v8/test/cctest/test-assembler-x64.cc

1286 lines
36 KiB
C++
Raw Normal View History

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include <iostream>
#include "src/v8.h"
#include "src/base/platform/platform.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
// The AMD64 calling convention is used, with the first six arguments
// in RDI, RSI, RDX, RCX, R8, and R9, and floating point arguments in
// the XMM registers. The return value is in RAX.
// This calling convention is used on Linux, with GCC, and on Mac OS,
// with GCC. A different convention is used on 64-bit windows,
// where the first four integer arguments are passed in RCX, RDX, R8 and R9.
typedef int (*F0)();
typedef int (*F1)(int64_t x);
typedef int (*F2)(int64_t x, int64_t y);
typedef unsigned (*F3)(double x);
typedef uint64_t (*F4)(uint64_t* x, uint64_t* y);
typedef uint64_t (*F5)(uint64_t x);
#ifdef _WIN64
static const Register arg1 = rcx;
static const Register arg2 = rdx;
#else
static const Register arg1 = rdi;
static const Register arg2 = rsi;
#endif
#define __ assm.
TEST(AssemblerX64ReturnOperation) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 2 and returns it.
__ movq(rax, arg2);
__ nop();
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(2, result);
}
TEST(AssemblerX64StackOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 2 and returns it.
// We compile without stack frame pointers, so the gdb debugger shows
// incorrect stack frames when debugging this function (which has them).
__ pushq(rbp);
__ movq(rbp, rsp);
__ pushq(arg2); // Value at (rbp - 8)
__ pushq(arg2); // Value at (rbp - 16)
__ pushq(arg1); // Value at (rbp - 24)
__ popq(rax);
__ popq(rax);
__ popq(rax);
__ popq(rbp);
__ nop();
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(2, result);
}
TEST(AssemblerX64ArithmeticOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that adds arguments returning the sum.
__ movq(rax, arg2);
__ addq(rax, arg1);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(5, result);
}
TEST(AssemblerX64CmpbOperation) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a function that compare argument byte returing 1 if equal else 0.
// On Windows, it compares rcx with rdx which does not require REX prefix;
// on Linux, it compares rdi with rsi which requires REX prefix.
Label done;
__ movq(rax, Immediate(1));
__ cmpb(arg1, arg2);
__ j(equal, &done);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(0x1002, 0x2002);
CHECK_EQ(1, result);
result = FUNCTION_CAST<F2>(buffer)(0x1002, 0x2003);
CHECK_EQ(0, result);
}
TEST(AssemblerX64ImulOperation) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that multiplies arguments returning the high
// word.
__ movq(rax, arg2);
__ imulq(arg1);
__ movq(rax, rdx);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(0, result);
result = FUNCTION_CAST<F2>(buffer)(0x100000000l, 0x100000000l);
CHECK_EQ(1, result);
result = FUNCTION_CAST<F2>(buffer)(-0x100000000l, 0x100000000l);
CHECK_EQ(-1, result);
}
TEST(AssemblerX64XchglOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg1, 0));
__ movq(r11, Operand(arg2, 0));
__ xchgl(rax, r11);
__ movq(Operand(arg1, 0), rax);
__ movq(Operand(arg2, 0), r11);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 40000000), left);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 20000000), right);
USE(result);
}
TEST(AssemblerX64OrlOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg2, 0));
__ orl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 60000000), left);
USE(result);
}
TEST(AssemblerX64RollOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, arg1);
__ roll(rax, Immediate(1));
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
uint64_t src = V8_2PART_UINT64_C(0x10000000, C0000000);
uint64_t result = FUNCTION_CAST<F5>(buffer)(src);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 80000001), result);
}
TEST(AssemblerX64SublOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg2, 0));
__ subl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, e0000000), left);
USE(result);
}
TEST(AssemblerX64TestlOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Set rax with the ZF flag of the testl instruction.
Label done;
__ movq(rax, Immediate(1));
__ movq(r11, Operand(arg2, 0));
__ testl(Operand(arg1, 0), r11);
__ j(zero, &done, Label::kNear);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 00000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(1u, result);
}
TEST(AssemblerX64XorlOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg2, 0));
__ xorl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 60000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 40000000), left);
USE(result);
}
TEST(AssemblerX64MemoryOperands) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 2 and returns it.
