fTestFn(testFn) {
this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight),
HasAABloat::kNo, IsZeroArea::kNo);
}
const char* name() const override { return "GrMeshTestOp"; }
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*,
bool hasMixedSampledCoverage, GrClampType) override {
return GrProcessorSet::EmptySetAnalysis();
}
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState* state, const SkRect& chainBounds) override {
DrawMeshHelper helper(state);
fTestFn(&helper);
}
std::function<void(DrawMeshHelper*)> fTestFn;
typedef GrDrawOp INHERITED;
};
class GrMeshTestProcessor : public GrGeometryProcessor {
public:
GrMeshTestProcessor(bool instanced, bool hasVertexBuffer)
: INHERITED(kGrMeshTestProcessor_ClassID) {
if (instanced) {
fInstanceLocation = {"location", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
fInstanceColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
this->setInstanceAttributes(&fInstanceLocation, 2);
if (hasVertexBuffer) {
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
this->setVertexAttributes(&fVertexPosition, 1);
}
} else {
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
fVertexColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
this->setVertexAttributes(&fVertexPosition, 2);
}
}
const char* name() const override { return "GrMeshTest Processor"; }
const Attribute& inColor() const {
return fVertexColor.isInitialized() ? fVertexColor : fInstanceColor;
}
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
b->add32(fInstanceLocation.isInitialized());
b->add32(fVertexPosition.isInitialized());
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
private:
Attribute fVertexPosition;
Attribute fVertexColor;
Attribute fInstanceLocation;
Attribute fInstanceColor;
friend class GLSLMeshTestProcessor;
typedef GrGeometryProcessor INHERITED;
};
class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor {
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
FPCoordTransformIter&& transformIter) final {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
varyingHandler->emitAttributes(mp);
varyingHandler->addPassThroughAttribute(mp.inColor(), args.fOutputColor);
GrGLSLVertexBuilder* v = args.fVertBuilder;
if (!mp.fInstanceLocation.isInitialized()) {
v->codeAppendf("float2 vertex = %s;", mp.fVertexPosition.name());
} else {
if (mp.fVertexPosition.isInitialized()) {
v->codeAppendf("float2 offset = %s;", mp.fVertexPosition.name());
} else {
v->codeAppend ("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);");
}
v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation.name(),
kBoxSize);
}
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
};
GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new GLSLMeshTestProcessor;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) {
return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer(
count * sizeof(T), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern, data));
}
sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
return fState->resourceProvider()->findOrCreatePatternedIndexBuffer(
kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey);
}
void DrawMeshHelper::drawMesh(const GrMesh& mesh) {
GrPipeline pipeline(GrScissorTest::kDisabled, SkBlendMode::kSrc, GrSwizzle::RGBA());
GrMeshTestProcessor mtp(mesh.isInstanced(), mesh.hasVertexData());
fState->rtCommandBuffer()->draw(mtp, pipeline, nullptr, nullptr, &mesh, 1,
SkRect::MakeIWH(kImageWidth, kImageHeight));
}
static void run_test(GrContext* context, const char* testName, skiatest::Reporter* reporter,
const sk_sp<GrRenderTargetContext>& rtc, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> testFn) {
const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes();
const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels());
if (h != rtc->height() || w != rtc->width()) {
ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName);
return;
}
if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) {
ERRORF(reporter, "unexpected row bytes in gold image.", testName);
return;
}
SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes);
rtc->clear(nullptr, SkPMColor4f::FromBytes_RGBA(0xbaaaaaad),
GrRenderTargetContext::CanClearFullscreen::kYes);
rtc->priv().testingOnly_addDrawOp(GrMeshTestOp::Make(context, testFn));
rtc->readPixels(gold.info(), resultPx, rowBytes, {0, 0});
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
uint32_t expected = goldPx[y * kImageWidth + x];
uint32_t actual = resultPx[y * kImageWidth + x];
if (expected != actual) {
ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x",
testName, x, y, actual, expected);
return;
}
}
}
}