v8/test/cctest/test-parsing.cc

2597 lines
80 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "v8.h"
#include "cctest.h"
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
#include "compiler.h"
#include "execution.h"
#include "isolate.h"
#include "objects.h"
#include "parser.h"
#include "preparser.h"
#include "scanner-character-streams.h"
#include "token.h"
#include "utils.h"
TEST(ScanKeywords) {
struct KeywordToken {
const char* keyword;
i::Token::Value token;
};
static const KeywordToken keywords[] = {
#define KEYWORD(t, s, d) { s, i::Token::t },
TOKEN_LIST(IGNORE_TOKEN, KEYWORD)
#undef KEYWORD
{ NULL, i::Token::IDENTIFIER }
};
KeywordToken key_token;
i::UnicodeCache unicode_cache;
i::byte buffer[32];
for (int i = 0; (key_token = keywords[i]).keyword != NULL; i++) {
const i::byte* keyword =
reinterpret_cast<const i::byte*>(key_token.keyword);
int length = i::StrLength(key_token.keyword);
CHECK(static_cast<int>(sizeof(buffer)) >= length);
{
i::Utf8ToUtf16CharacterStream stream(keyword, length);
i::Scanner scanner(&unicode_cache);
// The scanner should parse Harmony keywords for this test.
scanner.SetHarmonyScoping(true);
scanner.SetHarmonyModules(true);
scanner.Initialize(&stream);
CHECK_EQ(key_token.token, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
// Removing characters will make keyword matching fail.
{
i::Utf8ToUtf16CharacterStream stream(keyword, length - 1);
i::Scanner scanner(&unicode_cache);
scanner.Initialize(&stream);
CHECK_EQ(i::Token::IDENTIFIER, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
// Adding characters will make keyword matching fail.
static const char chars_to_append[] = { 'z', '0', '_' };
for (int j = 0; j < static_cast<int>(ARRAY_SIZE(chars_to_append)); ++j) {
i::OS::MemMove(buffer, keyword, length);
buffer[length] = chars_to_append[j];
i::Utf8ToUtf16CharacterStream stream(buffer, length + 1);
i::Scanner scanner(&unicode_cache);
scanner.Initialize(&stream);
CHECK_EQ(i::Token::IDENTIFIER, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
// Replacing characters will make keyword matching fail.
{
i::OS::MemMove(buffer, keyword, length);
buffer[length - 1] = '_';
i::Utf8ToUtf16CharacterStream stream(buffer, length);
i::Scanner scanner(&unicode_cache);
scanner.Initialize(&stream);
CHECK_EQ(i::Token::IDENTIFIER, scanner.Next());
CHECK_EQ(i::Token::EOS, scanner.Next());
}
}
}
TEST(ScanHTMLEndComments) {
v8::V8::Initialize();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
// Regression test. See:
// http://code.google.com/p/chromium/issues/detail?id=53548
// Tests that --> is correctly interpreted as comment-to-end-of-line if there
// is only whitespace before it on the line (with comments considered as
// whitespace, even a multiline-comment containing a newline).
// This was not the case if it occurred before the first real token
// in the input.
const char* tests[] = {
// Before first real token.
"--> is eol-comment\nvar y = 37;\n",
"\n --> is eol-comment\nvar y = 37;\n",
"/* precomment */ --> is eol-comment\nvar y = 37;\n",
"\n/* precomment */ --> is eol-comment\nvar y = 37;\n",
// After first real token.
"var x = 42;\n--> is eol-comment\nvar y = 37;\n",
"var x = 42;\n/* precomment */ --> is eol-comment\nvar y = 37;\n",
NULL
};
const char* fail_tests[] = {
"x --> is eol-comment\nvar y = 37;\n",
"\"\\n\" --> is eol-comment\nvar y = 37;\n",
"x/* precomment */ --> is eol-comment\nvar y = 37;\n",
"x/* precomment\n */ --> is eol-comment\nvar y = 37;\n",
"var x = 42; --> is eol-comment\nvar y = 37;\n",
"var x = 42; /* precomment\n */ --> is eol-comment\nvar y = 37;\n",
NULL
};
// Parser/Scanner needs a stack limit.
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
for (int i = 0; tests[i]; i++) {
v8::Handle<v8::String> source = v8::String::NewFromUtf8(
isolate, tests[i], v8::String::kNormalString, i::StrLength(tests[i]));
v8::ScriptData* data = v8::ScriptData::PreCompile(source);
CHECK(data != NULL && !data->HasError());
delete data;
}
for (int i = 0; fail_tests[i]; i++) {
v8::Handle<v8::String> source =
v8::String::NewFromUtf8(isolate,
fail_tests[i],
v8::String::kNormalString,
i::StrLength(fail_tests[i]));
v8::ScriptData* data = v8::ScriptData::PreCompile(source);
CHECK(data == NULL || data->HasError());
delete data;
}
}
class ScriptResource : public v8::String::ExternalAsciiStringResource {
public:
ScriptResource(const char* data, size_t length)
: data_(data), length_(length) { }
const char* data() const { return data_; }
size_t length() const { return length_; }
private:
const char* data_;
size_t length_;
};
TEST(Preparsing) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
// Source containing functions that might be lazily compiled and all types
// of symbols (string, propertyName, regexp).
const char* source =
"var x = 42;"
"function foo(a) { return function nolazy(b) { return a + b; } }"
"function bar(a) { if (a) return function lazy(b) { return b; } }"
"var z = {'string': 'string literal', bareword: 'propertyName', "
" 42: 'number literal', for: 'keyword as propertyName', "
" f\\u006fr: 'keyword propertyname with escape'};"
"var v = /RegExp Literal/;"
"var w = /RegExp Literal\\u0020With Escape/gin;"
"var y = { get getter() { return 42; }, "
" set setter(v) { this.value = v; }};";
int source_length = i::StrLength(source);
const char* error_source = "var x = y z;";
int error_source_length = i::StrLength(error_source);
v8::ScriptData* preparse = v8::ScriptData::PreCompile(v8::String::NewFromUtf8(
isolate, source, v8::String::kNormalString, source_length));
CHECK(!preparse->HasError());
bool lazy_flag = i::FLAG_lazy;
{
i::FLAG_lazy = true;
ScriptResource* resource = new ScriptResource(source, source_length);
v8::ScriptCompiler::Source script_source(
v8::String::NewExternal(isolate, resource),
new v8::ScriptCompiler::CachedData(
reinterpret_cast<const uint8_t*>(preparse->Data()),
preparse->Length()));
v8::ScriptCompiler::Compile(isolate,
&script_source);
}
{
i::FLAG_lazy = false;
ScriptResource* resource = new ScriptResource(source, source_length);
v8::ScriptCompiler::Source script_source(
v8::String::NewExternal(isolate, resource),
new v8::ScriptCompiler::CachedData(
reinterpret_cast<const uint8_t*>(preparse->Data()),
preparse->Length()));
v8::ScriptCompiler::CompileUnbound(isolate, &script_source);
}
delete preparse;
i::FLAG_lazy = lazy_flag;
// Syntax error.
v8::ScriptData* error_preparse = v8::ScriptData::PreCompile(
v8::String::NewFromUtf8(isolate,
error_source,
v8::String::kNormalString,
error_source_length));
CHECK(error_preparse->HasError());
i::ScriptDataImpl *pre_impl =
reinterpret_cast<i::ScriptDataImpl*>(error_preparse);
i::Scanner::Location error_location =
pre_impl->MessageLocation();
// Error is at "z" in source, location 10..11.
CHECK_EQ(10, error_location.beg_pos);
CHECK_EQ(11, error_location.end_pos);
// Should not crash.
const char* message = pre_impl->BuildMessage();
i::Vector<const char*> args = pre_impl->BuildArgs();
CHECK_GT(strlen(message), 0);
args.Dispose();
i::DeleteArray(message);
delete error_preparse;
}
TEST(PreparseFunctionDataIsUsed) {
// This tests that we actually do use the function data generated by the
// preparser.
// Make preparsing work for short scripts.
i::FLAG_min_preparse_length = 0;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* good_code =
"function this_is_lazy() { var a; } function foo() { return 25; } foo();";
// Insert a syntax error inside the lazy function.
const char* bad_code =
"function this_is_lazy() { if ( } function foo() { return 25; } foo();";
v8::ScriptCompiler::Source good_source(v8_str(good_code));
v8::ScriptCompiler::Compile(isolate, &good_source,
v8::ScriptCompiler::kProduceDataToCache);
const v8::ScriptCompiler::CachedData* cached_data =
good_source.GetCachedData();
CHECK(cached_data->data != NULL);
CHECK_GT(cached_data->length, 0);
// Now compile the erroneous code with the good preparse data. If the preparse
// data is used, the lazy function is skipped and it should compile fine.
v8::ScriptCompiler::Source bad_source(
v8_str(bad_code), new v8::ScriptCompiler::CachedData(
cached_data->data, cached_data->length));
v8::Local<v8::Value> result =
v8::ScriptCompiler::Compile(isolate, &bad_source)->Run();
CHECK(result->IsInt32());
CHECK_EQ(25, result->Int32Value());
}
TEST(PreparseSymbolDataIsUsed) {
// This tests that we actually do use the symbol data generated by the
// preparser.