__ pushq(rbp);
__ movq(rbp, rsp);
__ pushq(arg2); // Value at (rbp - 8)
__ pushq(arg2); // Value at (rbp - 16)
__ pushq(arg1); // Value at (rbp - 24)
const int kStackElementSize = 8;
__ movq(rax, Operand(rbp, -3 * kStackElementSize));
__ popq(arg2);
__ popq(arg2);
__ popq(arg2);
__ popq(rbp);
__ nop();
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(3, result);
}
TEST(AssemblerX64ControlFlow) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 1 and returns it.
__ pushq(rbp);
__ movq(rbp, rsp);
__ movq(rax, arg1);
Label target;
__ jmp(&target);
__ movq(rax, arg2);
__ bind(&target);
__ popq(rbp);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(3, result);
}
TEST(AssemblerX64LoopImmediates) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble two loops using rax as counter, and verify the ending counts.
Label Fail;
__ movq(rax, Immediate(-3));
Label Loop1_test;
Label Loop1_body;
__ jmp(&Loop1_test);
__ bind(&Loop1_body);
__ addq(rax, Immediate(7));
__ bind(&Loop1_test);
__ cmpq(rax, Immediate(20));
__ j(less_equal, &Loop1_body);
// Did the loop terminate with the expected value?
__ cmpq(rax, Immediate(25));
__ j(not_equal, &Fail);
Label Loop2_test;
Label Loop2_body;
__ movq(rax, Immediate(0x11FEED00));
__ jmp(&Loop2_test);
__ bind(&Loop2_body);
__ addq(rax, Immediate(-0x1100));
__ bind(&Loop2_test);
__ cmpq(rax, Immediate(0x11FE8000));
__ j(greater, &Loop2_body);
// Did the loop terminate with the expected value?
__ cmpq(rax, Immediate(0x11FE7600));
__ j(not_equal, &Fail);
__ movq(rax, Immediate(1));
__ ret(0);
__ bind(&Fail);
__ movq(rax, Immediate(0));
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(1, result);
}
TEST(OperandRegisterDependency) {
int offsets[4] = {0, 1, 0xfed, 0xbeefcad};
for (int i = 0; i < 4; i++) {
int offset = offsets[i];
CHECK(Operand(rax, offset).AddressUsesRegister(rax));
CHECK(!Operand(rax, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, offset).AddressUsesRegister(rcx));
CHECK(Operand(rax, rax, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(rcx));
CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rax));
CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rcx));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r9));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rdx));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, offset).AddressUsesRegister(rsp));
CHECK(!Operand(rsp, offset).AddressUsesRegister(rax));
CHECK(!Operand(rsp, offset).AddressUsesRegister(r15));
CHECK(Operand(rbp, offset).AddressUsesRegister(rbp));
CHECK(!Operand(rbp, offset).AddressUsesRegister(rax));
CHECK(!Operand(rbp, offset).AddressUsesRegister(r13));
CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rbp));
CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rcx));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r13));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rbp));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r15));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r13));
}
}
TEST(AssemblerX64LabelChaining) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Assembler assm(CcTest::i_isolate(), NULL, 0);
Label target;
__ j(equal, &target);
__ j(not_equal, &target);
__ bind(&target);
__ nop();
}
TEST(AssemblerMultiByteNop) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
byte buffer[1024];
Isolate* isolate = CcTest::i_isolate();
Assembler assm(isolate, buffer, sizeof(buffer));
__ pushq(rbx);
__ pushq(rcx);
__ pushq(rdx);
__ pushq(rdi);
__ pushq(rsi);
__ movq(rax, Immediate(1));
__ movq(rbx, Immediate(2));
__ movq(rcx, Immediate(3));
__ movq(rdx, Immediate(4));
__ movq(rdi, Immediate(5));
__ movq(rsi, Immediate(6));
for (int i = 0; i < 16; i++) {
int before = assm.pc_offset();
__ Nop(i);
CHECK_EQ(assm.pc_offset() - before, i);
}
Label fail;
__ cmpq(rax, Immediate(1));
__ j(not_equal, &fail);
__ cmpq(rbx, Immediate(2));
__ j(not_equal, &fail);
__ cmpq(rcx, Immediate(3));
__ j(not_equal, &fail);
__ cmpq(rdx, Immediate(4));
__ j(not_equal, &fail);
__ cmpq(rdi, Immediate(5));
__ j(not_equal, &fail);
__ cmpq(rsi, Immediate(6));
__ j(not_equal, &fail);
__ movq(rax, Immediate(42));
__ popq(rsi);
__ popq(rdi);
__ popq(rdx);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
__ bind(&fail);
__ movq(rax, Immediate(13));
__ popq(rsi);
__ popq(rdi);
__ popq(rdx);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F0 f = FUNCTION_CAST<F0>(code->entry());
int res = f();
CHECK_EQ(42, res);
}
#ifdef __GNUC__
#define ELEMENT_COUNT 4u
void DoSSE2(const v8::FunctionCallbackInfo<v8::Value>& args) {
v8::HandleScope scope(CcTest::isolate());
byte buffer[1024];
CHECK(args[0]->IsArray());
v8::Local<v8::Array> vec = v8::Local<v8::Array>::Cast(args[0]);
CHECK_EQ(ELEMENT_COUNT, vec->Length());
Isolate* isolate = CcTest::i_isolate();
Assembler assm(isolate, buffer, sizeof(buffer));
// Remove return address from the stack for fix stack frame alignment.
