// Copyright Toru Niina 2017. // Distributed under the MIT License. #ifndef TOML11_DATETIME #define TOML11_DATETIME #include #include #include #include #include #include #include #include namespace toml { // To avoid non-threadsafe std::localtime. In C11 (not C++11!), localtime_s is // provided in the absolutely same purpose, but C++11 is actually not compatible // with C11. We need to dispatch the function depending on the OS. namespace detail { // TODO: find more sophisticated way to handle this #if _POSIX_C_SOURCE >= 1 || _XOPEN_SOURCE || _BSD_SOURCE || _SVID_SOURCE || _POSIX_SOURCE inline std::tm localtime_s(const std::time_t* src) { std::tm dst; const auto result = ::localtime_r(src, &dst); if(!result) { throw std::runtime_error("localtime_r failed."); } return dst; } #else // XXX: On Windows, std::localtime is thread-safe because they uses thread-local // storage to store the instance of std::tm. On the other platforms, it may not // be thread-safe. inline std::tm localtime_s(const std::time_t* src) { const auto result = std::localtime(src); if(!result) {throw std::runtime_error("localtime failed.");} return *result; } #endif } // detail enum class month_t : std::int8_t { Jan = 0, Feb = 1, Mar = 2, Apr = 3, May = 4, Jun = 5, Jul = 6, Aug = 7, Sep = 8, Oct = 9, Nov = 10, Dec = 11 }; struct local_date { std::int16_t year; // A.D. (like, 2018) std::uint8_t month; // [0, 11] std::uint8_t day; // [1, 31] local_date(int y, month_t m, int d) : year (static_cast(y)), month(static_cast(m)), day (static_cast(d)) {} explicit local_date(const std::tm& t) : year (static_cast(t.tm_year + 1900)), month(static_cast(t.tm_mon)), day (static_cast(t.tm_mday)) {} explicit local_date(const std::chrono::system_clock::time_point& tp) { const auto t = std::chrono::system_clock::to_time_t(tp); const auto time = detail::localtime_s(&t); *this = local_date(time); } explicit local_date(const std::time_t t) : local_date(std::chrono::system_clock::from_time_t(t)) {} operator std::chrono::system_clock::time_point() const { // std::mktime returns date as local time zone. no conversion needed std::tm t; t.tm_sec = 0; t.tm_min = 0; t.tm_hour = 0; t.tm_mday = this->day; t.tm_mon = this->month; t.tm_year = this->year - 1900; t.tm_wday = 0; // the value will be ignored t.tm_yday = 0; // the value will be ignored t.tm_isdst = -1; return std::chrono::system_clock::from_time_t(std::mktime(&t)); } operator std::time_t() const { return std::chrono::system_clock::to_time_t( std::chrono::system_clock::time_point(*this)); } local_date() = default; ~local_date() = default; local_date(local_date const&) = default; local_date(local_date&&) = default; local_date& operator=(local_date const&) = default; local_date& operator=(local_date&&) = default; }; inline bool operator==(const local_date& lhs, const local_date& rhs) { return std::make_tuple(lhs.year, lhs.month, lhs.day) == std::make_tuple(rhs.year, rhs.month, rhs.day); } inline bool operator!=(const local_date& lhs, const local_date& rhs) { return !(lhs == rhs); } inline bool operator< (const local_date& lhs, const local_date& rhs) { return std::make_tuple(lhs.year, lhs.month, lhs.day) < std::make_tuple(rhs.year, rhs.month, rhs.day); } inline bool operator<=(const local_date& lhs, const local_date& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const local_date& lhs, const local_date& rhs) { return !(lhs <= rhs); } inline bool operator>=(const local_date& lhs, const local_date& rhs) { return !