// Only do one compilation pass in this test (otherwise we will parse the
// source code again without preparse data and it will fail).
i::FLAG_crankshaft = false;
// Make preparsing work for short scripts.
i::FLAG_min_preparse_length = 0;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
// Note that the ( before function makes the function not lazily compiled.
const char* good_code =
"(function weird() { var foo = 26; return foo; })()";
// Insert an undefined identifier. If the preparser data is used, the symbol
// stream is used instead, and this identifier resolves to "foo".
const char* bad_code =
"(function weird() { var foo = 26; return wut; })()";
v8::ScriptCompiler::Source good_source(v8_str(good_code));
v8::ScriptCompiler::Compile(isolate, &good_source,
v8::ScriptCompiler::kProduceDataToCache);
const v8::ScriptCompiler::CachedData* cached_data =
good_source.GetCachedData();
CHECK(cached_data->data != NULL);
CHECK_GT(cached_data->length, 0);
// Now compile the erroneous code with the good preparse data. If the preparse
// data is used, we will see a second occurrence of "foo" instead of the
// unknown "wut".
v8::ScriptCompiler::Source bad_source(
v8_str(bad_code), new v8::ScriptCompiler::CachedData(
cached_data->data, cached_data->length));
v8::Local<v8::Value> result =
v8::ScriptCompiler::Compile(isolate, &bad_source)->Run();
CHECK(result->IsInt32());
CHECK_EQ(26, result->Int32Value());
}
TEST(StandAlonePreParser) {
v8::V8::Initialize();
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* programs[] = {
"{label: 42}",
"var x = 42;",
"function foo(x, y) { return x + y; }",
"%ArgleBargle(glop);",
"var x = new new Function('this.x = 42');",
NULL
};
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
for (int i = 0; programs[i]; i++) {
const char* program = programs[i];
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program),
static_cast<unsigned>(strlen(program)));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log, stack_limit);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
preparser.set_allow_lazy(true);
preparser.set_allow_natives_syntax(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptDataImpl data(log.ExtractData());
CHECK(!data.has_error());
}
}
TEST(StandAlonePreParserNoNatives) {
v8::V8::Initialize();
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* programs[] = {
"%ArgleBargle(glop);",
"var x = %_IsSmi(42);",
NULL
};
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
for (int i = 0; programs[i]; i++) {
const char* program = programs[i];
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program),
static_cast<unsigned>(strlen(program)));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
// Preparser defaults to disallowing natives syntax.
i::PreParser preparser(&scanner, &log, stack_limit);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
i::ScriptDataImpl data(log.ExtractData());
// Data contains syntax error.
CHECK(data.has_error());
}
}
TEST(PreparsingObjectLiterals) {
// Regression test for a bug where the symbol stream produced by PreParser
// didn't match what Parser wanted to consume.
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
{
const char* source = "var myo = {if: \"foo\"}; myo.if;";
v8::Local<v8::Value> result = PreCompileCompileRun(source);
CHECK(result->IsString());
v8::String::Utf8Value utf8(result);
CHECK_EQ("foo", *utf8);
}
{
const char* source = "var myo = {\"bar\": \"foo\"}; myo[\"bar\"];";
v8::Local<v8::Value> result = PreCompileCompileRun(source);
CHECK(result->IsString());
v8::String::Utf8Value utf8(result);
CHECK_EQ("foo", *utf8);
}
{
const char* source = "var myo = {1: \"foo\"}; myo[1];";
v8::Local<v8::Value> result = PreCompileCompileRun(source);
CHECK(result->IsString());
v8::String::Utf8Value utf8(result);
CHECK_EQ("foo", *utf8);
}
}
namespace v8 {
namespace internal {
struct CompleteParserRecorderFriend {
static void FakeWritingSymbolIdInPreParseData(CompleteParserRecorder* log,
int number) {
log->WriteNumber(number);
if (log->symbol_id_ < number + 1) {
log->symbol_id_ = number + 1;
}
}
static int symbol_position(CompleteParserRecorder* log) {
return log->symbol_store_.size();
}
static int symbol_ids(CompleteParserRecorder* log) {
return log->symbol_id_;
}
static int function_position(CompleteParserRecorder* log) {
return log->function_store_.size();
}
};
}
}
TEST(StoringNumbersInPreParseData) {
// Symbol IDs are split into chunks of 7 bits for storing. This is a
// regression test for a bug where a symbol id was incorrectly stored if some
// of the chunks in the middle were all zeros.
typedef i::CompleteParserRecorderFriend F;
i::CompleteParserRecorder log;
for (int i = 0; i < 18; ++i) {
F::FakeWritingSymbolIdInPreParseData(&log, 1 << i);
}
for (int i = 1; i < 18; ++i) {
F::FakeWritingSymbolIdInPreParseData(&log, (1 << i) + 1);
}
for (int i = 6; i < 18; ++i) {
F::FakeWritingSymbolIdInPreParseData(&log, (3 << i) + (5 << (i - 6)));
}
i::Vector<unsigned> store = log.ExtractData();
i::ScriptDataImpl script_data(store);
script_data.Initialize();
// Check that we get the same symbols back.
for (int i = 0; i < 18; ++i) {
CHECK_EQ(1 << i, script_data.GetSymbolIdentifier());
}
for (int i = 1; i < 18; ++i) {
CHECK_EQ((1 << i) + 1, script_data.GetSymbolIdentifier());
}
for (int i = 6; i < 18; ++i) {
CHECK_EQ((3 << i) + (5 << (i - 6)), script_data.GetSymbolIdentifier());
}
}
TEST(RegressChromium62639) {
v8::V8::Initialize();
i::Isolate* isolate = CcTest::i_isolate();
int marker;
isolate->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* program = "var x = 'something';\n"
"escape: function() {}";
// Fails parsing expecting an identifier after "function".
// Before fix, didn't check *ok after Expect(Token::Identifier, ok),
// and then used the invalid currently scanned literal. This always
// failed in debug mode, and sometimes crashed in release mode.
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program),
static_cast<unsigned>(strlen(program)));
i::ScriptDataImpl* data = i::PreParserApi::PreParse(isolate, &stream);
CHECK(data->HasError());
delete data;
}
TEST(Regress928) {
v8::V8::Initialize();
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
// Preparsing didn't consider the catch clause of a try statement
// as with-content, which made it assume that a function inside
// the block could be lazily compiled, and an extra, unexpected,
// entry was added to the data.
int marker;
isolate->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
const char* program =
"try { } catch (e) { var foo = function () { /* first */ } }"
"var bar = function () { /* second */ }";
v8::HandleScope handles(CcTest::isolate());
i::Handle<i::String> source(
factory->NewStringFromAscii(i::CStrVector(program)));
i::GenericStringUtf16CharacterStream stream(source, 0, source->length());
i::ScriptDataImpl* data = i::PreParserApi::PreParse(isolate, &stream);
CHECK(!data->HasError());
data->Initialize();
int first_function =
static_cast<int>(strstr(program, "function") - program);
int first_lbrace = first_function + i::StrLength("function () ");
CHECK_EQ('{', program[first_lbrace]);
i::FunctionEntry entry1 = data->GetFunctionEntry(first_lbrace);
CHECK(!entry1.is_valid());
int second_function =
static_cast<int>(strstr(program + first_lbrace, "function") - program);
int second_lbrace =
second_function + i::StrLength("function () ");
CHECK_EQ('{', program[second_lbrace]);
i::FunctionEntry entry2 = data->GetFunctionEntry(second_lbrace);
CHECK(entry2.is_valid());
CHECK_EQ('}', program[entry2.end_pos() - 1]);
delete data;
}
TEST(PreParseOverflow) {
v8::V8::Initialize();
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
size_t kProgramSize = 1024 * 1024;
i::SmartArrayPointer<char> program(i::NewArray<char>(kProgramSize + 1));
memset(program.get(), '(', kProgramSize);
program[kProgramSize] = '\0';
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program.get()),
static_cast<unsigned>(kProgramSize));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log, stack_limit);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
preparser.set_allow_lazy(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseStackOverflow, result);
}
class TestExternalResource: public v8::String::ExternalStringResource {
public:
explicit TestExternalResource(uint16_t* data, int length)
: data_(data), length_(static_cast<size_t>(length)) { }
~TestExternalResource() { }
const uint16_t* data() const {
return data_;
}
size_t length() const {
return length_;
}
private:
uint16_t* data_;
size_t length_;
};
#define CHECK_EQU(v1, v2) CHECK_EQ(static_cast<int>(v1), static_cast<int>(v2))
void TestCharacterStream(const char* ascii_source,
unsigned length,
unsigned start = 0,
unsigned end = 0) {
if (end == 0) end = length;
unsigned sub_length = end - start;
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
i::HandleScope test_scope(isolate);
i::SmartArrayPointer<i::uc16> uc16_buffer(new i::uc16[length]);
for (unsigned i = 0; i < length; i++) {
uc16_buffer[i] = static_cast<i::uc16>(ascii_source[i]);
}
i::Vector<const char> ascii_vector(ascii_source, static_cast<int>(length));
i::Handle<i::String> ascii_string(
factory->NewStringFromAscii(ascii_vector));
TestExternalResource resource(uc16_buffer.get(), length);
i::Handle<i::String> uc16_string(
factory->NewExternalStringFromTwoByte(&resource));
i::ExternalTwoByteStringUtf16CharacterStream uc16_stream(
i::Handle<i::ExternalTwoByteString>::cast(uc16_string), start, end);
i::GenericStringUtf16CharacterStream string_stream(ascii_string, start, end);
i::Utf8ToUtf16CharacterStream utf8_stream(
reinterpret_cast<const i::byte*>(ascii_source), end);
utf8_stream.SeekForward(start);
unsigned i = start;
while (i < end) {
// Read streams one char at a time
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
int32_t c0 = ascii_source[i];
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
i++;
CHECK_EQ(c0, c1);
CHECK_EQ(c0, c2);
CHECK_EQ(c0, c3);
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
}
while (i > start + sub_length / 4) {
// Pushback, re-read, pushback again.