__ popq(rcx);
// Store input vector on the stack.
for (unsigned i = 0; i < ELEMENT_COUNT; i++) {
__ movl(rax, Immediate(vec->Get(i)->Int32Value()));
__ shlq(rax, Immediate(0x20));
__ orq(rax, Immediate(vec->Get(++i)->Int32Value()));
__ pushq(rax);
}
// Read vector into a xmm register.
__ xorps(xmm0, xmm0);
__ movdqa(xmm0, Operand(rsp, 0));
// Create mask and store it in the return register.
__ movmskps(rax, xmm0);
// Remove unused data from the stack.
__ addq(rsp, Immediate(ELEMENT_COUNT * sizeof(int32_t)));
// Restore return address.
__ pushq(rcx);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F0 f = FUNCTION_CAST<F0>(code->entry());
int res = f();
args.GetReturnValue().Set(v8::Integer::New(CcTest::isolate(), res));
}
TEST(StackAlignmentForSSE2) {
CcTest::InitializeVM();
CHECK_EQ(0, v8::base::OS::ActivationFrameAlignment() % 16);
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handle_scope(isolate);
v8::Handle<v8::ObjectTemplate> global_template =
v8::ObjectTemplate::New(isolate);
global_template->Set(v8_str("do_sse2"),
v8::FunctionTemplate::New(isolate, DoSSE2));
LocalContext env(NULL, global_template);
CompileRun(
"function foo(vec) {"
" return do_sse2(vec);"
"}");
v8::Local<v8::Object> global_object = env->Global();
v8::Local<v8::Function> foo =
v8::Local<v8::Function>::Cast(global_object->Get(v8_str("foo")));
int32_t vec[ELEMENT_COUNT] = { -1, 1, 1, 1 };
v8::Local<v8::Array> v8_vec = v8::Array::New(isolate, ELEMENT_COUNT);
for (unsigned i = 0; i < ELEMENT_COUNT; i++) {
v8_vec->Set(i, v8_num(vec[i]));
}
v8::Local<v8::Value> args[] = { v8_vec };
v8::Local<v8::Value> result = foo->Call(global_object, 1, args);
// The mask should be 0b1000.