(lhs < rhs); } template std::basic_ostream& operator<<(std::basic_ostream& os, const local_date& date) { os << std::setfill('0') << std::setw(4) << static_cast(date.year ) << '-'; os << std::setfill('0') << std::setw(2) << static_cast(date.month + 1) << '-'; os << std::setfill('0') << std::setw(2) << static_cast(date.day ); return os; } struct local_time { std::uint8_t hour; // [0, 23] std::uint8_t minute; // [0, 59] std::uint8_t second; // [0, 60] std::uint16_t millisecond; // [0, 999] std::uint16_t microsecond; // [0, 999] std::uint16_t nanosecond; // [0, 999] local_time(int h, int m, int s, int ms = 0, int us = 0, int ns = 0) : hour (static_cast(h)), minute(static_cast(m)), second(static_cast(s)), millisecond(static_cast(ms)), microsecond(static_cast(us)), nanosecond (static_cast(ns)) {} explicit local_time(const std::tm& t) : hour (static_cast(t.tm_hour)), minute(static_cast(t.tm_min)), second(static_cast(t.tm_sec)), millisecond(0), microsecond(0), nanosecond(0) {} template explicit local_time(const std::chrono::duration& t) { const auto h = std::chrono::duration_cast(t); this->hour = h.count(); const auto t2 = t - h; const auto m = std::chrono::duration_cast(t2); this->minute = m.count(); const auto t3 = t2 - m; const auto s = std::chrono::duration_cast(t3); this->second = s.count(); const auto t4 = t3 - s; const auto ms = std::chrono::duration_cast(t4); this->millisecond = ms.count(); const auto t5 = t4 - ms; const auto us = std::chrono::duration_cast(t5); this->microsecond = us.count(); const auto t6 = t5 - us; const auto ns = std::chrono::duration_cast(t6); this->nanosecond = ns.count(); } operator std::chrono::nanoseconds() const { return std::chrono::nanoseconds (this->nanosecond) + std::chrono::microseconds(this->microsecond) + std::chrono::milliseconds(this->millisecond) + std::chrono::seconds(this->second) + std::chrono::minutes(this->minute) + std::chrono::hours(this->hour); } local_time() = default; ~local_time() = default; local_time(local_time const&) = default; local_time(local_time&&) = default; local_time& operator=(local_time const&) = default; local_time& operator=(local_time&&) = default; }; inline bool operator==(const local_time& lhs, const local_time& rhs) { return std::make_tuple(lhs.hour, lhs.minute, lhs.second, lhs.millisecond, lhs.microsecond, lhs.nanosecond) == std::make_tuple(rhs.hour, rhs.minute, rhs.second, rhs.millisecond, rhs.microsecond, rhs.nanosecond); } inline bool operator!=(const local_time& lhs, const local_time& rhs) { return !(lhs == rhs); } inline bool operator< (const local_time& lhs, const local_time& rhs) { return std::make_tuple(lhs.hour, lhs.minute, lhs.second, lhs.millisecond, lhs.microsecond, lhs.nanosecond) < std::make_tuple(rhs.hour, rhs.minute, rhs.second, rhs.millisecond, rhs.microsecond, rhs.nanosecond); } inline bool operator<=(const local_time& lhs, const local_time& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const local_time& lhs, const local_time& rhs) { return !(lhs <= rhs); } inline bool operator>=(const local_time& lhs, const local_time& rhs) { return !(lhs < rhs); } template std::basic_ostream& operator<<(std::basic_ostream& os, const local_time& time) { os << std::setfill('0') << std::setw(2) << static_cast(time.hour ) << ':'; os << std::setfill('0') << std::setw(2) << static_cast(time.minute) << ':'; os << std::setfill('0') << std::setw(2) << static_cast(time.second); if(time.millisecond != 0 || time.microsecond != 0 || time.nanosecond != 0) { os << '.'; os << std::setfill('0') << std::setw(3) << static_cast(time.millisecond); if(time.microsecond != 0 || time.nanosecond != 0) { os << std::setfill('0') << std::setw(3) << static_cast(time.microsecond); if(time.nanosecond != 0) { os << std::setfill('0') << std::setw(3) << static_cast(time.nanosecond); } } } return os; } struct time_offset { std::int8_t hour; // [-12, 12] std::int8_t minute; // [-59, 59] time_offset(int h, int m) : hour (static_cast(h)), minute(static_cast(m)) {} operator std::chrono::minutes() const { return std::chrono::minutes(this->minute) + std::chrono::hours(this->hour); } time_offset() = default; ~time_offset() = default; time_offset(time_offset const&) = default; time_offset(time_offset&&) = default; time_offset& operator=(time_offset const&) = default; time_offset& operator=(time_offset&&) = default; }; inline bool operator==(const time_offset& lhs, const time_offset& rhs) { return std::make_tuple(lhs.hour, lhs.minute) == std::make_tuple(rhs.hour, rhs.minute); } inline bool operator!