int32_t c0 = ascii_source[i - 1];
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
uc16_stream.PushBack(c0);
string_stream.PushBack(c0);
utf8_stream.PushBack(c0);
i--;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
i++;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
CHECK_EQ(c0, c1);
CHECK_EQ(c0, c2);
CHECK_EQ(c0, c3);
uc16_stream.PushBack(c0);
string_stream.PushBack(c0);
utf8_stream.PushBack(c0);
i--;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
}
unsigned halfway = start + sub_length / 2;
uc16_stream.SeekForward(halfway - i);
string_stream.SeekForward(halfway - i);
utf8_stream.SeekForward(halfway - i);
i = halfway;
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
while (i < end) {
// Read streams one char at a time
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
int32_t c0 = ascii_source[i];
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
i++;
CHECK_EQ(c0, c1);
CHECK_EQ(c0, c2);
CHECK_EQ(c0, c3);
CHECK_EQU(i, uc16_stream.pos());
CHECK_EQU(i, string_stream.pos());
CHECK_EQU(i, utf8_stream.pos());
}
int32_t c1 = uc16_stream.Advance();
int32_t c2 = string_stream.Advance();
int32_t c3 = utf8_stream.Advance();
CHECK_LT(c1, 0);
CHECK_LT(c2, 0);
CHECK_LT(c3, 0);
}
TEST(CharacterStreams) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handles(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
v8::Context::Scope context_scope(context);
TestCharacterStream("abc\0\n\r\x7f", 7);
static const unsigned kBigStringSize = 4096;
char buffer[kBigStringSize + 1];
for (unsigned i = 0; i < kBigStringSize; i++) {
buffer[i] = static_cast<char>(i & 0x7f);
}
TestCharacterStream(buffer, kBigStringSize);
TestCharacterStream(buffer, kBigStringSize, 576, 3298);
TestCharacterStream("\0", 1);
TestCharacterStream("", 0);
}
TEST(Utf8CharacterStream) {
static const unsigned kMaxUC16CharU = unibrow::Utf8::kMaxThreeByteChar;
static const int kMaxUC16Char = static_cast<int>(kMaxUC16CharU);
static const int kAllUtf8CharsSize =
(unibrow::Utf8::kMaxOneByteChar + 1) +
(unibrow::Utf8::kMaxTwoByteChar - unibrow::Utf8::kMaxOneByteChar) * 2 +
(unibrow::Utf8::kMaxThreeByteChar - unibrow::Utf8::kMaxTwoByteChar) * 3;
static const unsigned kAllUtf8CharsSizeU =
static_cast<unsigned>(kAllUtf8CharsSize);
char buffer[kAllUtf8CharsSizeU];
unsigned cursor = 0;
for (int i = 0; i <= kMaxUC16Char; i++) {
cursor += unibrow::Utf8::Encode(buffer + cursor,
i,
unibrow::Utf16::kNoPreviousCharacter);
}
ASSERT(cursor == kAllUtf8CharsSizeU);
i::Utf8ToUtf16CharacterStream stream(reinterpret_cast<const i::byte*>(buffer),
kAllUtf8CharsSizeU);
for (int i = 0; i <= kMaxUC16Char; i++) {
CHECK_EQU(i, stream.pos());
int32_t c = stream.Advance();
CHECK_EQ(i, c);
CHECK_EQU(i + 1, stream.pos());
}
for (int i = kMaxUC16Char; i >= 0; i--) {
CHECK_EQU(i + 1, stream.pos());
stream.PushBack(i);
CHECK_EQU(i, stream.pos());
}
int i = 0;
while (stream.pos() < kMaxUC16CharU) {
CHECK_EQU(i, stream.pos());
unsigned progress = stream.SeekForward(12);
i += progress;
int32_t c = stream.Advance();
if (i <= kMaxUC16Char) {
CHECK_EQ(i, c);
} else {
CHECK_EQ(-1, c);
}
i += 1;
CHECK_EQU(i, stream.pos());
}
}
#undef CHECK_EQU
void TestStreamScanner(i::Utf16CharacterStream* stream,
i::Token::Value* expected_tokens,
int skip_pos = 0, // Zero means not skipping.
int skip_to = 0) {
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(stream);
int i = 0;
do {
i::Token::Value expected = expected_tokens[i];
i::Token::Value actual = scanner.Next();
CHECK_EQ(i::Token::String(expected), i::Token::String(actual));
if (scanner.location().end_pos == skip_pos) {
scanner.SeekForward(skip_to);
}
i++;
} while (expected_tokens[i] != i::Token::ILLEGAL);
}
TEST(StreamScanner) {
v8::V8::Initialize();
const char* str1 = "{ foo get for : */ <- \n\n /*foo*/ bib";
i::Utf8ToUtf16CharacterStream stream1(reinterpret_cast<const i::byte*>(str1),
static_cast<unsigned>(strlen(str1)));
i::Token::Value expectations1[] = {
i::Token::LBRACE,
i::Token::IDENTIFIER,
i::Token::IDENTIFIER,
i::Token::FOR,
i::Token::COLON,
i::Token::MUL,
i::Token::DIV,
i::Token::LT,
i::Token::SUB,
i::Token::IDENTIFIER,
i::Token::EOS,
i::Token::ILLEGAL
};
TestStreamScanner(&stream1, expectations1, 0, 0);
const char* str2 = "case default const {THIS\nPART\nSKIPPED} do";
i::Utf8ToUtf16CharacterStream stream2(reinterpret_cast<const i::byte*>(str2),
static_cast<unsigned>(strlen(str2)));
i::Token::Value expectations2[] = {
i::Token::CASE,
i::Token::DEFAULT,
i::Token::CONST,
i::Token::LBRACE,
// Skipped part here
i::Token::RBRACE,
i::Token::DO,
i::Token::EOS,
i::Token::ILLEGAL
};
ASSERT_EQ('{', str2[19]);
ASSERT_EQ('}', str2[37]);
TestStreamScanner(&stream2, expectations2, 20, 37);
const char* str3 = "{}}}}";
i::Token::Value expectations3[] = {
i::Token::LBRACE,
i::Token::RBRACE,
i::Token::RBRACE,
i::Token::RBRACE,
i::Token::RBRACE,
i::Token::EOS,
i::Token::ILLEGAL
};
// Skip zero-four RBRACEs.
for (int i = 0; i <= 4; i++) {
expectations3[6 - i] = i::Token::ILLEGAL;
expectations3[5 - i] = i::Token::EOS;
i::Utf8ToUtf16CharacterStream stream3(
reinterpret_cast<const i::byte*>(str3),
static_cast<unsigned>(strlen(str3)));
TestStreamScanner(&stream3, expectations3, 1, 1 + i);
}
}
void TestScanRegExp(const char* re_source, const char* expected) {
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(re_source),
static_cast<unsigned>(strlen(re_source)));
i::HandleScope scope(CcTest::i_isolate());
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::Token::Value start = scanner.peek();
CHECK(start == i::Token::DIV || start == i::Token::ASSIGN_DIV);
CHECK(scanner.ScanRegExpPattern(start == i::Token::ASSIGN_DIV));
scanner.Next(); // Current token is now the regexp literal.
i::Handle<i::String> val =
scanner.AllocateInternalizedString(CcTest::i_isolate());
i::DisallowHeapAllocation no_alloc;
i::String::FlatContent content = val->GetFlatContent();
CHECK(content.IsAscii());
i::Vector<const uint8_t> actual = content.ToOneByteVector();
for (int i = 0; i < actual.length(); i++) {
CHECK_NE('\0', expected[i]);
CHECK_EQ(expected[i], actual[i]);
}
}
TEST(RegExpScanning) {
v8::V8::Initialize();
// RegExp token with added garbage at the end. The scanner should only
// scan the RegExp until the terminating slash just before "flipperwald".