CHECK_EQ(8, result->Int32Value());
}
#undef ELEMENT_COUNT
#endif // __GNUC__
TEST(AssemblerX64Extractps) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(SSE4_1)) return;
v8::HandleScope scope(CcTest::isolate());
byte buffer[256];
Isolate* isolate = CcTest::i_isolate();
Assembler assm(isolate, buffer, sizeof(buffer));
{ CpuFeatureScope fscope2(&assm, SSE4_1);
__ extractps(rax, xmm0, 0x1);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
uint64_t value1 = V8_2PART_UINT64_C(0x12345678, 87654321);
CHECK_EQ(0x12345678u, f(uint64_to_double(value1)));
uint64_t value2 = V8_2PART_UINT64_C(0x87654321, 12345678);
CHECK_EQ(0x87654321u, f(uint64_to_double(value2)));
}
typedef int (*F6)(float x, float y);
TEST(AssemblerX64SSE) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler assm(isolate, buffer, sizeof buffer);
{
__ shufps(xmm0, xmm0, 0x0); // brocast first argument
__ shufps(xmm1, xmm1, 0x0); // brocast second argument
__ movaps(xmm2, xmm1);
__ addps(xmm2, xmm0);
__ mulps(xmm2, xmm1);
__ subps(xmm2, xmm0);
__ divps(xmm2, xmm1);
__ cvttss2si(rax, xmm2);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc,
Code::ComputeFlags(Code::STUB),
Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F6 f = FUNCTION_CAST<F6>(code->entry());
CHECK_EQ(2, f(1.0, 2.0));
}
typedef int (*F7)(double x, double y, double z);
TEST(AssemblerX64FMA_sd) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(FMA3)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler assm(isolate, buffer, sizeof buffer);
{
CpuFeatureScope fscope(&assm, FMA3);
Label exit;
// argument in xmm0, xmm1 and xmm2
// xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ addsd(xmm3, xmm2); // Expected result in xmm3
__ subq(rsp, Immediate(kDoubleSize)); // For memory operand
// vfmadd132sd
__ movl(rax, Immediate(1)); // Test number
__ movaps(xmm8, xmm0);
__ vfmadd132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmadd213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmadd231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmadd132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfmadd213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmadd231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ subsd(xmm3, xmm2); // Expected result in xmm3
// vfmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfmsub132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmsub213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmsub231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmsub132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfmsub213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmsub231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ Move(xmm4, (uint64_t)1 << 63);
__ xorpd(xmm3, xmm4);
__ addsd(xmm3, xmm2); // Expected result in xmm3
// vfnmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmadd132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmadd213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmadd231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmadd132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfnmadd213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmadd231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ Move(xmm4, (uint64_t)1 << 63);
__ xorpd(xmm3, xmm4);
__ subsd(xmm3, xmm2); // Expected result in xmm3
// vfnmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmsub132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmsub213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmsub231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmsub132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfnmsub213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmsub231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize));
__ ret(0);
}
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F7 f = FUNCTION_CAST<F7>(code->entry());
CHECK_EQ(0, f(0.000092662107262076, -2.460774966188315, -1.0958787393627414));
}
typedef int (*F8)(float x, float y, float z);
TEST(AssemblerX64FMA_ss) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(FMA3)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler assm(isolate, buffer, sizeof buffer);
{
CpuFeatureScope fscope(&assm, FMA3);
Label exit;
// arguments in xmm0, xmm1 and xmm2
// xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ addss(xmm3, xmm2); // Expected result in xmm3
__ subq(rsp, Immediate(kDoubleSize)); // For memory operand
// vfmadd132ss
__ movl(rax, Immediate(1)); // Test number
__ movaps(xmm8, xmm0);
__ vfmadd132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmadd213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmadd231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfmadd132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfmadd213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfmadd231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ subss(xmm3, xmm2); // Expected result in xmm3
// vfmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfmsub132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmsub213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmsub231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfmsub132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfmsub213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfmsub231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ Move(xmm4, (uint32_t)1 << 31);
__ xorps(xmm3, xmm4);
__ addss(xmm3, xmm2); // Expected result in xmm3
// vfnmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmadd132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmadd213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmadd231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmadd132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfnmadd213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmadd231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ Move(xmm4, (uint32_t)1 << 31);
__ xorps(xmm3, xmm4);
__ subss(xmm3, xmm2); // Expected result in xmm3
// vfnmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmsub132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmsub213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmsub231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmsub132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfnmsub213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmsub231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize));
__ ret(0);
}
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F8 f = FUNCTION_CAST<F8>(code->entry());
CHECK_EQ(0, f(9.26621069e-05f, -2.4607749f, -1.09587872f));
}
TEST(AssemblerX64JumpTables1) {
// Test jump tables with forward jumps.
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done, table;
__ leaq(arg2, Operand(&table));
__ jmp(Operand(arg2, arg1, times_8, 0));
__ ud2();
__ bind(&table);
for (int i = 0; i < kNumCases; ++i) {
__ dq(&labels[i]);
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ movq(rax, Immediate(values[i]));
__ jmp(&done);
}
__ bind(&done);
__ ret(0);
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res = f(i);
PrintF("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(AssemblerX64JumpTables2) {
// Test jump tables with backwards jumps.
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done, table;
__ leaq(arg2, Operand(&table));
__ jmp(Operand(arg2, arg1, times_8, 0));
__ ud2();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ movq(rax, Immediate(values[i]));
__ jmp(&done);
}
__ bind(&done);
__ ret(0);
__ bind(&table);
for (int i = 0; i < kNumCases; ++i) {
__ dq(&labels[i]);
}
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res = f(i);
PrintF("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
#undef __