=(const time_offset& lhs, const time_offset& rhs) { return !(lhs == rhs); } inline bool operator< (const time_offset& lhs, const time_offset& rhs) { return std::make_tuple(lhs.hour, lhs.minute) < std::make_tuple(rhs.hour, rhs.minute); } inline bool operator<=(const time_offset& lhs, const time_offset& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const time_offset& lhs, const time_offset& rhs) { return !(lhs <= rhs); } inline bool operator>=(const time_offset& lhs, const time_offset& rhs) { return !(lhs < rhs); } template std::basic_ostream& operator<<(std::basic_ostream& os, const time_offset& offset) { if(offset.hour == 0 && offset.minute == 0) { os << 'Z'; return os; } if(static_cast(offset.hour) * static_cast(offset.minute) < 0) { const int min = static_cast(offset.hour) * 60 + offset.minute; if(min < 0){os << '-';} else {os << '+';} os << std::setfill('0') << std::setw(2) << min / 60 << ':'; os << std::setfill('0') << std::setw(2) << min % 60; return os; } if(offset.hour < 0){os << '-';} else {os << '+';} os << std::setfill('0') << std::setw(2) << static_cast(offset.hour) << ':'; os << std::setfill('0') << std::setw(2) << static_cast(offset.minute); return os; } struct local_datetime { local_date date; local_time time; local_datetime(local_date d, local_time t): date(d), time(t) {} explicit local_datetime(const std::tm& t): date(t), time(t){} explicit local_datetime(const std::chrono::system_clock::time_point& tp) { const auto t = std::chrono::system_clock::to_time_t(tp); std::tm time = detail::localtime_s(&t); this->date = local_date(time); this->time = local_time(time); // std::tm lacks subsecond information, so diff between tp and tm // can be used to get millisecond & microsecond information. const auto t_diff = tp - std::chrono::system_clock::from_time_t(std::mktime(&time)); this->time.millisecond = std::chrono::duration_cast< std::chrono::milliseconds>(t_diff).count(); this->time.microsecond = std::chrono::duration_cast< std::chrono::microseconds>(t_diff).count(); this->time.nanosecond = std::chrono::duration_cast< std::chrono::nanoseconds >(t_diff).count(); } explicit local_datetime(const std::time_t t) : local_datetime(std::chrono::system_clock::from_time_t(t)) {} operator std::chrono::system_clock::time_point() const { using internal_duration = typename std::chrono::system_clock::time_point::duration; // std::mktime returns date as local time zone. no conversion needed auto dt = std::chrono::system_clock::time_point(this->date); dt += std::chrono::duration_cast( std::chrono::nanoseconds(this->time)); return dt; } operator std::time_t() const { return std::chrono::system_clock::to_time_t( std::chrono::system_clock::time_point(*this)); } local_datetime() = default; ~local_datetime() = default; local_datetime(local_datetime const&) = default; local_datetime(local_datetime&&) = default; local_datetime& operator=(local_datetime const&) = default; local_datetime& operator=(local_datetime&&) = default; }; inline bool operator==(const local_datetime& lhs, const local_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time) == std::make_tuple(rhs.date, rhs.time); } inline bool operator!=(const local_datetime& lhs, const local_datetime& rhs) { return !(lhs == rhs); } inline bool operator< (const local_datetime& lhs, const local_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time) < std::make_tuple(rhs.date, rhs.time); } inline bool operator<=(const local_datetime& lhs, const local_datetime& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const local_datetime& lhs, const local_datetime& rhs) { return !