TestScanRegExp("/b/flipperwald", "b");
// Incomplete escape sequences doesn't hide the terminating slash.
TestScanRegExp("/\\x/flipperwald", "\\x");
TestScanRegExp("/\\u/flipperwald", "\\u");
TestScanRegExp("/\\u1/flipperwald", "\\u1");
TestScanRegExp("/\\u12/flipperwald", "\\u12");
TestScanRegExp("/\\u123/flipperwald", "\\u123");
TestScanRegExp("/\\c/flipperwald", "\\c");
TestScanRegExp("/\\c//flipperwald", "\\c");
// Slashes inside character classes are not terminating.
TestScanRegExp("/[/]/flipperwald", "[/]");
TestScanRegExp("/[\\s-/]/flipperwald", "[\\s-/]");
// Incomplete escape sequences inside a character class doesn't hide
// the end of the character class.
TestScanRegExp("/[\\c/]/flipperwald", "[\\c/]");
TestScanRegExp("/[\\c]/flipperwald", "[\\c]");
TestScanRegExp("/[\\x]/flipperwald", "[\\x]");
TestScanRegExp("/[\\x1]/flipperwald", "[\\x1]");
TestScanRegExp("/[\\u]/flipperwald", "[\\u]");
TestScanRegExp("/[\\u1]/flipperwald", "[\\u1]");
TestScanRegExp("/[\\u12]/flipperwald", "[\\u12]");
TestScanRegExp("/[\\u123]/flipperwald", "[\\u123]");
// Escaped ']'s wont end the character class.
TestScanRegExp("/[\\]/]/flipperwald", "[\\]/]");
// Escaped slashes are not terminating.
TestScanRegExp("/\\//flipperwald", "\\/");
// Starting with '=' works too.
TestScanRegExp("/=/", "=");
TestScanRegExp("/=?/", "=?");
}
2011-10-21 10:26:59 +00:00
static int Utf8LengthHelper(const char* s) {
int len = i::StrLength(s);
int character_length = len;
for (int i = 0; i < len; i++) {
unsigned char c = s[i];
int input_offset = 0;
int output_adjust = 0;
if (c > 0x7f) {
if (c < 0xc0) continue;
if (c >= 0xf0) {
if (c >= 0xf8) {
// 5 and 6 byte UTF-8 sequences turn into a kBadChar for each UTF-8
// byte.
continue; // Handle first UTF-8 byte.
}
if ((c & 7) == 0 && ((s[i + 1] & 0x30) == 0)) {
// This 4 byte sequence could have been coded as a 3 byte sequence.
// Record a single kBadChar for the first byte and continue.
continue;
}
input_offset = 3;
// 4 bytes of UTF-8 turn into 2 UTF-16 code units.
character_length -= 2;
} else if (c >= 0xe0) {
if ((c & 0xf) == 0 && ((s[i + 1] & 0x20) == 0)) {
// This 3 byte sequence could have been coded as a 2 byte sequence.
// Record a single kBadChar for the first byte and continue.
continue;
}
input_offset = 2;
// 3 bytes of UTF-8 turn into 1 UTF-16 code unit.
output_adjust = 2;
} else {
if ((c & 0x1e) == 0) {
// This 2 byte sequence could have been coded as a 1 byte sequence.
// Record a single kBadChar for the first byte and continue.
continue;
}
input_offset = 1;
// 2 bytes of UTF-8 turn into 1 UTF-16 code unit.
output_adjust = 1;
}
bool bad = false;
for (int j = 1; j <= input_offset; j++) {
if ((s[i + j] & 0xc0) != 0x80) {
// Bad UTF-8 sequence turns the first in the sequence into kBadChar,
// which is a single UTF-16 code unit.
bad = true;
break;
}
}
if (!bad) {
i += input_offset;
character_length -= output_adjust;
}
}
}
return character_length;
}
2011-10-21 10:26:59 +00:00
TEST(ScopePositions) {
v8::internal::FLAG_harmony_scoping = true;
2011-10-21 10:26:59 +00:00
// Test the parser for correctly setting the start and end positions
// of a scope. We check the scope positions of exactly one scope
// nested in the global scope of a program. 'inner source' is the
// source code that determines the part of the source belonging
// to the nested scope. 'outer_prefix' and 'outer_suffix' are
// parts of the source that belong to the global scope.
struct SourceData {
const char* outer_prefix;
const char* inner_source;
const char* outer_suffix;
i::ScopeType scope_type;
i::StrictMode strict_mode;
2011-10-21 10:26:59 +00:00
};
const SourceData source_data[] = {
{ " with ({}) ", "{ block; }", " more;", i::WITH_SCOPE, i::SLOPPY },
{ " with ({}) ", "{ block; }", "; more;", i::WITH_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " with ({}) ", "{\n"
" block;\n"
" }", "\n"
" more;", i::WITH_SCOPE, i::SLOPPY },
{ " with ({}) ", "statement;", " more;", i::WITH_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " with ({}) ", "statement", "\n"
" more;", i::WITH_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " with ({})\n"
" ", "statement;", "\n"
" more;", i::WITH_SCOPE, i::SLOPPY },
{ " try {} catch ", "(e) { block; }", " more;",
i::CATCH_SCOPE, i::SLOPPY },
{ " try {} catch ", "(e) { block; }", "; more;",
i::CATCH_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " try {} catch ", "(e) {\n"
" block;\n"
" }", "\n"
" more;", i::CATCH_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " try {} catch ", "(e) { block; }", " finally { block; } more;",
i::CATCH_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " start;\n"
" ", "{ let block; }", " more;", i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " start;\n"
" ", "{ let block; }", "; more;", i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " start;\n"
" ", "{\n"
" let block;\n"
" }", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " start;\n"
" function fun", "(a,b) { infunction; }", " more;",
i::FUNCTION_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " start;\n"
" function fun", "(a,b) {\n"
" infunction;\n"
" }", "\n"
" more;", i::FUNCTION_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x = 1 ; x < 10; ++ x) { block; }", " more;",
i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x = 1 ; x < 10; ++ x) { block; }", "; more;",
i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x = 1 ; x < 10; ++ x) {\n"
" block;\n"
" }", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x = 1 ; x < 10; ++ x) statement;", " more;",
i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x = 1 ; x < 10; ++ x) statement", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x = 1 ; x < 10; ++ x)\n"
" statement;", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) { block; }", " more;",
i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) { block; }", "; more;",
i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x in {}) {\n"
" block;\n"
" }", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
{ " for ", "(let x in {}) statement;", " more;",
i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x in {}) statement", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
2011-10-21 10:26:59 +00:00
{ " for ", "(let x in {})\n"
" statement;", "\n"
" more;", i::BLOCK_SCOPE, i::STRICT },
// Check that 6-byte and 4-byte encodings of UTF-8 strings do not throw
// the preparser off in terms of byte offsets.
// 6 byte encoding.
{ " 'foo\355\240\201\355\260\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// 4 byte encoding.
{ " 'foo\360\220\220\212';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// 3 byte encoding of \u0fff.
{ " 'foo\340\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 6 byte encoding with missing last byte.
{ " 'foo\355\240\201\355\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u0fff with missing last byte.
{ " 'foo\340\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u0fff with missing 2 last bytes.
{ " 'foo\340';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u00ff should be a 2 byte encoding.
{ " 'foo\340\203\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 3 byte encoding of \u007f should be a 2 byte encoding.
{ " 'foo\340\201\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired lead surrogate.
{ " 'foo\355\240\201';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired lead surrogate where following code point is a 3 byte sequence.
{ " 'foo\355\240\201\340\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired lead surrogate where following code point is a 4 byte encoding
// of a trail surrogate.
{ " 'foo\355\240\201\360\215\260\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Unpaired trail surrogate.
{ " 'foo\355\260\211';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// 2 byte encoding of \u00ff.
{ " 'foo\303\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 2 byte encoding of \u00ff with missing last byte.
{ " 'foo\303';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Broken 2 byte encoding of \u007f should be a 1 byte encoding.
{ " 'foo\301\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 5 byte encoding.
{ " 'foo\370\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 6 byte encoding.
{ " 'foo\374\277\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 0xfe byte
{ " 'foo\376\277\277\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
// Illegal 0xff byte
{ " 'foo\377\277\277\277\277\277\277\277';\n"
" (function fun", "(a,b) { infunction; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
{ " 'foo';\n"
" (function fun", "(a,b) { 'bar\355\240\201\355\260\213'; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
{ " 'foo';\n"
" (function fun", "(a,b) { 'bar\360\220\220\214'; }", ")();",
i::FUNCTION_SCOPE, i::SLOPPY },
{ NULL, NULL, NULL, i::EVAL_SCOPE, i::SLOPPY }
2011-10-21 10:26:59 +00:00
};
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
v8::HandleScope handles(CcTest::isolate());
v8::Handle<v8::Context> context = v8::Context::New(CcTest::isolate());
2011-10-21 10:26:59 +00:00
v8::Context::Scope context_scope(context);
int marker;
isolate->stack_guard()->SetStackLimit(
2011-10-21 10:26:59 +00:00
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
for (int i = 0; source_data[i].outer_prefix; i++) {
int kPrefixLen = Utf8LengthHelper(source_data[i].outer_prefix);
int kInnerLen = Utf8LengthHelper(source_data[i].inner_source);
int kSuffixLen = Utf8LengthHelper(source_data[i].outer_suffix);
int kPrefixByteLen = i::StrLength(source_data[i].outer_prefix);
int kInnerByteLen = i::StrLength(source_data[i].inner_source);
int kSuffixByteLen = i::StrLength(source_data[i].outer_suffix);
2011-10-21 10:26:59 +00:00
int kProgramSize = kPrefixLen + kInnerLen + kSuffixLen;
int kProgramByteSize = kPrefixByteLen + kInnerByteLen + kSuffixByteLen;
i::ScopedVector<char> program(kProgramByteSize + 1);
i::OS::SNPrintF(program, "%s%s%s",
source_data[i].outer_prefix,
source_data[i].inner_source,
source_data[i].outer_suffix);
2011-10-21 10:26:59 +00:00
// Parse program source.
i::Handle<i::String> source(
factory->NewStringFromUtf8(i::CStrVector(program.start())));
CHECK_EQ(source->length(), kProgramSize);
i::Handle<i::Script> script = factory->NewScript(source);
i::CompilationInfoWithZone info(script);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
i::Parser parser(&info);
parser.set_allow_lazy(true);
parser.set_allow_harmony_scoping(true);
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
info.MarkAsGlobal();
info.SetStrictMode(source_data[i].strict_mode);
parser.Parse();
CHECK(info.function() != NULL);
2011-10-21 10:26:59 +00:00
// Check scope types and positions.
i::Scope* scope = info.function()->scope();
2011-10-21 10:26:59 +00:00
CHECK(scope->is_global_scope());
CHECK_EQ(scope->start_position(), 0);
CHECK_EQ(scope->end_position(), kProgramSize);
CHECK_EQ(scope->inner_scopes()->length(), 1);
i::Scope* inner_scope = scope->inner_scopes()->at(0);
CHECK_EQ(inner_scope->scope_type(), source_data[i].scope_type);
2011-10-21 10:26:59 +00:00
CHECK_EQ(inner_scope->start_position(), kPrefixLen);
// The end position of a token is one position after the last
// character belonging to that token.
CHECK_EQ(inner_scope->end_position(), kPrefixLen + kInnerLen);
}
}
i::Handle<i::String> FormatMessage(i::ScriptDataImpl* data) {
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
const char* message = data->BuildMessage();
i::Handle<i::String> format = v8::Utils::OpenHandle(
*v8::String::NewFromUtf8(CcTest::isolate(), message));
i::Vector<const char*> args = data->BuildArgs();
i::Handle<i::JSArray> args_array = factory->NewJSArray(args.length());
for (int i = 0; i < args.length(); i++) {
i::JSArray::SetElement(
args_array, i, v8::Utils::OpenHandle(*v8::String::NewFromUtf8(
CcTest::isolate(), args[i])),
NONE, i::SLOPPY);
}
i::Handle<i::JSObject> builtins(isolate->js_builtins_object());
i::Handle<i::Object> format_fun =
i::GetProperty(builtins, "FormatMessage");
i::Handle<i::Object> arg_handles[] = { format, args_array };
bool has_exception = false;
i::Handle<i::Object> result = i::Execution::Call(
isolate, format_fun, builtins, 2, arg_handles, &has_exception);
CHECK(!has_exception);
CHECK(result->IsString());
for (int i = 0; i < args.length(); i++) {
i::DeleteArray(args[i]);
}
i::DeleteArray(args.start());
i::DeleteArray(message);
return i::Handle<i::String>::cast(result);
}
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
enum ParserFlag {
kAllowLazy,
kAllowNativesSyntax,
kAllowHarmonyScoping,
kAllowModules,
kAllowGenerators,
kAllowForOf,
kAllowHarmonyNumericLiterals
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
};
enum ParserSyncTestResult {
kSuccessOrError,
kSuccess,
kError
};
template <typename Traits>
void SetParserFlags(i::ParserBase<Traits>* parser,
i::EnumSet<ParserFlag> flags) {
parser->set_allow_lazy(flags.Contains(kAllowLazy));
parser->set_allow_natives_syntax(flags.Contains(kAllowNativesSyntax));
parser->set_allow_harmony_scoping(flags.Contains(kAllowHarmonyScoping));
parser->set_allow_modules(flags.Contains(kAllowModules));
parser->set_allow_generators(flags.Contains(kAllowGenerators));
parser->set_allow_for_of(flags.Contains(kAllowForOf));
parser->set_allow_harmony_numeric_literals(
flags.Contains(kAllowHarmonyNumericLiterals));
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
}
void TestParserSyncWithFlags(i::Handle<i::String> source,
i::EnumSet<ParserFlag> flags,
ParserSyncTestResult result) {
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
uintptr_t stack_limit = isolate->stack_guard()->real_climit();
// Preparse the data.
i::CompleteParserRecorder log;
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
{
i::Scanner scanner(isolate->unicode_cache());
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
i::GenericStringUtf16CharacterStream stream(source, 0, source->length());
i::PreParser preparser(&scanner, &log, stack_limit);
SetParserFlags(&preparser, flags);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
scanner.Initialize(&stream);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
}
i::ScriptDataImpl data(log.ExtractData());
// Parse the data
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
i::FunctionLiteral* function;
{
i::Handle<i::Script> script = factory->NewScript(source);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
i::CompilationInfoWithZone info(script);
i::Parser parser(&info);
SetParserFlags(&parser, flags);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
info.MarkAsGlobal();
parser.Parse();
function = info.function();
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
}
// Check that preparsing fails iff parsing fails.
if (function == NULL) {
// Extract exception from the parser.
CHECK(isolate->has_pending_exception());
i::MaybeObject* maybe_object = isolate->pending_exception();
i::JSObject* exception = NULL;
CHECK(maybe_object->To(&exception));
i::Handle<i::JSObject> exception_handle(exception);
i::Handle<i::String> message_string =
i::Handle<i::String>::cast(i::GetProperty(exception_handle, "message"));
if (result == kSuccess) {
i::OS::Print(
"Parser failed on:\n"
"\t%s\n"
"with error:\n"
"\t%s\n"
"However, we expected no error.",
source->ToCString().get(), message_string->ToCString().get());
CHECK(false);
}
if (!data.has_error()) {
i::OS::Print(
"Parser failed on:\n"
"\t%s\n"
"with error:\n"
"\t%s\n"
"However, the preparser succeeded",
source->ToCString().get(), message_string->ToCString().get());
CHECK(false);
}
// Check that preparser and parser produce the same error.