(lhs <= rhs); } inline bool operator>=(const local_datetime& lhs, const local_datetime& rhs) { return !(lhs < rhs); } template std::basic_ostream& operator<<(std::basic_ostream& os, const local_datetime& dt) { os << dt.date << 'T' << dt.time; return os; } struct offset_datetime { local_date date; local_time time; time_offset offset; offset_datetime(local_date d, local_time t, time_offset o) : date(d), time(t), offset(o) {} offset_datetime(const local_datetime& dt, time_offset o) : date(dt.date), time(dt.time), offset(o) {} explicit offset_datetime(const local_datetime& ld) : date(ld.date), time(ld.time), offset(get_local_offset()) {} explicit offset_datetime(const std::chrono::system_clock::time_point& tp) : offset_datetime(local_datetime(tp)) {} explicit offset_datetime(const std::time_t& t) : offset_datetime(local_datetime(t)) {} explicit offset_datetime(const std::tm& t) : offset_datetime(local_datetime(t)) {} operator std::chrono::system_clock::time_point() const { // get date-time using internal_duration = typename std::chrono::system_clock::time_point::duration; std::chrono::system_clock::time_point tp = std::chrono::system_clock::time_point(this->date) + std::chrono::duration_cast( std::chrono::nanoseconds(this->time)); // get date-time in UTC. let's say we are in +09:00 (JPN). // writing 12:00:00 in +09:00 means 03:00:00Z. to represent // 12:00:00Z, first we need to add +09:00. const auto ofs = get_local_offset(); tp += std::chrono::hours (ofs.hour); tp += std::chrono::minutes(ofs.minute); // here, tp represents 12:00:00 in UTC but we have offset information. // we need to subtract it. For example, let's say the input is // 12:00:00-08:00. now we have tp = 12:00:00Z as a result of the above // conversion. But the actual time we need to return is 20:00:00Z // because of -08:00. tp -= std::chrono::minutes(this->offset); return tp; } operator std::time_t() const { return std::chrono::system_clock::to_time_t( std::chrono::system_clock::time_point(*this)); } offset_datetime() = default; ~offset_datetime() = default; offset_datetime(offset_datetime const&) = default; offset_datetime(offset_datetime&&) = default; offset_datetime& operator=(offset_datetime const&) = default; offset_datetime& operator=(offset_datetime&&) = default; private: static time_offset get_local_offset() { // get current timezone const auto tmp1 = std::time(nullptr); const auto t = detail::localtime_s(&tmp1); std::array buf; const auto result = std::strftime(buf.data(), 6, "%z", &t); // +hhmm\0 if(result != 5) { throw std::runtime_error("toml::offset_datetime: cannot obtain " "timezone information of current env"); } const int ofs = std::atoi(buf.data()); const int ofs_h = ofs / 100; const int ofs_m = ofs - (ofs_h * 100); return time_offset(ofs_h, ofs_m); } }; inline bool operator==(const offset_datetime& lhs, const offset_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time, lhs.offset) == std::make_tuple(rhs.date, rhs.time, rhs.offset); } inline bool operator!=(const offset_datetime& lhs, const offset_datetime& rhs) { return !(lhs == rhs); } inline bool operator< (const offset_datetime& lhs, const offset_datetime& rhs) { return std::make_tuple(lhs.date, lhs.time, lhs.offset) < std::make_tuple(rhs.date, rhs.time, rhs.offset); } inline bool operator<=(const offset_datetime& lhs, const offset_datetime& rhs) { return (lhs < rhs) || (lhs == rhs); } inline bool operator> (const offset_datetime& lhs, const offset_datetime& rhs) { return !(lhs <= rhs); } inline bool operator>=(const offset_datetime& lhs, const offset_datetime& rhs) { return !(lhs < rhs); } template std::basic_ostream& operator<<(std::basic_ostream& os, const offset_datetime& dt) { os << dt.date << 'T' << dt.time << dt.offset; return os; } }//toml #endif// TOML11_DATETIME