i::Handle<i::String> preparser_message = FormatMessage(&data);
if (!message_string->Equals(*preparser_message)) {
i::OS::Print(
"Expected parser and preparser to produce the same error on:\n"
"\t%s\n"
"However, found the following error messages\n"
"\tparser: %s\n"
"\tpreparser: %s\n",
source->ToCString().get(),
message_string->ToCString().get(),
preparser_message->ToCString().get());
CHECK(false);
}
} else if (data.has_error()) {
i::OS::Print(
"Preparser failed on:\n"
"\t%s\n"
"with error:\n"
"\t%s\n"
"However, the parser succeeded",
source->ToCString().get(), FormatMessage(&data)->ToCString().get());
CHECK(false);
} else if (result == kError) {
i::OS::Print(
"Expected error on:\n"
"\t%s\n"
"However, parser and preparser succeeded",
source->ToCString().get());
CHECK(false);
}
}
void TestParserSync(const char* source,
const ParserFlag* flag_list,
size_t flag_list_length,
ParserSyncTestResult result = kSuccessOrError) {
i::Handle<i::String> str =
CcTest::i_isolate()->factory()->NewStringFromAscii(i::CStrVector(source));
for (int bits = 0; bits < (1 << flag_list_length); bits++) {
i::EnumSet<ParserFlag> flags;
for (size_t flag_index = 0; flag_index < flag_list_length; flag_index++) {
if ((bits & (1 << flag_index)) != 0) flags.Add(flag_list[flag_index]);
}
TestParserSyncWithFlags(str, flags, result);
}
}
TEST(ParserSync) {
const char* context_data[][2] = {
{ "", "" },
{ "{", "}" },
{ "if (true) ", " else {}" },
{ "if (true) {} else ", "" },
{ "if (true) ", "" },
{ "do ", " while (false)" },
{ "while (false) ", "" },
{ "for (;;) ", "" },
{ "with ({})", "" },
{ "switch (12) { case 12: ", "}" },
{ "switch (12) { default: ", "}" },
{ "switch (12) { ", "case 12: }" },
{ "label2: ", "" },
{ NULL, NULL }
};
const char* statement_data[] = {
"{}",
"var x",
"var x = 1",
"const x",
"const x = 1",
";",
"12",
"if (false) {} else ;",
"if (false) {} else {}",
"if (false) {} else 12",
"if (false) ;"
"if (false) {}",
"if (false) 12",
"do {} while (false)",
"for (;;) ;",
"for (;;) {}",
"for (;;) 12",
"continue",
"continue label",
"continue\nlabel",
"break",
"break label",
"break\nlabel",
"return",
"return 12",
"return\n12",
"with ({}) ;",
"with ({}) {}",
"with ({}) 12",
"switch ({}) { default: }"
"label3: "
"throw",
"throw 12",
"throw\n12",
"try {} catch(e) {}",
"try {} finally {}",
"try {} catch(e) {} finally {}",
"debugger",
NULL
};
const char* termination_data[] = {
"",
";",
"\n",
";\n",
"\n;",
NULL
};
v8::HandleScope handles(CcTest::isolate());
v8::Handle<v8::Context> context = v8::Context::New(CcTest::isolate());
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
static const ParserFlag flags1[] = {
kAllowLazy, kAllowHarmonyScoping, kAllowModules, kAllowGenerators,
kAllowForOf
};
for (int i = 0; context_data[i][0] != NULL; ++i) {
for (int j = 0; statement_data[j] != NULL; ++j) {
for (int k = 0; termination_data[k] != NULL; ++k) {
int kPrefixLen = i::StrLength(context_data[i][0]);
int kStatementLen = i::StrLength(statement_data[j]);
int kTerminationLen = i::StrLength(termination_data[k]);
int kSuffixLen = i::StrLength(context_data[i][1]);
int kProgramSize = kPrefixLen + kStatementLen + kTerminationLen
+ kSuffixLen + i::StrLength("label: for (;;) { }");
// Plug the source code pieces together.
i::ScopedVector<char> program(kProgramSize + 1);
int length = i::OS::SNPrintF(program,
"label: for (;;) { %s%s%s%s }",
context_data[i][0],
statement_data[j],
termination_data[k],
context_data[i][1]);
CHECK(length == kProgramSize);
TestParserSync(program.start(), flags1, ARRAY_SIZE(flags1));
}
}
}
// Neither Harmony numeric literals nor our natives syntax have any
// interaction with the flags above, so test these separately to reduce
// the combinatorial explosion.
static const ParserFlag flags2[] = { kAllowHarmonyNumericLiterals };
TestParserSync("0o1234", flags2, ARRAY_SIZE(flags2));
TestParserSync("0b1011", flags2, ARRAY_SIZE(flags2));
static const ParserFlag flags3[] = { kAllowNativesSyntax };
TestParserSync("%DebugPrint(123)", flags3, ARRAY_SIZE(flags3));
}
TEST(PreparserStrictOctal) {
// Test that syntax error caused by octal literal is reported correctly as
// such (issue 2220).
v8::internal::FLAG_min_preparse_length = 1; // Force preparsing.
v8::V8::Initialize();
v8::HandleScope scope(CcTest::isolate());
v8::Context::Scope context_scope(
v8::Context::New(CcTest::isolate()));
v8::TryCatch try_catch;
const char* script =
"\"use strict\"; \n"
"a = function() { \n"
" b = function() { \n"
" 01; \n"
" }; \n"
"}; \n";
v8::Script::Compile(v8::String::NewFromUtf8(CcTest::isolate(), script));
CHECK(try_catch.HasCaught());
v8::String::Utf8Value exception(try_catch.Exception());
CHECK_EQ("SyntaxError: Octal literals are not allowed in strict mode.",
*exception);
}
void RunParserSyncTest(const char* context_data[][2],
const char* statement_data[],
ParserSyncTestResult result,
const ParserFlag* flags = NULL,
int flags_len = 0) {
v8::HandleScope handles(CcTest::isolate());
v8::Handle<v8::Context> context = v8::Context::New(CcTest::isolate());
v8::Context::Scope context_scope(context);
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
static const ParserFlag default_flags[] = {
kAllowLazy, kAllowHarmonyScoping, kAllowModules, kAllowGenerators,
kAllowForOf, kAllowNativesSyntax
};
if (!flags) {
flags = default_flags;
flags_len = ARRAY_SIZE(default_flags);
}
for (int i = 0; context_data[i][0] != NULL; ++i) {
for (int j = 0; statement_data[j] != NULL; ++j) {
int kPrefixLen = i::StrLength(context_data[i][0]);
int kStatementLen = i::StrLength(statement_data[j]);
int kSuffixLen = i::StrLength(context_data[i][1]);
int kProgramSize = kPrefixLen + kStatementLen + kSuffixLen;
// Plug the source code pieces together.
i::ScopedVector<char> program(kProgramSize + 1);
int length = i::OS::SNPrintF(program,
"%s%s%s",
context_data[i][0],
statement_data[j],
context_data[i][1]);
CHECK(length == kProgramSize);
TestParserSync(program.start(),
flags,
flags_len,
result);
}
}
}
TEST(ErrorsEvalAndArguments) {
// Tests that both preparsing and parsing produce the right kind of errors for
// using "eval" and "arguments" as identifiers. Without the strict mode, it's
// ok to use "eval" or "arguments" as identifiers. With the strict mode, it
// isn't.
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "var eval; function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var eval;",
"var arguments",
"var foo, eval;",
"var foo, arguments;",
"try { } catch (eval) { }",
"try { } catch (arguments) { }",
"function eval() { }",
"function arguments() { }",
"function foo(eval) { }",
"function foo(arguments) { }",
"function foo(bar, eval) { }",
"function foo(bar, arguments) { }",
"eval = 1;",
"arguments = 1;",
"var foo = eval = 1;",
"var foo = arguments = 1;",
"++eval;",
"++arguments;",
"eval++;",
"arguments++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsEvalAndArgumentsSloppy) {
// Tests that both preparsing and parsing accept "eval" and "arguments" as
// identifiers when needed.
const char* context_data[][2] = {
{ "", "" },
{ "function test_func() {", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var eval;",
"var arguments",
"var foo, eval;",
"var foo, arguments;",
"try { } catch (eval) { }",
"try { } catch (arguments) { }",
"function eval() { }",
"function arguments() { }",
"function foo(eval) { }",
"function foo(arguments) { }",
"function foo(bar, eval) { }",
"function foo(bar, arguments) { }",
"eval = 1;",
"arguments = 1;",
"var foo = eval = 1;",
"var foo = arguments = 1;",
"++eval;",
"++arguments;",
"eval++;",
"arguments++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(NoErrorsEvalAndArgumentsStrict) {
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "function test_func() { \"use strict\";", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"eval;",
"arguments;",
"var foo = eval;",
"var foo = arguments;",
"var foo = { eval: 1 };",
"var foo = { arguments: 1 };",
"var foo = { }; foo.eval = {};",
"var foo = { }; foo.arguments = {};",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsFutureStrictReservedWords) {
// Tests that both preparsing and parsing produce the right kind of errors for
// using future strict reserved words as identifiers. Without the strict mode,
// it's ok to use future strict reserved words as identifiers. With the strict
// mode, it isn't.
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var interface;",
"var foo, interface;",
"try { } catch (interface) { }",
"function interface() { }",
"function foo(interface) { }",
"function foo(bar, interface) { }",
"interface = 1;",
"var foo = interface = 1;",
"++interface;",
"interface++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsFutureStrictReservedWords) {
const char* context_data[][2] = {
{ "", "" },
{ "function test_func() {", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var interface;",
"var foo, interface;",
"try { } catch (interface) { }",
"function interface() { }",
"function foo(interface) { }",
"function foo(bar, interface) { }",
"interface = 1;",
"var foo = interface = 1;",
"++interface;",
"interface++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsReservedWords) {
// Tests that both preparsing and parsing produce the right kind of errors for
// using future reserved words as identifiers. These tests don't depend on the
// strict mode.
const char* context_data[][2] = {
{ "", "" },
{ "\"use strict\";", "" },
{ "var eval; function test_func() {", "}"},
{ "var eval; function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var super;",
"var foo, super;",
"try { } catch (super) { }",
"function super() { }",
"function foo(super) { }",
"function foo(bar, super) { }",
"super = 1;",
"var foo = super = 1;",
"++super;",
"super++;",
"function foo super",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsYieldSloppy) {
// In sloppy mode, it's okay to use "yield" as identifier, *except* inside a
// generator (see next test).
const char* context_data[][2] = {
{ "", "" },
{ "function is_not_gen() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"var yield;",
"var foo, yield;",
"try { } catch (yield) { }",
"function yield() { }",
"function foo(yield) { }",
"function foo(bar, yield) { }",
"yield = 1;",
"var foo = yield = 1;",
"++yield;",
"yield++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsYieldSloppyGenerator) {
const char* context_data[][2] = {
{ "function * is_gen() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"var yield;",
"var foo, yield;",
"try { } catch (yield) { }",
"function yield() { }",
// BUG: These should not be allowed, but they are (if kAllowGenerators is
// set)
// "function foo(yield) { }",
// "function foo(bar, yield) { }",
"yield = 1;",
"var foo = yield = 1;",
"++yield;",
"yield++;",
NULL
};
// If generators are not allowed, the error will be produced at the '*' token,
// so this test works both with and without the kAllowGenerators flag.
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(ErrorsYieldStrict) {
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "\"use strict\"; function is_not_gen() {", "}" },
{ "function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"var yield;",
"var foo, yield;",
"try { } catch (yield) { }",
"function yield() { }",
"function foo(yield) { }",
"function foo(bar, yield) { }",
"yield = 1;",
"var foo = yield = 1;",
"++yield;",
"yield++;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(ErrorsYield) {
const char* context_data[][2] = {
{ "function * is_gen() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"yield 2;", // this is legal inside generator
"yield * 2;", // this is legal inside generator
NULL
};
// Here we cannot assert that there is no error, since there will be without
// the kAllowGenerators flag. However, we test that Parser and PreParser
// produce the same errors.
RunParserSyncTest(context_data, statement_data, kSuccessOrError);
}
TEST(ErrorsNameOfStrictFunction) {
// Tests that illegal tokens as names of a strict function produce the correct
// errors.
const char* context_data[][2] = {
{ "", ""},
{ "\"use strict\";", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"function eval() {\"use strict\";}",
"function arguments() {\"use strict\";}",
"function interface() {\"use strict\";}",
"function yield() {\"use strict\";}",
// Future reserved words are always illegal
"function super() { }",
"function super() {\"use strict\";}",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsNameOfStrictFunction) {
const char* context_data[][2] = {
{ "", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"function eval() { }",
"function arguments() { }",
"function interface() { }",
"function yield() { }",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsIllegalWordsAsLabelsSloppy) {
// Using future reserved words as labels is always an error.
const char* context_data[][2] = {
{ "", ""},
{ "function test_func() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"super: while(true) { break super; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(ErrorsIllegalWordsAsLabelsStrict) {
// Tests that illegal tokens as labels produce the correct errors.
const char* context_data[][2] = {
{ "\"use strict\";", "" },
{ "function test_func() {\"use strict\"; ", "}"},
{ NULL, NULL }
};
const char* statement_data[] = {
"super: while(true) { break super; }",
"interface: while(true) { break interface; }",
"yield: while(true) { break yield; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsIllegalWordsAsLabels) {
// Using eval and arguments as labels is legal even in strict mode.
const char* context_data[][2] = {
{ "", ""},
{ "function test_func() {", "}" },
{ "\"use strict\";", "" },
{ "\"use strict\"; function test_func() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"mylabel: while(true) { break mylabel; }",
"eval: while(true) { break eval; }",
"arguments: while(true) { break arguments; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsParenthesizedLabels) {
// Parenthesized identifiers shouldn't be recognized as labels.
const char* context_data[][2] = {
{ "", ""},
{ "function test_func() {", "}" },
{ NULL, NULL }
};
const char* statement_data[] = {
"(mylabel): while(true) { break mylabel; }",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsParenthesizedDirectivePrologue) {
// Parenthesized directive prologue shouldn't be recognized.
const char* context_data[][2] = {
{ "", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"(\"use strict\"); var eval;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsNotAnIdentifierName) {
const char* context_data[][2] = {
{ "", ""},
{ "\"use strict\";", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"var foo = {}; foo.{;",
"var foo = {}; foo.};",
"var foo = {}; foo.=;",
"var foo = {}; foo.888;",
"var foo = {}; foo.-;",
"var foo = {}; foo.--;",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsIdentifierNames) {
// Keywords etc. are valid as property names.
const char* context_data[][2] = {
{ "", ""},
{ "\"use strict\";", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"var foo = {}; foo.if;",
"var foo = {}; foo.yield;",
"var foo = {}; foo.super;",
"var foo = {}; foo.interface;",
"var foo = {}; foo.eval;",
"var foo = {}; foo.arguments;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(DontRegressPreParserDataSizes) {
// These tests make sure that PreParser doesn't start producing less data.
v8::V8::Initialize();
int marker;
CcTest::i_isolate()->stack_guard()->SetStackLimit(
reinterpret_cast<uintptr_t>(&marker) - 128 * 1024);
struct TestCase {
const char* program;
int symbols;
int functions;
} test_cases[] = {
// Labels and variables are recorded as symbols.
{"{label: 42}", 1, 0}, {"{label: 42; label2: 43}", 2, 0},
{"var x = 42;", 1, 0}, {"var x = 42, y = 43;", 2, 0},
{"var x = {y: 1};", 2, 0},
{"var x = {}; x.y = 1", 2, 0},
// "get" is recorded as a symbol too.
{"var x = {get foo(){} };", 3, 1},
// When keywords are used as identifiers, they're logged as symbols, too:
{"var x = {if: 1};", 2, 0},
{"var x = {}; x.if = 1", 2, 0},
{"var x = {get if(){} };", 3, 1},
// Functions
{"function foo() {}", 1, 1}, {"function foo() {} function bar() {}", 2, 2},
// Labels, variables and functions insize lazy functions are not recorded.
{"function lazy() { var a, b, c; }", 1, 1},
{"function lazy() { a: 1; b: 2; c: 3; }", 1, 1},
{"function lazy() { function a() {} function b() {} function c() {} }", 1,
1},
{NULL, 0, 0}
};
// Each function adds 5 elements to the preparse function data.
const int kDataPerFunction = 5;
typedef i::CompleteParserRecorderFriend F;
uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit();
for (int i = 0; test_cases[i].program; i++) {
const char* program = test_cases[i].program;
i::Utf8ToUtf16CharacterStream stream(
reinterpret_cast<const i::byte*>(program),
static_cast<unsigned>(strlen(program)));
i::CompleteParserRecorder log;
i::Scanner scanner(CcTest::i_isolate()->unicode_cache());
scanner.Initialize(&stream);
i::PreParser preparser(&scanner, &log, stack_limit);
preparser.set_allow_lazy(true);
preparser.set_allow_natives_syntax(true);
i::PreParser::PreParseResult result = preparser.PreParseProgram();
CHECK_EQ(i::PreParser::kPreParseSuccess, result);
if (F::symbol_ids(&log) != test_cases[i].symbols) {
i::OS::Print(
"Expected preparse data for program:\n"
"\t%s\n"
"to contain %d symbols, however, received %d symbols.\n",
program, test_cases[i].symbols, F::symbol_ids(&log));
CHECK(false);
}
if (F::function_position(&log) !=
test_cases[i].functions * kDataPerFunction) {
i::OS::Print(
"Expected preparse data for program:\n"
"\t%s\n"
"to contain %d functions, however, received %d functions.\n",
program, test_cases[i].functions,
F::function_position(&log) / kDataPerFunction);
CHECK(false);
}
i::ScriptDataImpl data(log.ExtractData());
CHECK(!data.has_error());
}
}
TEST(FunctionDeclaresItselfStrict) {
// Tests that we produce the right kinds of errors when a function declares
// itself strict (we cannot produce there errors as soon as we see the
// offending identifiers, because we don't know at that point whether the
// function is strict or not).
const char* context_data[][2] = {
{"function eval() {", "}"},
{"function arguments() {", "}"},
{"function yield() {", "}"},
{"function interface() {", "}"},
{"function foo(eval) {", "}"},
{"function foo(arguments) {", "}"},
{"function foo(yield) {", "}"},
{"function foo(interface) {", "}"},
{"function foo(bar, eval) {", "}"},
{"function foo(bar, arguments) {", "}"},
{"function foo(bar, yield) {", "}"},
{"function foo(bar, interface) {", "}"},
{"function foo(bar, bar) {", "}"},
{ NULL, NULL }
};
const char* strict_statement_data[] = {
"\"use strict\";",
NULL
};
const char* non_strict_statement_data[] = {
";",
NULL
};
RunParserSyncTest(context_data, strict_statement_data, kError);
RunParserSyncTest(context_data, non_strict_statement_data, kSuccess);
}
TEST(ErrorsTryWithoutCatchOrFinally) {
const char* context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"try { }",
"try { } foo();",
"try { } catch (e) foo();",
"try { } catch { }",
"try { } finally foo();",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsTryCatchFinally) {
const char* context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"try { } catch (e) { }",
"try { } catch (e) { } finally { }",
"try { } finally { }",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsRegexpLiteral) {
const char* context_data[][2] = {
{"var r = ", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"/unterminated",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsRegexpLiteral) {
const char* context_data[][2] = {
{"var r = ", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"/foo/",
"/foo/g",
"/foo/whatever", // This is an error but not detected by the parser.
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(Intrinsics) {
const char* context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"%someintrinsic(arg)",
NULL
};
// Parsing will fail or succeed depending on whether we allow natives syntax
// or not.
RunParserSyncTest(context_data, statement_data, kSuccessOrError);
}
TEST(NoErrorsNewExpression) {
const char* context_data[][2] = {
{"", ""},
{"var f =", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"new foo",
"new foo();",
"new foo(1);",
"new foo(1, 2);",
// The first () will be processed as a part of the NewExpression and the
// second () will be processed as part of LeftHandSideExpression.
"new foo()();",
// The first () will be processed as a part of the inner NewExpression and
// the second () will be processed as a part of the outer NewExpression.
"new new foo()();",
"new foo.bar;",
"new foo.bar();",
"new foo.bar.baz;",
"new foo.bar().baz;",
"new foo[bar];",
"new foo[bar]();",
"new foo[bar][baz];",
"new foo[bar]()[baz];",
"new foo[bar].baz(baz)()[bar].baz;",
"new \"foo\"", // Runtime error
"new 1", // Runtime error
// This even runs:
"(new new Function(\"this.x = 1\")).x;",
"new new Test_Two(String, 2).v(0123).length;",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(ErrorsNewExpression) {
const char* context_data[][2] = {
{"", ""},
{"var f =", ""},
{ NULL, NULL }
};
const char* statement_data[] = {
"new foo bar",
"new ) foo",
"new ++foo",
"new foo ++",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(StrictObjectLiteralChecking) {
const char* strict_context_data[][2] = {
{"\"use strict\"; var myobject = {", "};"},
{ NULL, NULL }
};
const char* non_strict_context_data[][2] = {
{"var myobject = {", "};"},
{ NULL, NULL }
};
// These are only errors in strict mode.
const char* statement_data[] = {
"foo: 1, foo: 2",
"\"foo\": 1, \"foo\": 2",
"foo: 1, \"foo\": 2",
"1: 1, 1: 2",
"1: 1, \"1\": 2",
"get: 1, get: 2", // Not a getter for real, just a property called get.
"set: 1, set: 2", // Not a setter for real, just a property called set.
NULL
};
RunParserSyncTest(non_strict_context_data, statement_data, kSuccess);
RunParserSyncTest(strict_context_data, statement_data, kError);
}
TEST(ErrorsObjectLiteralChecking) {
const char* context_data[][2] = {
{"\"use strict\"; var myobject = {", "};"},
{"var myobject = {", "};"},
{ NULL, NULL }
};
const char* statement_data[] = {
"foo: 1, get foo() {}",
"foo: 1, set foo() {}",
"\"foo\": 1, get \"foo\"() {}",
"\"foo\": 1, set \"foo\"() {}",
"1: 1, get 1() {}",
"1: 1, set 1() {}",
// It's counter-intuitive, but these collide too (even in classic
// mode). Note that we can have "foo" and foo as properties in classic mode,
// but we cannot have "foo" and get foo, or foo and get "foo".
"foo: 1, get \"foo\"() {}",
"foo: 1, set \"foo\"() {}",
"\"foo\": 1, get foo() {}",
"\"foo\": 1, set foo() {}",
"1: 1, get \"1\"() {}",
"1: 1, set \"1\"() {}",
"\"1\": 1, get 1() {}"
"\"1\": 1, set 1() {}"
// Parsing FunctionLiteral for getter or setter fails
"get foo( +",
"get foo() \"error\"",
NULL
};
RunParserSyncTest(context_data, statement_data, kError);
}
TEST(NoErrorsObjectLiteralChecking) {
const char* context_data[][2] = {
{"var myobject = {", "};"},
{"\"use strict\"; var myobject = {", "};"},
{ NULL, NULL }
};
const char* statement_data[] = {
"foo: 1, bar: 2",
"\"foo\": 1, \"bar\": 2",
"1: 1, 2: 2",
// Syntax: IdentifierName ':' AssignmentExpression
"foo: bar = 5 + baz",
// Syntax: 'get' (IdentifierName | String | Number) FunctionLiteral
"get foo() {}",
"get \"foo\"() {}",
"get 1() {}",
// Syntax: 'set' (IdentifierName | String | Number) FunctionLiteral
"set foo() {}",
"set \"foo\"() {}",
"set 1() {}",
// Non-colliding getters and setters -> no errors
"foo: 1, get bar() {}",
"foo: 1, set bar(b) {}",
"\"foo\": 1, get \"bar\"() {}",
"\"foo\": 1, set \"bar\"() {}",
"1: 1, get 2() {}",
"1: 1, set 2() {}",
// Weird number of parameters -> no errors
"get bar() {}, set bar() {}",
"get bar(x) {}, set bar(x) {}",
"get bar(x, y) {}, set bar(x, y) {}",
// Keywords, future reserved and strict future reserved are also allowed as
// property names.
"if: 4",
"interface: 5",
"super: 6",
"eval: 7",
"arguments: 8",
NULL
};
RunParserSyncTest(context_data, statement_data, kSuccess);
}
TEST(TooManyArguments) {
const char* context_data[][2] = {
{"foo(", "0)"},
{ NULL, NULL }
};
using v8::internal::Code;
char statement[Code::kMaxArguments * 2 + 1];
for (int i = 0; i < Code::kMaxArguments; ++i) {
statement[2 * i] = '0';
statement[2 * i + 1] = ',';
}
statement[Code::kMaxArguments * 2] = 0;
const char* statement_data[] = {
statement,
NULL
};
// The test is quite slow, so run it with a reduced set of flags.
static const ParserFlag empty_flags[] = {kAllowLazy};
RunParserSyncTest(context_data, statement_data, kError, empty_flags, 1);
}
TEST(StrictDelete) {
// "delete <Identifier>" is not allowed in strict mode.
const char* strict_context_data[][2] = {
{"\"use strict\"; ", ""},
{ NULL, NULL }
};
const char* sloppy_context_data[][2] = {
{"", ""},
{ NULL, NULL }
};
// These are errors in the strict mode.
const char* sloppy_statement_data[] = {
"delete foo;",
"delete foo + 1;",
"delete (foo);",
"delete eval;",
"delete interface;",
NULL
};
// These are always OK
const char* good_statement_data[] = {
"delete this;",
"delete 1;",
"delete 1 + 2;",
"delete foo();",
"delete foo.bar;",
"delete foo[bar];",
"delete foo--;",
"delete --foo;",
"delete new foo();",
"delete new foo(bar);",
NULL
};
// These are always errors
const char* bad_statement_data[] = {
"delete if;",
NULL
};
RunParserSyncTest(strict_context_data, sloppy_statement_data, kError);
RunParserSyncTest(sloppy_context_data, sloppy_statement_data, kSuccess);
RunParserSyncTest(strict_context_data, good_statement_data, kSuccess);
RunParserSyncTest(sloppy_context_data, good_statement_data, kSuccess);
RunParserSyncTest(strict_context_data, bad_statement_data, kError);
RunParserSyncTest(sloppy_context_data, bad_statement_data, kError);
}
TEST(InvalidLeftHandSide) {
const char* assignment_context_data[][2] = {
{"", " = 1;"},
{"\"use strict\"; ", " = 1;"},
{ NULL, NULL }
};
const char* prefix_context_data[][2] = {
{"++", ";"},
{"\"use strict\"; ++", ";"},
{NULL, NULL},
};
const char* postfix_context_data[][2] = {
{"", "++;"},
{"\"use strict\"; ", "++;"},
{ NULL, NULL }
};
// Good left hand sides for assigment or prefix / postfix operations.
const char* good_statement_data[] = {
"foo",
"foo.bar",
"foo[bar]",
"foo()[bar]",
"foo().bar",
"this.foo",
"this[foo]",
"new foo()[bar]",
"new foo().bar",
NULL
};
// Bad left hand sides for assigment or prefix / postfix operations.
const char* bad_statement_data_common[] = {
"2",
"foo()",
"null",
"if", // Unexpected token
"{x: 1}", // Unexpected token
"this",
"\"bar\"",
"(foo + bar)",
"new new foo()[bar]", // means: new (new foo()[bar])
"new new foo().bar", // means: new (new foo()[bar])
NULL
};
// These are not okay for assignment, but okay for prefix / postix.
const char* bad_statement_data_for_assignment[] = {
"++foo",
"foo++",
"foo + bar",
NULL
};
RunParserSyncTest(assignment_context_data, good_statement_data, kSuccess);
RunParserSyncTest(assignment_context_data, bad_statement_data_common, kError);
RunParserSyncTest(assignment_context_data, bad_statement_data_for_assignment,
kError);
RunParserSyncTest(prefix_context_data, good_statement_data, kSuccess);
RunParserSyncTest(prefix_context_data, bad_statement_data_common, kError);
RunParserSyncTest(postfix_context_data, good_statement_data, kSuccess);
RunParserSyncTest(postfix_context_data, bad_statement_data_common, kError);
}